Influence of Carbons on Metal Stabilization and the Reduction in Soil Phytotoxicity with the Assessment of Health Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Pot Experiment
2.2. Methods
2.3. Phytotoxicity Tests
2.4. Calculation of Environmental Indices
3. Results
3.1. Soil and Carbon Characteristics
3.2. Total Content of Metals in Soils
3.3. Metal Forms Extracted with EDTA
3.4. Metal Contents in Medicago falcata L. and Phytotoxicity
3.5. Bioconcentration Factors (BCFs)
4. Discussion
5. Conclusions
- Added carbons lowered potential carcinogenic and non-carcinogenic risk effects in comparison to soils without carbons.
- The activated carbon had a stronger effect on limiting the availability of metals than brown coal in relation to plants grown in soils without added carbon; the percentage of reduction for shoots was Cr (18.2%) > Zn (11.5%) > Ni (10.7%) > Cu (10.3%) > Cd (8.9%) > Pb (2.4%) and Cu (13.3%) > Cr (12.5%) > Zn (10.5%) > Pb (9.0%) > Ni (5.7%) > Cd (4.6%) for roots. For the combinations of the least polluted soils with both doses of activated carbon, the forage suitability of Medicago falcata L. was found.
- Higher contents of all tested metals (Cu, Pb, Zn, Cd, Cr, and Ni) were found in the shoots compared to the roots of Medicago falcata L. Only for Pb, a higher content was found in the roots than in the shoots of the plant in the least polluted soil with the addition of carbons.
- The use of carbons at both doses limited the influence of the metals in the soil on the roots and shoots of Medicago falcata L., minimizing phytotoxic effects, and at the same time, it allowed for a better-quality yield than in the case of soils without the addition of carbons. The metals reduced the growth of Medicago falcata L. roots from 44 to 21%, while the growth of shoots was reduced from 25 to 2%.
- The lower values of the BCFs in soils with activated carbon at both doses compared to those with brown coal indicate greater efficiency in immobilizing metals. The highest values for the BCFs were for Cd, which was accumulated in greater amounts in comparison to the other tested metals.
- The use of brown coal is justified in soils contaminated with metals that have a neutral or alkaline reaction, while in other cases, the carbon should contain alkaline additives. The use of activated carbon requires additional research on its use on acidic soils, taking into account both environmental and economic issues.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krems, P.; Rajfur, M.; Wacławek, M.; Kłos, A. The Use of Water Plants in Biomonitoring and Phytoremediation of Waters Polluted with Heavy Metals. Ecol. Chem. Eng. S 2013, 20, 353–370. [Google Scholar] [CrossRef]
- Nowak, A.; Maślak, M.; Nobis, M.; Nowak, S.; Kojs, P.; Smieja, A. Is the riparian habitat creation an effective measure of plant conservation within the urbanized area? Ecol. Eng. 2015, 83, 125–134. [Google Scholar] [CrossRef]
- Tajudin, S.A.A.; Azmi, M.A.M.; Nabila, A.T.A. Stabilization/Solidification Remediation Method for Contaminated Soil: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2016, 136, 012043. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef]
- Pierart, A.; Shahid, M.; Séjalon-Delmas, N.; Dumat, C. Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. J. Hazard. Mater. 2015, 289, 219–234. [Google Scholar] [CrossRef]
- Lund, L.J.; Page, A.L.; Sposito, G. Determination and Production of Chemical Forms of Trace Metals in Sewage Sludges and Sludge–Amended Soils, Final Technical Report; United States Environmental Protection Agency: Cincinnati, OH, USA, 1985; pp. 33–38.
- Pusz, A.; Wiśniewska, M.; Rogalski, D. Application of Brown Coal and Activated Carbon for the Immobilization of Metal Forms in Soil, along with Their Verification Using Generalized Linear Models (GLMs). Minerals 2021, 11, 268. [Google Scholar] [CrossRef]
- Pusz, A.; Wiśniewska, M.; Rogalski, D. Assessment of the Accumulation Ability of Festuca rubra L. and Alyssum saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources 2021, 10, 46. [Google Scholar] [CrossRef]
- Pusz, A.; Wiśniewska, M.; Kamiński, A. Study on mobility of metals in polluted soils from industrial landfill. Przem. Chem. 2019, 98, 652–656. Available online: https://www.cheric.org/research/tech/periodicals/doi.php?art_seq=1753162 (accessed on 10 June 2022).
- Hunce, S.Y.; Akgul, D.; Demir, G.; Mertoglu, B. Solidification/stabilization of landfill leachate concentrate using different aggregate materials. Waste Manag. 2012, 32, 1394–1400. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total. Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Pusz, A. Influence of brown coal on limit of phytotoxicity of soils contaminated with heavy metals. J. Hazard. Mater. 2007, 149, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Pusz, A.; Wiśniewska, M.; Kamiński, A. Remediation of Metals-contaminated Soils. Przem. Chem. 2019, 98, 863–867. Available online: www.cheric.org/research/tech/periodicals/doi.php?art_seq=1776514 (accessed on 10 June 2022).
- Ali, A.; Guo, D.; Zhang, Y.; Sun, X.; Jiang, S.; Guo, Z.; Huang, H.; Liang, W.; Li, R.; Zhang, Z. Using bamboo biochar with compost for the stabilization and phytotoxicity reduction of heavy metals in mine-contaminated soils of China. Nat. Sci. Rep. 2017, 7, 2690. [Google Scholar] [CrossRef] [PubMed]
- Vangronsveld, J.; Colpaert, J.; Van Tichelen, K. Reclamation of a bare industrial area contaminated by non-ferrous metals: Physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environ. Pollut. 1996, 94, 131–140. [Google Scholar] [CrossRef]
- Karer, J.; Wawra, A.; Zehetner, F.; Dunst, G.; Wagner, M.; Pavel, P.-B.; Puschenreiter, M.; Friesl-Hanl, W.; Soja, G. Effects of Biochars and Compost Mixtures and Inorganic Additives on Immobilisation of Heavy Metals in Contaminated Soils. Water Air Soil Pollut. 2015, 226, 342. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Hussain, B.; Usman, M.; Lin, Q.; Rashid, M.S.; He, Z.; Yang, X. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. Sci. Total. Environ. 2019, 707, 136121. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, B.; Zhu, L.; Xing, B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 2017, 227, 98–115. [Google Scholar] [CrossRef]
- Rahim, H.U.; Akbar, W.A.; Alatalo, J.M. A Comprehensive Literature Review on Cadmium (Cd) Status in the Soil Environment and Its Immobilization by Biochar-Based Materials. Agronomy. 2022, 12, 877. [Google Scholar] [CrossRef]
- Boisson, J.; Mench, M.; Sappin-Didier, V.; Solda, P.; Vangronsveld, J. Short-term in situ immobilization of Cd and Ni by beringite and steel short application to long-term sludged plots. Agronomie 1998, 18, 347–359. [Google Scholar] [CrossRef]
- Gray, C.; Dunham, S.; Dennis, P.; Zhao, F.; McGrath, S. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red mud. Environ. Pollut. 2006, 142, 530–539. [Google Scholar] [CrossRef]
- Angle, J.S.; Linacre, N.A. Metal phytoextraction—A survey of potential risks. Int. J. Phytoremediation 2005, 7, 241–254. [Google Scholar] [CrossRef]
- Micu, L.M.; Petanec, D.; Radulov, I.; Coradini, C.; Dicu, M. The study of chemical composition on the vegetation installed on tailings. Rev. Agric. Rural Dev. 2012, 1, 365–369. Available online: https://www.oai:ojs.ek.szte.hu:article/13234 (accessed on 10 June 2022).
- Mosharafian, S.; Afzali, S.; Weaver, G.M.; van Iersel, M.; Velni, J.M. Optimal lighting control in greenhouse by incorporating sunlight prediction. Comput. Electron. Agric. 2021, 188, 106300. [Google Scholar] [CrossRef]
- PN-ISO 10390: 2005; Soil Quality–Determination of pH. International Organization of Standardization: Geneva, Switzerland, 2005.
- PN-ISO 14235: 2003P; Soil Quality–Determination of Organic Carbon Content by Oxidation with Dichromate (VI) in a Sulfuric Acid (VI) Environment. International Organization of Standardization: Geneva, Switzerland, 2003.
- PN-ISO 10693: 2002P; Soil Quality–Determination of Carbonate Content–Volumetric Method. International Organization of Standardization: Geneva, Switzerland, 2002.
- PN-ISO 11260:2018; Soil Quality–Determination of Effective Cation Exchange Capacity and Base Saturation Level Using Barium Chloride Solution. International Organization of Standardization: Geneva, Switzerland, 2018.
- Sekutowski, T.; Sadowski, J. Zastosowanie Kiełkujących Nasion Sinapis Alba, Fagopyrum Esculentum i Cucumis Sativus w Ocenie Poziomu Pozostałości Herbicydów w Środowisku Glebowym; Kołwzan, B., Grabas, K., Eds.; Ekotoksykologia w ochronie środowiska; Polskie Zrzeszenie Inżynierów i Techników Sanitarnych. Oddział Dolnośląski: Szklarska Poreba, Poland, 2008; pp. 355–360. [Google Scholar]
- Romanowska-Duda, Z.; Grzesik, M.; Kalaji, H.M. Phytotoxkit test in growth assessment of corn as energy plant fertilized with sewage slidge. Environ. Prot. Eng. 2010, 36, 73–81. [Google Scholar]
- Małachowska-Jutsz, A.; Janosz, W.; Rudek, J. Toxicity of engine oil contaminated soil made subject to natural attenuation and phytoremediation. Ochr. Śr. 2012, 34, 15–20. [Google Scholar]
- Xu, N.; Zhang, H.; Jia, J.; Li, H.; Zhu, Z.; Fu, S.; Wang, Y. Assessment of Contents and Health Impacts of Four Metals in Chongming Asparagus—Geographical and Seasonal Aspects. Foods 2022, 11, 624. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.-L.; Li, X.; Shi, W.; Cheung, S.C.-N.; Thornton, I. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Sci. Total Environ. 2006, 356, 45–61. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lin, B.; Yuan, M.; Lao, Z.; Wu, K.; Zeng, Y.; Liang, Z.; Li, H.; Li, Y.; Zhu, D.; et al. Trace metal pollution and ecological risk assessment in agricultural soil in Dexing Pb/Zn mining area, China. Environ. Geochem. Health 2018, 41, 967–980. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, Y.; Hu, Q.; Han, M.; Li, X.; Zhang, Y.; Li, Z.; Shi, R. Accumulation Characteristics and Pollution Evaluation of Soil Heavy Metals in Different Land Use Types: Study on the Whole Region of Tianjin. Int. J. Environ. Res. Public Health 2022, 19, 10013. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lu, J.; Li, L.; Min, X.; Luo, Y. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere 2018, 201, 234–242. [Google Scholar] [CrossRef]
- Nemerow, N.L.; Sumitomo, H. Water Pollution Control Research Series; U.S. Environmental Protection Agency (USEPA): New York, NY, USA, 1970.
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef]
- Chen, R.; Han, L.; Liu, Z.; Zhao, Y.; Li, R.; Xia, L.; Fan, Y. Assessment of Soil-Heavy Metal Pollution and the Health Risks in a Mining Area from Southern Shaanxi Province, China. Toxics 2022, 10, 385. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual; Office of Emergency and Remedial Response: Washington, DC, USA, 1989.
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; (OSWER9355.4–24); Office of Solid Waste and Emergency Response: Washington, DC, USA, 2001.
- Adimalla, N. Groundwater quality for drinking and irrigation purposes and potential health risks assessment: A case study from semi-arid region of south India. Expo. Health 2018, 11, 109–123. [Google Scholar] [CrossRef]
- Li, Z.Y.; Ma, Z.W.; van der Kuijp, T.J.; Yuan, Z.W.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Fakhri, Y.; Saha, N.; Ghanbari, S.; Rasouli, M.; Miri, A.; Avazpour, M.; Rahimizadeh, A.; Riahi, S.-M.; Ghaderpoori, M.; Keramati, H.; et al. Carcinogenic and non-carcinogenic health risks of metal(oid)s in tap water from Ilam city, Iran. Food Chem. Toxicol. 2018, 118, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Regulation of the Minister of the Environment of 1 September 2016 on the Method of Assessing the Pollution of the Earth’s Surface. J. Laws Item 1395 2016. Available online: https://isap.sejm.gov.pl/ (accessed on 10 June 2022).
- Cuske, M.; Karczewska, A.; Matyja, K.; Gałka, B. Ecotoxicity and phytotoxicity of soil solutions extracted from Cu–contaminated soils amended with organic waste materials. Fresenius Environ. Bull. 2017, 26, 1163–1173. [Google Scholar]
- Pusz, A.; Wiśniewska, M. Use of carbonaceous materials to immobilize metals in soils from industrial areas. Przem. Chem. 2017, 96, 2116–2120. [Google Scholar] [CrossRef]
- Pusz, A.; Wiśniewska, M. Phytotoxicity assessment of soils from industrial areas in varying degrees of contamination with metals. In Proceedings of the 15th International Conference on Environ-mental Science and Technology, Rhodes, Greece, 31 August–2 September 2017. [Google Scholar]
- Cuske, M.; Karczewska, A. Influence of organic matter on the solubility of heavy metals in contaminated soils—A review of literature. Inż. Śr. 2016, 42, 40–59. [Google Scholar]
- Erdogan, S.; Baysal, A.; Akba, O.; Hamamci, C. Interaction of metals with humic acid isolated from oxidized coal. Pol. J. Environ. Study 2007, 16, 671–675. [Google Scholar]
- Crosland, A.R.; McGrath, S.P.; Lane, P.W. An Interlaboratory Comparison of a Standardised EDTA Extraction Procedure for the Analysis of Available Trace Elements in Two Quality Control Soils. Int. J. Environ. Anal. Chem. 1993, 51, 153–160. [Google Scholar] [CrossRef]
- Lo, I.M.C.; Yang, X.Y. EDTA Extraction of Heavy Metals from Different Soil Fractions and Synthetic Soils. Water Air Soil Pollut. 1999, 109, 219–236. [Google Scholar] [CrossRef]
- Brümmer, G.; Herms, U. Influence of Soil Reaction and Organic Matter on the Solubility of Heavy Metals in Soils. In Effects of Accumulation of Air Pollutants in Forest Ecosystems; Ulrich, B., Pankraht, J., Eds.; Springer: Dordrecht, The Netherlands, 1983; pp. 223–243. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils, 2nd ed.; Blackie Academic and Professional: London, UK, 1995. [Google Scholar]
- Adriano, D.C. Trace Elements in Terrestrial Environments; Springer: New York, NY, USA, 2001. [Google Scholar]
- Fuller, W.H.; Korte, N.E.; Niebla, E.E.; Alesii, B.A. Contribution of the soil to the migration of certain common and trace elements. Soil Sci. 1976, 122, 223–235. [Google Scholar] [CrossRef]
- Kuboi, T.; Noguchi, A.; Yazaki, J. Family Dependent Cadmium Accumulation Characteristics in Higher Plants. Plant Soil 1986, 92, 405–415. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Motowicka-Terelak, T.; Piotrowska, M.; Terelak, H.; Witek, T. Ocena Stopnia Zanieczyszczenia Gleb i Roślin Metalami Ciężkimi i Siarką. Ramowe Wytyczne Dla Rolnictwa; IUNG: Puławy, Poland, 1993. [Google Scholar]
- Suman, J.; Uhlik, O.; Viktorova, J.; Macek, T. Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? Front. Plant Sci. 2018, 9, 1476. [Google Scholar] [CrossRef] [PubMed]
- Awa, S.H.; Hadibarata, T. Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: A Review. Water Air Soil Pollut. 2020, 231, 1–15. [Google Scholar] [CrossRef]
- Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.; Cai, Y.; Kennelley, E.D. A Fern that hyper-accumulates arsenic. Nature 2001, 409, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.; Wilcke, W.; Styk, J.; Zech, W. Heavy Metal Release from Soils in Batch pH-stat Experiments. Soil Sci. Soc. Am. J. 1999, 63, 290–296. [Google Scholar] [CrossRef]
- Zeien, H.; Brümmer, G.W. Chemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Boden. Mitt. Dtsch. Bodenk. Gesell. 1989, 59, 505–510. [Google Scholar]
- Cuske, M.; Karczewska, A.; Gałka, B.; Dradrach, A. Some adverse effects of soil amendment with organic Materials–The case of soils polluted by copper industry phytostabilized with red fescue. Int. J. Phytoremediation 2016, 18, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Karczewska, A.; Chodak, T.; Kaszubkiewicz, J. The suitability of Brown coal as a sorbent for heavy metals in polluted soils. Appl. Geochem. 1996, 11, 343–346. [Google Scholar] [CrossRef]
- Porter, S.K.; Scheckel, K.G.; Impellitteri, C.A.; Ryan, J.A. Toxic metals in the environment: Thermodynamic considerations for possible immobilisation strategies for Pb, Cd, As, and Hg. Crit. Rev. Environ. Sci. Technol. 2004, 34, 495–604. [Google Scholar] [CrossRef]
- Ciecko, Z.; Wyszkowski, M.; Krajewski, W.; Zabielska, J. Effect of organic matter and liming on the reduction of cadmium uptake from soil by triticale and spring oilseed rape. Sci. Total. Environ. 2001, 281, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, S.; Ardakami, M.R.; Vazan, S.; Ghafourian, H.; Paknejad, F.; Faregh, A.H. Feasibility study on reducing lead and cadmium absorption by spinach (Spinacia oleracea L.) in a contaminated soil using nanoporous activated carbon. J. Radioanal. Nucl. Chem. 2012, 293, 167–173. [Google Scholar] [CrossRef]
- Bezak–Mazur, E. Wykorzystanie regenerowanych węgli aktywnych do ograniczenia migracji metali ciężkich w glebie. [in:] Dębowski, Z. Węgiel aktywny w ochronie środowiska i przemyśle. V konferencja naukowo–techniczna, Częstochowa–Białowieża, 6–8 czerwca 2006 r. Wydawnictwo Politechniki Częstochowskiej. Częstochowa 2006, 5, 114–119. [Google Scholar]
- Stevenson, F.J. Humus Chemistry; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Gerritse, R.G.; van Driel, W. The relationship between adsorption of trace metals, or organic matter, and pH in temperate soils. J. Environ. Qual. 1984, 13, 197–204. [Google Scholar] [CrossRef]
- Albasel, N.; Cottenie, A. Heavy metals uptake from contaminated soils as affected by peat, lime and chelates. Soil Sci. Soc. Am. J. 1985, 49, 386–390. [Google Scholar] [CrossRef]
- Boguta, P.; Sokołowska, Z. Influence of copper (II) ions on stability of dissolved humic acids coagulation studies. Acta Agrophysica 2013, 20, 253–267. [Google Scholar]
- Wu, S.; Li, R.; Peng, S.; Liu, Q.; Zhu, X. Effect of humic acid on transformation of soil heavy metals. IOP Conf. Ser. Mater. Sci. Eng. 2017, 207, 012089. [Google Scholar] [CrossRef]
- Abate, G.; Masini, J.C. Acid–basic and complexation properties of a sedimentary humic acid. A study on the Barra Bonita reservoir of Tietê River, São Paulo State, Brazil. J. Br. Chem. Soc. 2001, 12, 109–116. [Google Scholar] [CrossRef]
- Spark, K.M.; Wells, J.D.; Johnson, B.B. The interaction of humic acid with heavy metals. Aust. J. Soil Res. 1997, 35, 89–101. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Zarcinas, B.A.; Stevens, D.P.; Cook, N. Soil testing for heavy metals. Commun. Soil Sci. Plant Anal. 2000, 31, 1661–1700. [Google Scholar] [CrossRef]
- Buscaroli, A. An overview of indexes to evaluate terrestrial plants for phytoremediation purposes (Review). Ecol. Indic. 2017, 82, 367–380. [Google Scholar] [CrossRef]
- Roongtanakiat, N. Vetiver Phytoremediation for Heavy Metal Decontamination; PRVN Technical Bulletin./1; ORDPB: Bangkok, Thailand, 2009.
- Manouchehri, N.; Bermond, A. EDTA in soil science: A review of its application in soil trace metal studies. Terr. Aquat. Environ. Toxicol. 2009, 3, 1–15. Available online: http://www.globalsciencebooks.info/Online/GSBOnline/images/0906/TAET_3(1&2)/TAET_3(1)1-15o.pdf (accessed on 10 June 2022).
- Zhang, X.; Yang, L.; Li, Y.; Li, H.; Wang, W.; Ye, B. Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ. Monit. Assess. 2011, 184, 2261–2273. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Niu, Z.; Yu, J.; Li, Z.; Ma, J.; Xiang, P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2020, 267, 129205. [Google Scholar] [CrossRef]
- Li, B.; Deng, J.; Li, Z.; Chen, J.; Zhan, F.; He, Y.; He, L.; Li, Y. Contamination and Health Risk Assessment of Heavy Metals in Soil and Ditch Sediments in Long-Term Mine Wastes Area. Toxics 2022, 10, 607. [Google Scholar] [CrossRef]
- Czerniawska-Kusza, I.; Kusza, G. The potential of the Phytotoxkit microbiotest for hazard evaluation of sediments in eutrophic freshwater ecosystems. Environ. Monit. Assess. 2010, 179, 113–121. [Google Scholar] [CrossRef]
- Kamiński, A.; Pusz, A.; Wiśniewska, M. Phytotoxicity Assessment of Soils Contaminated with Petroleum Components. Przem. Chem. 2019, 98, 857–862. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Kamiński, A.; Pusz, A. Phytotoxicity of Metal-contaminated Soils. Przem. Chem. 2019, 98, 852–856. [Google Scholar] [CrossRef]
- Peralta, J.R.; Gardea-Torresdey, J.L.; Tiemann, K.J.; Gomez, E.; Arteaga, S.; Rascon, E.; Parsons, J.G. Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull. Environ. Contam. Toxicol. 2001, 66, 727–734. [Google Scholar] [CrossRef]
- Bali, R.; Siegele, R.; Harris, A.T. (Biogenic Pt uptake and nanoparticle formation in Medicago sativa and Brassica juncea. J. Nanoparticle Res. 2010, 12, 3087–3095. [Google Scholar] [CrossRef]
- Rezaeian, M.; Moghadam, M.T.; Kiaei, M.M.; Zadeh, H.M. The effect of heavy metals on the nutritional value of Alfalfa: Comparison of nutrients and heavy metals of Alfalfa (Medicago sativa) in industrial and non-industrial areas. Toxicol. Res. 2019, 36, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Ghelich, S.; Zarinkamar, F.; Soltani, B.M.; Niknam, V. Effect of lead treatment on medicarpin accumulation and on the gene expression of key enzymes involved in medicarpin biosynthesis in Medicago sativa L. Environ. Sci. Pollut. Res. 2014, 21, 14091–14098. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in FOODSTUFFS. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 10 June 2022).
- Semenyuk, N.N.; Yatsenko, V.S.; Strijakova, E.R.; Filonov, A.E.; Petrikov, K.V.; Zavgorodnyaya, Y.A.; Vasilyeva, G. Effect of activated charcoal on bioremediation of diesel fuel contaminated soil. Microbiology 2014, 83, 589–598. [Google Scholar] [CrossRef]
Soil | CaCO3 | TOC | pH KCl | Ca | Mg | K | Na | CEC |
---|---|---|---|---|---|---|---|---|
% | cmol(+)·kg−1 | |||||||
SC | 0.97 ± 0.04 | 0.97 ± 0.06 | 7.52–7.63 | 13.1 ± 1.2 | 0.95 ± 0.09 | 0.13 ± 0.02 | 0.86 ± 0.08 | 15.04 |
S1 | 8.56 ± 0.32 | 3.02 ± 0.21 | 7.58–7.62 | 19.1 ± 1.5 | 2.87 ± 0.23 | 0.15 ± 0.02 | 0.69 ± 0.06 | 22.81 |
S2 | 6.98 ± 0.21 | 1.75 ± 0.13 | 7.65–7.68 | 17.1 ± 1.6 | 2.35 ± 0.21 | 0.12 ± 0.02 | 0.71 ± 0.07 | 20.28 |
S3 | 5.86 ± 0.19 | 1.42 ± 0.12 | 7.59–7.63 | 14.3 ± 1.4 | 1.37 ± 0.12 | 0.11 ± 0.01 | 0.18 ± 0.02 | 15.96 |
S4 | 5.51 ± 0.16 | 1.26 ± 0.08 | 7.50–7.54 | 14.7 ± 1.3 | 0.74 ± 0.06 | 0.08 ± 0.01 | 0.09 ± 0.01 | 15.61 |
Soil | Cu | Pb | Zn | Cd | Cr | Ni |
---|---|---|---|---|---|---|
mg·kg−1 d.m. | ||||||
SC | 13.1 ± 1.1 | 14.8 ± 1.2 | 49.1 ± 3.3 | 0.34 ± 0.08 | 7.51 ± 0.62 | 12.4 ± 1.6 |
S1 | 651 ± 35 | 4186 ± 126 | 5681 ± 237 | 12.9 ± 2.2 | 319 ± 16 | 139 ± 1.2 |
S2 | 406 ± 28 | 1892 ± 76 | 2469 ± 104 | 6.84 ± 1.17 | 187 ± 11 | 95.2 ± 6.3 |
S3 | 175 ± 11 | 848 ± 25 | 1320 ± 40 | 3.56 ± 0.62 | 135 ± 10 | 74.7 ± 6.1 |
S4 | 169 ± 5 | 697 ± 35 | 897 ± 36 | 3.21 ± 0.54 | 84.3 ± 4.6 | 54.6 ± 3.9 |
Soil | Cu | Pb | Zn | Cd | Cr | Ni |
---|---|---|---|---|---|---|
S1 | 615 ± 29 | 3912 ± 156 | 5415 ± 217 | 11.6 ± 1.4 | 298 ± 18 | 118 ± 15 |
S1bc1 | 560 ± 35 | 3876 ± 155 | 5402 ± 270 | 11.2 ± 1.6 | 239 ± 12 | 109 ± 8 |
S1bc2 | 573 ± 44 | 3566 ± 143 | 5242 ± 157 | 10.3 ± 1.5 | 248 ± 22 | 110 ± 10 |
S1ac1 | 602 ± 48 | 3295 ± 165 | 4720 ± 142 | 9.94 ± 1.15 | 247 ± 20 | 109 ± 7 |
S1ac2 | 605 ± 61 | 3211 ± 128 | 4350 ± 174 | 9.81 ± 1.49 | 244 ± 12 | 106 ± 6 |
S2 | 365 ± 25 | 1772 ± 71 | 2325 ± 93 | 6.11 ± 0.72 | 148 ± 7 | 67.5 ± 6.6 |
S2bc1 | 279 ± 22 | 1745 ± 67 | 2123 ± 85 | 5.38 ± 1.04 | 132 ± 11 | 60.4 ± 5.8 |
S2bc2 | 286 ± 11 | 1642 ± 66 | 1993 ± 80 | 5.41 ± 0.91 | 135 ± 8 | 58.7 ± 8.3 |
S2ac1 | 254 ± 23 | 1631 ± 82 | 2053 ± 103 | 5.19 ± 0.83 | 118 ± 9 | 54.7 ± 7.7 |
S2ac2 | 265 ± 11 | 1465 ± 73 | 2025 ± 101 | 5.06 ± 0.89 | 124 ± 10 | 54.3 ± 6.8 |
S3 | 164 ± 8 | 753 ± 30 | 1130 ± 45 | 3.49 ± 0.48 | 99.2 ± 5.1 | 47.1 ± 6.3 |
S3bc1 | 142 ± 12 | 683 ± 24 | 1082 ± 43 | 2.97 ± 0.51 | 72.2 ± 6.3 | 39.8 ± 4.3 |
S3bc2 | 145 ± 9 | 677 ± 27 | 891 ± 36 | 2.68 ± 0.35 | 75.3 ± 5.2 | 41.9 ± 5.9 |
S3ac1 | 141 ± 11 | 680 ± 19 | 806 ± 24 | 2.81 ± 0.44 | 68.8 ± 6.1 | 38.9 ± 5.3 |
S3ac2 | 134 ± 5 | 670 ± 29 | 789 ± 32 | 2.75 ± 0.47 | 72.4 ± 6.1 | 38.3 ± 4.2 |
S4 | 144 ± 6 | 650 ± 26 | 817 ± 41 | 2.97 ± 0.43 | 66.4 ± 6.2 | 45.8 ± 3.7 |
S4bc1 | 136 ± 10 | 576 ± 17 | 807 ± 32 | 2.71 ± 0.48 | 65.8 ± 4.2 | 41.1 ± 4.9 |
S4bc2 | 133 ± 6 | 582 ± 23 | 805 ± 24 | 2.82 ± 0.56 | 60.1 ± 5.4 | 40.2 ± 2.1 |
S4ac1 | 123 ± 7 | 529 ± 18 | 784 ± 39 | 2.79 ± 0.33 | 63.1 ± 5.9 | 40.1 ± 5.5 |
S4ac2 | 108 ± 4 | 544 ± 25 | 738 ± 22 | 2.78 ± 0.34 | 53.4 ± 3.3 | 40.7 ± 3.7 |
Soil | Cu | HQ * | Pb | HQ * | Zn | HQ * | Cd | HQ * | Cr | HQ * | Ni | HQ * |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 334 | 7.16·10−6 | 2440 | 3.07·10−5 | 1435 | 1.23·10−6 | 4.45 | 6.87·10−5 | 1.815 | 1.33·10−6 | 7.91 | 5.65·10−7 |
S1bc1 | 291 | 6.24·10−6 | 1999 | 2.52·10−5 | 1380 | 1.18·10−6 | 3.84 | 5.93·10−5 | 1.325 | 9.74·10−7 | 6.85 | 4.90·10−7 |
S1bc2 | 287 | 6.15·10−6 | 1817 | 2.29·10−5 | 1302 | 1.12·10−6 | 3.45 | 5.33·10−5 | 1.31 | 9.63·10−7 | 6.75 | 4.82·10−7 |
S1ac1 | 278 | 5.96·10−6 | 1608 | 2.03·10−5 | 1140 | 9.78·10−7 | 3.31 | 5.11·10−5 | 1.282 | 9.42·10−7 | 6.25 | 4.47·10−7 |
S1ac2 | 278 | 5.96·10−6 | 1510 | 1.90·10−5 | 1028 | 8.82·10−7 | 3.11 | 4.80·10−5 | 1.175 | 8.64·10−7 | 5.95 | 4.25·10−7 |
S2 | 218 | 4.67·10−6 | 1160 | 1.46·10−5 | 770 | 6.60·10−7 | 2.35 | 3.63·10−5 | 0.88 | 6.47·10−7 | 4.32 | 3.09·10−7 |
S2bc1 | 161 | 3.45·10−6 | 925 | 1.17·10−5 | 630 | 5.40·10−7 | 1.97 | 3.04·10−5 | 0.695 | 5.11·10−7 | 3.61 | 2.58·10−7 |
S2bc2 | 152 | 3.26·10−6 | 845 | 1.06·10−5 | 555 | 4.76·10−7 | 1.82 | 2.81·10−5 | 0.675 | 4.96·10−7 | 3.36 | 2.40·10−7 |
S2ac1 | 128 | 2.74·10−6 | 798 | 1.01·10−5 | 511 | 4.38·10−7 | 1.68 | 2.59·10−5 | 0.58 | 4.26·10−7 | 3.06 | 2.19·10−7 |
S2ac2 | 128 | 2.74·10−6 | 706 | 8.90·10−6 | 501 | 4.30·10−7 | 1.59 | 2.45·10−5 | 0.575 | 4.23·10−7 | 2.95 | 2.11·10−7 |
S3 | 122 | 2.62·10−6 | 650 | 8.19·10−6 | 448 | 3.84·10−7 | 1.42 | 2.19·10−5 | 0.596 | 4.38·10−7 | 3.09 | 2.21·10−7 |
S3bc1 | 78.5 | 1.68·10−6 | 455 | 5.73·10−6 | 397 | 3.40·10−7 | 1.12 | 1.73·10−5 | 0.398 | 2.93·10−7 | 2.35 | 1.68·10−7 |
S3bc2 | 68.2 | 1.46·10−6 | 422 | 5.32·10−6 | 314 | 2.69·10−7 | 0.98 | 1.51·10−5 | 0.391 | 2.87·10−7 | 2.21 | 1.58·10−7 |
S3ac1 | 52.2 | 1.12·10−6 | 338 | 4.26·10−6 | 274 | 2.35·10−7 | 0.96 | 1.48·10−5 | 0.346 | 2.54·10−7 | 1.98 | 1.41·10−7 |
S3ac2 | 47.1 | 1.01·10−6 | 324 | 4.08·10−6 | 242 | 2.08·10−7 | 0.85 | 1.31·10−5 | 0.346 | 2.54·10−7 | 1.88 | 1.34·10−7 |
S4 | 99.6 | 2.14·10−6 | 564 | 7.11·10−6 | 342 | 2.93·10−7 | 1.25 | 1.93·10−5 | 0.429 | 3.15·10−7 | 2.43 | 1.74·10−7 |
S4bc1 | 70.5 | 1.51·10−6 | 399 | 5.03·10−6 | 265 | 2.27·10−7 | 0.99 | 1.53·10−5 | 0.391 | 2.87·10−7 | 2.11 | 1.51·10−7 |
S4bc2 | 65.3 | 1.40·10−6 | 370 | 4.66·10−6 | 257 | 2.20·10−7 | 0.97 | 1.50·10−5 | 0.344 | 2.53·10−7 | 1.94 | 1.39·10−7 |
S4ac1 | 44.9 | 9.63·10−7 | 281 | 3.54·10−6 | 225 | 1.93·10−7 | 0.85 | 1.31·10−5 | 0.325 | 2.39·10−7 | 1.81 | 1.29·10−7 |
S4ac2 | 38.2 | 8.19·10−7 | 284 | 3.58·10−6 | 184 | 1.58·10−7 | 0.78 | 1.20·10−5 | 0.265 | 1.95·10−7 | 1.83 | 1.31·10−7 |
Carbon Dose | Cu | Pb | Zn | Cd | Cr | Ni |
---|---|---|---|---|---|---|
bc1 | 35.7% | 30.0% | 22.5% | 21.1% | 33.2% | 23.9% |
ac1 | 57.2% | 50.2% | 38.8% | 32.4% | 41.9% | 35.9% |
bc2 | 44.1% | 35.1% | 29.9% | 31.0% | 34.4% | 28.5% |
ac2 | 61.6% | 50.2% | 46.2% | 40.1% | 41.9% | 39.2% |
Soil | Cd | Cr | Ni |
---|---|---|---|
S1 | 4.19−9 | 1.60−9 | 2.56−9 |
bc1/bc2 | 3.62−9/3.25−9 | 1.17−9/1.16−9 | 2.22−9/2.19−9 |
ac1/ac2 | 3.12−9/2.93−9 | 1.13−9/1.04−9 | 2.03−9/1.93−9 |
S2 | 2.21−9 | 7.76−10 | 1.40−9 |
bc1/bc2 | 1.85−9/1.71−9 | 6.13−10/5.95−10 | 1.17−09/1.09−9 |
ac1/ac2 | 1.58−9/1.50−9 | 5.12−10/5.07−10 | 9.92−10/9.56−10 |
S3 | 1.34−9 | 5.26−10 | 1.00−9 |
bc1/bc2 | 1.05−9/9.23−10 | 3.51−10/3.45−10 | 7.62−10/7.16−10 |
ac1/ac2 | 9.04−10/8.00−10 | 3.05−10/3.05−10 | 6.42−10/6.09−10 |
S4 | 1.18−9 | 3.78−10 | 7.88−10 |
bc1/bc2 | 9.32−10/9.13−10 | 3.45−10/3.03−10 | 6.84−10/6.29−10 |
ac1/ac2 | 8.00−10/7.34−10 | 2.87−10/2.34−10 | 5.87−10/5.93−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pusz, A.; Wiśniewska, M.; Kamiński, A.; Knosala, P.; Rogalski, D. Influence of Carbons on Metal Stabilization and the Reduction in Soil Phytotoxicity with the Assessment of Health Risks. Resources 2024, 13, 66. https://doi.org/10.3390/resources13050066
Pusz A, Wiśniewska M, Kamiński A, Knosala P, Rogalski D. Influence of Carbons on Metal Stabilization and the Reduction in Soil Phytotoxicity with the Assessment of Health Risks. Resources. 2024; 13(5):66. https://doi.org/10.3390/resources13050066
Chicago/Turabian StylePusz, Agnieszka, Magdalena Wiśniewska, Arkadiusz Kamiński, Peter Knosala, and Dominik Rogalski. 2024. "Influence of Carbons on Metal Stabilization and the Reduction in Soil Phytotoxicity with the Assessment of Health Risks" Resources 13, no. 5: 66. https://doi.org/10.3390/resources13050066
APA StylePusz, A., Wiśniewska, M., Kamiński, A., Knosala, P., & Rogalski, D. (2024). Influence of Carbons on Metal Stabilization and the Reduction in Soil Phytotoxicity with the Assessment of Health Risks. Resources, 13(5), 66. https://doi.org/10.3390/resources13050066