Spondias tuberosa and Spondias mombin: Nutritional Composition, Bioactive Compounds, Biological Activity and Technological Applications
Abstract
:1. Introduction
2. Scientific and Technological Monitoring
3. Nutritional and Mineral Composition
S. tuberosa | |||||||
---|---|---|---|---|---|---|---|
Analysis | Pulp 1 Paula et al. [44] | Pulp 2,4 Ribeiro et al. [9] | Pulp Silva et al. [19] | Seed 3 Borges et al. [41] | Seed 4 Ribeiro et al. [9] | Peel 4 Ribeiro et al. [9] | Peel Santiago et al. [45] |
Energy (kcal/100 g) | - | 256.34–307.21 | - | - | 148.03 | 161.49 | - |
Ash (g/100 g) | 0.41 ± 0.01 | 2.21 ± 0.32–4.17 ± 0.08 | 0.41 ± 0.01 | 4.00 ± 0.31–4.60 ± 0.31 | 2.74 ± 0.07 | 3.38 ± 0.05 | 3.69 ± 0.07 |
Carbohydrate (g/100 g) | - | 50.17 ± 0.19–71.53 ± 0.65 | - | 7.60 ± 3.11–11.50 ± 3.11 | 14.31 ± 0.08 | 40.42 ± 0.05 | - |
Fiber (g/100 g) | - | 12.35–35.32 | - | - | 65.00 | 49.34 | - |
Lipid (g/100 g) | 0.39 ± 0.01 | 4.12 ± 0.61–6.00 ± 1.21 | 0.26 ± 0.01 | 55.00 ± 2.33–58.00 ± 2.33 | 8.92 ± 0.70 | 0.78 ± 0.05 | - |
Protein (g/100 g) | 0.44 ± 0.01 | 6.18 ± 0.00–7.30 ± 0.01 | 0.50 ± 0.02 | 24.20 ± 0.22–25.10 ± 0.22 | 9.01 ± 0.08 | 6.08 ± 0.05 | 1.66 ± 0.20 |
Moisture (g/100 g) | 89.48 ± 0.06 | - | 88.05 ± 0.76 | 5.10 ± 0.25–5.60 ± 0.25 | - | - | 10.25 ± 0.46 |
Total solids (g/100 g) | - | 9.23 ± 0.04–11.09 ± 0.01 | - | - | 96.36 ± 0.01 | 90.33 ± 0.01 | - |
Potassium (mg/100 g) | - | 1240 ± 12–2164 ± 16 | - | 684.01 ± 16.0–699.14 ± 15.0 | 755 ± 2 | 1491 | - |
Iron (mg/100 g) | - | 2 ± 0–4 ± 0 | - | 07.50 ± 0.5–10.10 ± 1.0 | 74 ± 4 | 1 ± 0 | - |
Zinc (mg/100 g) | - | 0.7 ± 0.0–1 ± 0 | 2 ± 0 | 0.7 ± 0.0 | - | ||
Phosphorous (mg/100 g) | - | 114 ± 3–150 ± 1 | - | 772.38 ± 43.0–825.03 ± 50.0 | 287 ± 20 | 154 ± 1 | - |
Calcium (mg/100 g) | - | 64 ± 0–171 ± 3 | - | 114.48 ± 5.0–191.02 ± 3.0 | 348 ± 1 | 195 ± 3 | - |
Magnesium (mg/100 g) | - | 57 ± 1–87 ± 2 | 462.56 ± 10.0–477.59 ± 15.0 | 135 ± 10 | 88 ± 0 | - | |
Sodium (mg/100 g) | - | 6 ± 0–26 ± 1 | - | 0.14 ± 0.2–00.16 ± 0.02 | 6 ± 0 | 12 ± 0 | - |
Manganese (mg/100 g) | - | - | - | 1.85 ± 0.1–2.38 ± 0.3 | - | - | - |
Copper (mg/100 g) | - | - | - | 2.33 ± 0.3–2.62 ± 0.2 | - | - | - |
Aluminum (mg/100 g) | - | - | - | 0.46 ± 0.2–0.55 ± 0.1 | - | - | - |
Barium (mg/100 g) | - | - | - | - | - | - | - |
S. mombin | |||||||
Analysis | Pulp Adepoju et al. [46] | Pulp 5 Mattietto et al. [47] | Pulp Tiburski et al. [18] | Pulp Nascimento et al. [48] | Pulp Silva et al. [19] | Seed Esua et al. [49] | Peel Pinheiro et al. [50] |
Energy (kcal/100 g) | - | - | 65.42 | 59.99 ± 1.29 | - | - | 384.09–416.62 |
Ash (g/100 g) | 1.0 ± 0.02 | 0.58 ± 0.02 | 0.76 ± 0.01 | 0.17 ± 0.05 | 0.59 ± 0.02 | 8.09 ± 0.15 | 5.61 ± 0.04–5.91 ± 0.12 |
Carbohydrate (g/100 g) | 7.9 ± 0.05 | - | 13.90 ± 0.04 | 14.07 ± 0.34 | - | 40.56 ± 0.27 | 59.19–66.45 |
Fiber (g/100 g) | 4.2 ± 0.04 | 1.18 ± 0.10 | 1.87 | - | - | 31.86 ± 0.08 | - |
Lipid (g/100 g) | 2.0 ± 0.05 | 0.26 ± 0.09 | 0.62 ± 0.05 | 0.03 ± 0.02 | 0.41 ± 0.02 | 3.28 ± 0.03 | 7.76 ± 4.46–14.69 ± 6.19 |
Protein (g/100 g) | 2.6 ± 0.04 | 0.82 ± 0.01 | 1.06 ± 0.04 | 0.86 ± 0.20 | 0.84 ± 0.01 | 7.73 ± 0.12 | 11.90–12.70 |
Moisture (g/100 g) | 82.3 ± 3.57 | 89.42 ± 0.18 | 83.66 ± 0.04 | 84.87 ± 0.35 | 86.84 ± 0.11 | 8.48 ± 0.03 | 6.30 ± 0.29–8.87 ± 0.13 |
Total solids (g/100 g) | - | - | - | - | - | - | - |
Potassium (mg/100 g) | 270.0 ± 14.14 | - | 288.276 ± 23.895 | - | - | - | - |
Iron (mg/100 g) | 3.2 ± 0.14 | - | 0.327 ± 0.001 | 1.22 ± 0.44 | - | 83.908 ± 0.159 | 15.26 ± 1.09–19.12 ± 9.17 |
Zinc (mg/100 g) | 0.2 ± 0.01 | - | - | 0.06 ± 0.06 | - | 1.527 ± 0.002 | 11.56 ± 0.14–12.93 ± 0.85 |
Phosphorous (mg/100 g) | 37.1 ± 0.21 | - | 32.849 ± 2.401 | - | - | - | |
Calcium (mg/100 g) | 31.8 ± 0.42 | - | 11.038 ± 0.767 | 23.66 ± 3.12 | - | 131.77 ± 2.13 | |
Magnesium (mg/100 g) | 465.0 ± 21.21 | - | 15.095 ± 0.863 | 45.50 ± 2.12 | - | 49.471 ± 0.051 | |
Sodium (mg/100 g) | 400.0 ± 12.43 | - | 5.551 ± 2.352 | 4.16 ± 0.68 | - | - | |
Manganese (mg/100 g) | 0.2 ± 0.01 | - | 0.025 ± 0.001 | 0.42 ± 0.01 | - | 1.793 ± 0.010 | 17.64 ± 0.27–22.57 ± 1.33 |
Copper (mg/100 g) | 1.0 ± 0.14 | - | 0.118 ± 0.037 | 0.24 ± 0.01 | - | 0.768 ± 0.002 | 19.11 ± 1.80–29.65 ± 0.63 |
Aluminum (mg/100 g) | - | - | 0.394 ± 0.086 | - | - | - | |
Barium (mg/100 g) | - | - | 0.069 ± 0.006 | - | - | - |
4. Bioactive Compounds
4.1. Spondias tuberosa
4.2. Spondias mombin
5. Biological Properties
5.1. Spondias tuberosa
5.2. Spondias mombin
6. Technological Applications
6.1. Spondias tuberosa
6.2. Spondias mombin
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braga, F.C. Brazilian Traditional Medicine: Historical Basis, Features and Potentialities for Pharmaceutical Development. J. Tradit. Chin. Med. Sci. 2021, 8, S44–S50. [Google Scholar]
- Coradin, L.; Camillo, J. Introdução. In Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial: Plantas para o Futuro: Região Nordeste; Coradin, L., Camilo, J., Paren, F.G.C., Eds.; Ministério do Meio Ambiente: Brasília, Brazil, 2018; pp. 19–29. [Google Scholar]
- FAO–Food and Agriculture Organization. Agricultural Production Statistics 2000–2020. Available online: https://www.fao.org/3/cb9180en/cb9180en.pdf (accessed on 18 November 2022).
- FAOSTAT. Food and Agriculture Organization, FAO. Available online: https://www.fao.org/faostat/en/#data (accessed on 18 March 2023).
- da Silva Junior, J.F.; Souza, F.V.D.; Pádua, J.G. A Arca de Noé Das Frutas Nativas Brasileiras; Embrapa: Brasília, Brazil, 2021; Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/227633/1/A-arca-de-Noe-das-frutas-nativas-brasileiras-versao-10.pdf (accessed on 12 December 2022).
- Zortéa, K.É.M.; Rossi, A.A.B.; Tiago, A.V.; Cardoso, E.D.S.; Pinto, J.M.A.; Hoogerheide, E.S.S. Spondias mombin (Anarcadiaceae): Molecular Characterization and Conservation. Rev. Biol. Trop. 2021, 69, 1023–1036. [Google Scholar] [CrossRef]
- REFLORA-Plantas Do Brasil: Resgate Histórico e Herbário Virtual Para o Conhecimento e Conservação Da Flora Brasileira. Available online: https://floradobrasil.jbrj.gov.br/reflora/listaBrasil/ConsultaPublicaUC/ConsultaPublicaUC.do (accessed on 18 March 2023).
- Oliveira, V.R.; Drumond, M.A.; dos Santos, C.A.F.; de Nascimento, C.E.S. Spondias tuberosa Umbu. In Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial: Plantas para o Futuro: Região Nordeste; Coradin, L., Camillo, J., Pareyn, F.G.C., Eds.; Ministério do Meio Ambiente: Brasília, Brazil, 2018; pp. 304–315. [Google Scholar]
- de Ribeiro, L.O.; de Viana, E.S.; de Godoy, R.L.O.; de Freitas, S.C.; Freitas, S.P.; da Matta, V.M. Nutrients and Bioactive Compounds of Pulp, Peel and Seed from Umbu Fruit. Cienc. Rural. 2019, 49, e20180806. [Google Scholar] [CrossRef]
- IBGE-Instituto Brasileiro de Geografia e Estatística. Available online: https://cidades.ibge.gov.br/brasil/pesquisa/16/0 (accessed on 9 December 2023).
- Neiens, S.D.; Geißlitz, S.M.; Steinhaus, M. Aroma-Active Compounds in Spondias mombin L. Fruit Pulp. Eur. Food Res. Technol. 2017, 243, 1073–1081. [Google Scholar] [CrossRef]
- Sacramento, C.K.; de Souza, F.X. Cajá. In Fruticultura Tropical Espécies Regionais e Exóticas; dos Santos-Serejo, J.A., Dantas, J.L.L., Sampaio, C.V., da Coelho, Y.S., Eds.; Embrapa Informação Tecnológica: Brasília, Brazil, 2009; pp. 85–105. [Google Scholar]
- Aniceto, A.; Montenegro, J.; da Cadena, R.S.; Teodoro, A.J. Physicochemical Characterization, Antioxidant Capacity, and Sensory Properties of Murici (Byrsonima crassifolia (L.) Kunth) and Taperebá (Spondias mombin L.) Beverages. Molecules 2021, 26, 332. [Google Scholar] [CrossRef] [PubMed]
- Jesus, I.G.; Souza, A.C.; Ferreira, I.M.; do Santos, L.V.N.; Silva, A.M.O.; Carvalho, M.G. Caracterização e Aceitação Sensorial de Doce Em Pasta Com Biomassa de Banana e Polpa de Cajá. Segur. Aliment. Nutr. 2019, 26, e019006. [Google Scholar] [CrossRef]
- de Carvalho, J.E.U.; Nascimento, W.M.O. do Cajá. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/215686/1/Editorial-2020.pdf (accessed on 9 March 2023).
- do Rufino, M.S.M.; Alves, R.E.; de Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive Compounds and Antioxidant Capacities of 18 Non-Traditional Tropical Fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef]
- Gregoris, E.; Pereira Lima, G.P.; Fabris, S.; Bertelle, M.; Sicari, M.; Stevanato, R. Antioxidant Properties of Brazilian Tropical Fruits by Correlation between Different Assays. Biomed. Res. Int. 2013, 2013, 132759. [Google Scholar] [CrossRef] [PubMed]
- Tiburski, J.H.; Rosenthal, A.; Deliza, R.; de Oliveira Godoy, R.L.; Pacheco, S. Nutritional Properties of Yellow Mombin (Spondias mombin L.) Pulp. Food Res. Int. 2011, 44, 2326–2331. [Google Scholar] [CrossRef]
- da Silva, P.B.; Almeida, F.D.; Gomes, J.P.; Silva, S.D.; Barroso, A.J.; Moraes, J.D.; Silva, L.M.; Matos, J.D.; da Silva, L.P.; de Melo, B.A.; et al. Production and Characterization of Lyophilized Powder of Yellow Mombin (Spondias mombin L.) and Umbu (Spondias tuberosa). Aust. J. Crop Sci. 2021, 15, 669–675. [Google Scholar] [CrossRef]
- Soares, J.C.; Rosalen, P.L.; Lazarini, J.G.; Massarioli, A.P.; da Silva, C.F.; Nani, B.D.; Franchin, M.; de Alencar, S.M. Comprehensive Characterization of Bioactive Phenols from New Brazilian Superfruits by LC-ESI-QTOF-MS, and Their ROS and RNS Scavenging Effects and Anti-Inflammatory Activity. Food Chem. 2019, 281, 178–188. [Google Scholar] [CrossRef]
- Pereira, B.L.B.; Rodrigue, A.; de Arruda, F.C.O.; Bachiega, T.F.; Lourenço, M.A.M.; Correa, C.R.; Azevedo, P.S.; Polegato, B.F.; Okoshi, K.; Fernandes, A.A.H.; et al. Spondias mombin L. Attenuates Ventricular Remodelling after Myocardial Infarction Associated with Oxidative Stress and Inflammatory Modulation. J. Cell Mol. Med. 2020, 24, 7862–7872. [Google Scholar] [CrossRef] [PubMed]
- Zeraik, M.L.; Queiroz, E.F.; Marcourt, L.; Ciclet, O.; Castro-Gamboa, I.; Silva, D.H.S.; Cuendet, M.; da Silva Bolzani, V.; Wolfender, J.-L. Antioxidants, Quinone Reductase Inducers and Acetylcholinesterase Inhibitors from Spondias tuberosa Fruits. J. Funct. Foods 2016, 21, 396–405. [Google Scholar] [CrossRef]
- de Ribeiro, L.O.; de Freitas, B.P.; Lorentino, C.M.A.; Frota, H.F.; dos Santos, A.L.S.; de Moreira, D.L.; do Amaral, B.S.; Jung, E.P.; Kunigami, C.N. Umbu Fruit Peel as Source of Antioxidant, Antimicrobial and α-Amylase Inhibitor Compounds. Molecules 2022, 27, 410. [Google Scholar] [CrossRef] [PubMed]
- Lucena, T.L.C.; Batista, K.S.; Pinheiro, R.O.; Cavalcante, H.C.; de Gomes, J.A.S.; da Silva, L.A.; Lins, P.P.; Ferreira, F.S.; Lima, R.F.; dos Lima, M.S.; et al. Nutritional Characterization, Antioxidant, and Lipid-Lowering Effects of Yellow mombin (Spondias mombin) Supplemented to Rats Fed a High-Fat Diet. Foods 2022, 11, 3064. [Google Scholar] [CrossRef] [PubMed]
- Mertens, J.; de Almeida-Cortez, J.S.; Germer, J.; Sauerborn, J. Umbuzeiro (Spondias tuberosa): A systematic review. Rev. Bras. Ciênc. Ambient. 2015, 36, 179–197. [Google Scholar] [CrossRef]
- Mertens, J.; Germer, J.; Siqueira, J.A.; Sauerborn, J. Spondias tuberosa Arruda (Anacardiaceae), a threatened tree of the Brazilian Caatinga? Braz. J. Biol. 2017, 77, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.N.; de Carvalho Costa, É.K.; Donato, S.L.; Narain, N. Perfil fitoquímico e propriedade antioxidante de diferentes genótipos de frutos do umbuzeiro (Spondias tuberosa Arruda Câmara): Uma revisão. Res. Soc. Dev. 2021, 10, e58101623116. [Google Scholar] [CrossRef]
- Bery, C.C.; Araújo, K.B.; Oliveira, Í.M.; Bery, C.D.; Barretto, L.C.; Freitas, A.G.; Freitas, L.D.; Da Silva, G.F. Technologic Prospection of Bioactive Compounds in Umbu Pulp (Spondias Tuberosa Arruda). Rev. Geintec 2021, 11, 5725–5734. [Google Scholar] [CrossRef]
- Aniceto, A.; Porte, A.; Montenegro, J.; Cadena, R.S.; Teodoro, A.J. A review of the fruit nutritional and biological activities of three Amazonian species: Bacuri (Platonia insignis), murici (Byrsonima spp.), and taperebá (Spondias mombin). Fruits 2017, 72, 317–326. [Google Scholar] [CrossRef]
- Maria, A.C.; Simões, T.R.; Ramos, A.D.; Almeida, M.M.; Silva, M.A.; Cruz, J.D.; Ferreira, J.L.; Silva, J.R.; Amaral, A.C. Spondias mombin L.: An updated monograph. Pharmacogn. Rev. 2022, 16, 45–61. [Google Scholar] [CrossRef]
- Almeida, C.O.; Martinez, R.M.; Figueiredo, M.S.; Teodoro, A.J. Botanical, nutritional, phytochemical characteristics, and potential health benefits of murici (Byrsonima crassifolia) and taperebá (Spondias mombin): Insights from animal and cell culture models. Nutr. Rev. 2023, 82, 407–424. [Google Scholar] [CrossRef]
- Ogunro, O.B.; Oyeyinka, B.O.; Gyebi, G.A.; Batiha, G.E.S. Nutritional benefits, ethnomedicinal uses, phytochemistry, pharmacological properties and toxicity of Spondias mombin Linn: A comprehensive review. J. Pharm. Pharmacol. 2023, 75, 162–226. [Google Scholar] [CrossRef] [PubMed]
- Moke, E.G.; Edje, E.K.; Daubry, T.M.; Nwogueze, B.C.; Ataikiru, O.M.; Umukoro, E.K.; Omorodion, I.L.; Chidebe, E.O.; Demaki, W.E.; Aluya, S.O.; et al. Phytopharmacological Activities of Spondias mombin Linn: A Review. Trop. J. Phytochem. Pharm. Sci. 2024, 3, 117–123. [Google Scholar]
- Galvão, M.S.; Narain, N.; Carnelossi, M.A.G. Post-Harvest Quality Evaluation of Physico-Chemical and Chemical Characteristics in Umbu Fruit at Different Storage Conditions de La Calidad Postcosecha de Las Características Físico-Químicas y Químicas En El Fruto de Umbu a Diferentes Condiciones de Almacenmiento. CYTA J. Food 2010, 8, 103–108. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, C.; Liu, H.; Liu, J.; Jiao, Z. Profiles of Sugar and Organic Acid of Fruit Juices: A Comparative Study and Implication for Authentication. J. Food Qual. 2020, 2020, 7236534. [Google Scholar] [CrossRef]
- Omena, C.M.B.; Valentim, I.B.; da Guedes, G.S.; Rabelo, L.A.; Mano, C.M.; Bechara, E.J.H.; Sawaya, A.C.H.F.; Trevisan, M.T.S.; da Costa, J.G.; Ferreira, R.C.S.; et al. Antioxidant, Anti-Acetylcholinesterase and Cytotoxic Activities of Ethanol Extracts of Peel, Pulp and Seeds of Exotic Brazilian Fruits: Antioxidant, Anti-Acetylcholinesterase and Cytotoxic Activities in Fruits. Food Res. Int. 2012, 49, 334–344. [Google Scholar] [CrossRef]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of Dietary Fiber on Human Health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- USDA. U.S. Department of Agriculture. Available online: https://www.usda.gov/ (accessed on 13 March 2023).
- Cangussu, L.B.; Fronza, P.; Franca, A.S.; Oliveira, L.S. Chemical Characterization and Bioaccessibility Assessment of Bioactive Compounds from Umbu (Spondias tuberosa A.) Fruit Peel and Pulp Flours. Foods 2021, 10, 2597. [Google Scholar] [CrossRef] [PubMed]
- Borges, S.V.; Maia, M.C.A.; de Gomes, R.C.M.; Cavalcanti, N.B. Chemical Composition of Umbu (Spondias tuberosa Arr. Cam) Seeds. Quim. Nova 2007, 30, 49–52. [Google Scholar] [CrossRef]
- Costa, T.A.C.; Campos, V.P.; Menezes, J.S.; Oliva, S.T.; West, C.B. Phytochemical Profile of Seed Extracts of Plants Typical of the Brazilian Semiarid and Their Potential Application in Brackish Water Desalination. J. Braz. Chem. Soc. 2016, 27, 1694–1703. [Google Scholar] [CrossRef]
- Santos, P.A.; de Rezende, L.C.; de Oliveira, J.C.S.; David, J.M.; David, J.P. Chemical Study, Antioxidant and Cytotoxic Activities of Oil Seeds of Spondias tuberosa (Anacardiaceae). Int. J. Fruit Sci. 2019, 19, 246–257. [Google Scholar] [CrossRef]
- de Paula, B.; Carvalho Filho, C.D.; da Matta, V.M.; da Menezes, J.S.; da Lima, P.C.; Pinto, C.O.; Conceição, L.E.M.G. Produção e Caracterização Físico-Química de Fermentado de Umbu. Cienc. Rural 2012, 42, 1688–1693. [Google Scholar] [CrossRef]
- Santiago, Â.M.; de Sousa Conrado Oliveira, L.; de Oliveira, P.L.; Almeida, R.L.J.; Santos, N.C.; Galdino, P.O. Production and Recovery of Exo-Polygalacturonase from Umbu (Spondias tuberosa) Residue. Waste Biomass Valorization 2022, 13, 1101–1115. [Google Scholar] [CrossRef]
- Adepoju, O.T. Proximate Composition and Micronutrient Potentials of Three Locally Available Wild Fruits in Nigeria. Afr. J. Agric. Res. 2009, 4, 887–892. [Google Scholar]
- Mattietto, R.D.; Lopes, A.S.; de Menezes, H.C. Caracterização Física e Físico-Química Dos Frutos Da Cajazeira (Spondias mombin L.) e de Suas Polpas Obtidas Por Dois Tipos de Extrator. Braz. J. Food Technol 2010, 13, 156–164. [Google Scholar] [CrossRef]
- Nascimento, A.L.A.A.; Brandi, I.V.; Durães, C.A.F.; de Lima, J.P.; Soares, S.B.; de Carvalho Mesquita, B.M.A. Chemical Characterization and Antioxidant Potential of Native Fruits of the Cerrado of Northern Minas Gerais. Braz. J. Food Technol. 2020, 23, e2019296. [Google Scholar] [CrossRef]
- Esua, O.J.; Makinde, O.O.; Arueya, G.L.; Chin, N.L. Antioxidant Potential, Phytochemical and Nutrient Compositions of Nigerian Hog Plum (Spondias mombin) Seed Kernel as a New Food Source. Int. Food Res. J. 2016, 23, S179–S185. [Google Scholar]
- Pinheiro, G.K.I.; Cabral de Oliveira, D.E.; Resende, O.; Ferreira Junior, W.N.; Cabral, J.C.O.; Quequeto, W.D. Nutritional Properties of Yellow Mombin (’Spondias mombin’ L.) Epicarp Flours by Conventional Drying and Lyophilization. Aust. J. Crop Sci. 2022, 16, 73–78. [Google Scholar] [CrossRef]
- Menezes, P.H.S.; de Souza, A.A.; da Silva, E.S.; de Medeiros, R.D.; Barbosa, N.C.; Garcia Soria, D. Influence of the Maturation Stage on the Physical-Chemical Quality of Fruits of Umbu (Spondias tuberosa). Sci. Agropecu. 2017, 8, 73–78. [Google Scholar] [CrossRef]
- de Ribeiro, L.O.; Pontes, S.M.; de Ribeiro, A.P.O.; Pacheco, S.; Freitas, S.P.; da Matta, V.M. Avaliação Do Armazenamento a Frio Sobre Os Compostos Bioativos e as Características Físico-Químicas e Microbiológicas Do Suco de Umbu Pasteurizado. Braz. J. Food Technol. 2017, 20, e2015095. [Google Scholar] [CrossRef]
- Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-Covasich, J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Rev. Int. 2021, 37, 619–655. [Google Scholar] [CrossRef]
- Gadelha, A.J.F.; da Rocha, C.O.; Vieira, F.F.; do Ribeiro, G.N. Avaliação de Parâmetros de Qualidade Físico-Químicos de Polpas Congeladas de Abacaxi, Acerola, Cajá e Caju. Rev. Caatinga 2009, 22, 115–118. [Google Scholar]
- BRASIL. Secretaria de Defesa Agropecuária. Instrução Normativa No 37, de 01 de Outubro de 2018. Estabelece Os Parâmetros Analíticos de Suco e de Polpa de Frutas e a Listagem Das Frutas e Demais Quesitos Complementares Aos Padrões de Identidade e Qualidade Já Fixados. Available online: https://www.legisweb.com.br/legislacao/?id=368178 (accessed on 20 February 2023).
- Pinheiro, G.K.I.; de Oliveira, D.E.C.; Resende, O.; Junior, W.N.F.; Cabral, J.C.O.; Quequeto, W.D.; Silva, L.C.D.M.; Souza, D.G. Physical, Physicochemical and Functional Technological Properties of Flours Produced from Yellow mombin (Spondias mombin L.) Epicarp. Aust. J. Crop Sci. 2022, 16, 177–183. [Google Scholar] [CrossRef]
- Oladunjoye, A.O.; Eziama, S.C.; Aderibigbe, O.R. Proximate Composition, Physical, Sensory and Microbial Properties of Wheat-Hog Plum Bagasse Composite Cookies. LWT 2021, 141, 111038. [Google Scholar] [CrossRef]
- Rezende, L.; Santos, P.; Riatto, V.; David, J.; David, J. New Alkyl Phenols and Fatty Acid Profile from Oils of Pulped Spondias mombin L. Seed Wastes. Quím. Nova 2018, 41, 540–543. [Google Scholar] [CrossRef]
- Abiodun, O.O.; Nnoruka, M.E.; Tijani, R.O. Phytochemical Constituents, Antioxidant Activity, and Toxicity Assessment of the Seed of Spondias mombin L. (Anacardiaceae). Turk. J. Pharm. Sci. 2020, 17, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Matheus, J.R.V.; de Andrade, C.J.; Miyahira, R.F.; Fai, A.E.C. Persimmon (Diospyros kaki L.): Chemical Properties, Bioactive Compounds and Potential Use in the Development of New Products—A Review. Food Rev. Int. 2022, 38, 384–401. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Toydemir, G.; Gultekin Subasi, B.; Hall, R.D.; Beekwilder, J.; Boyacioglu, D.; Capanoglu, E. Effect of Food Processing on Antioxidants, Their Bioavailability and Potential Relevance to Human Health. Food Chem. X 2022, 14, 100334. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Mandić, A.I.; Bantis, F.; Böhm, V.; Borge, G.I.A.; Brnčić, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A Comprehensive Review on Carotenoids in Foods and Feeds: Status Quo, Applications, Patents, and Research Needs. Crit. Rev. Food Sci. Nutr. 2022, 62, 1999–2049. [Google Scholar] [CrossRef]
- Zielinski, A.A.F.; Ávila, S.; Ito, V.; Nogueira, A.; Wosiacki, G.; Haminiuk, C.W.I. The Association between Chromaticity, Phenolics, Carotenoids, and In Vitro Antioxidant Activity of Frozen Fruit Pulp in Brazil: An Application of Chemometrics. J. Food Sci. 2014, 79, C510–C516. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.L.; Mazzutti, S.; de Souza, J.A.L.; Ferreira, S.R.S.; Soares, L.A.L.; Stragevitch, L.; Danielski, L. Extraction of Umbu (Spondias tuberosa) Seed Oil Using CO2, Ultrasound and Conventional Methods: Evaluations of Composition Profiles and Antioxidant Activities. J. Supercrit. Fluids 2019, 145, 10–18. [Google Scholar] [CrossRef]
- Costa, G.A.; Mercadante, A.Z. In Vitro Bioaccessibility of Free and Esterified Carotenoids in Cajá Frozen Pulp-Based Beverages. J. Food Compos. Anal. 2018, 68, 53–59. [Google Scholar] [CrossRef]
- de Brito, G.O.; Reis, B.C.; Ferreira, E.A.; Vilela Junqueira, N.T.; Sá-Barreto, L.C.L.; Mattivi, F.; Vrhovsek, U.; Gris, E.F. Phenolic Compound Profile by UPLC-MS/MS and Encapsulation with Chitosan of Spondias mombin L. Fruit Peel Extract from Cerrado Hotspot—Brazil. Molecules 2022, 27, 2382. [Google Scholar] [CrossRef] [PubMed]
- Meinhart, A.D.; Meinhart, A.D.; Damin, F.M.; Caldeirão, L.; de Filho, M.J.; da Silva, L.C.; da Constant, L.S.; Filho, J.T.; Wagner, R.; Godoy, H.T. Chlorogenic and Caffeic Acids in 64 Fruits Consumed in Brazil. Food Chem. 2019, 286, 51–63. [Google Scholar] [CrossRef]
- Galvão, M.S.; Narain, N.; do Socorro Porto dos Santos, M.; Nunes, M.L. Volatile Compounds and Descriptive Odor Attributes in Umbu (Spondias tuberosa) Fruits during Maturation. Food Res. Int. 2011, 44, 1919–1926. [Google Scholar] [CrossRef]
- Ferreira, G.R.; Fidêncio, P.H.; Castricini, A.; Andrade, R.Q.; Silvério, F.O. Comparison of Spondias tuberosa Arruda Accessions by Fruit Volatile Compounds Using Multivariate Analysis. Food Sci. Technol. 2022, 42, e108721. [Google Scholar] [CrossRef]
- Gouvêa, R.F.; Ribeiro, L.O.; Souza, É.F.; Penha, E.M.; Matta, V.M.; Freitas, S.P. Effect of Enzymatic Treatment on the Rheological Behavior and Vitamin C Content of Spondias tuberosa (Umbu) Pulp. J. Food Sci. Technol. 2017, 54, 2176–2180. [Google Scholar] [CrossRef]
- Assis, R.C.; de Lima Gomes Soares, R.; Siqueira, A.C.P.; de Rosso, V.V.; de Sousa, P.H.M.; Mendes, A.E.P.; de Alencar Costa, E.; de Góes Carneiro, A.P.; Maia, C.S.C. Determination of Water-Soluble Vitamins and Carotenoids in Brazilian Tropical Fruits by High Performance Liquid Chromatography. Heliyon 2020, 6, e05307. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; Food and Agriculture Organization of the United Nations. Vitamin and Mineral Requirements in Human Nutrition. Available online: https://www.who.int/publications/i/item/9241546123 (accessed on 22 July 2023).
- Santana Neto, D.C.; da Ferreira, V.C.S.; da Araújo, Í.B.S.; de Meireles, B.R.L.A.; de Cordeiro, Â.M.T.M.; da Silva, F.A.P. Solid–Liquid Extraction of Bioactive Compounds from Spondias mombin L. by-Products: Optimization and Identification of Phenolic Profile. Braz. J. Chem. Eng. 2022, 39, 511–525. [Google Scholar] [CrossRef]
- Ampadu, G.A.A.; Mensah, J.O.; Darko, G.; Borquaye, L.S. Essential Oils from the Fruits and Leaves of Spondias Mombin Linn.: Chemical Composition, Biological Activity, and Molecular Docking Study. Evid. Based Complement. Altern. Med. 2022, 2022, 7211015. [Google Scholar] [CrossRef]
- Alcântara, L.K.S.; Machado, L.F.C.; Ceravolo, I.P.; dos Santos, R.M.; Souza, M.V.D. Phytochemical Aspects, Cytotoxicity and Antimicrobial Activity of t. he Methanolic Extract of Tropical Fruit Pulps on Clinical Isolates of Escherichia Coli. Biointerface Res. Appl. Chem. 2021, 11, 8210–8217. [Google Scholar] [CrossRef]
- Brito, S.A.; Barbosa, I.S.; de Almeida, C.L.; de Medeiros, J.W.; Silva Neto, J.C.; Rolim, L.A.; da Silva, T.G.; Ximenes, R.M.; Menezes, I.R.; Caldas, G.F.; et al. Evaluation of Gastroprotective and Ulcer Healing Activities of Yellow Mombin Juice from Spondias mombin L. PLoS ONE 2018, 13, e0201561. [Google Scholar] [CrossRef] [PubMed]
- Plabon, M.E.; Mondal, S.C.; Or Rashid, M.M.; Chowdhury, M.K.; Saeid, A.; Althobaiti, F.; Dessok, E.S.; Rehmani, M.I.; Mustafa, S.K.; Islam, M.S. Chemical Composition and Anti-Microbial Activity of Hog Plum (Spondias mombin L.) Peel Oil Extracted from Different Regions of Tropical Climates. Horticulturae 2021, 7, 428. [Google Scholar] [CrossRef]
- Moura Neto, L.G.; de Sousa Lira, J.; Torres, M.; Barbosa, I.C.; do Amarante Melo, G.F.; Soares, D.J. Development of a Mixed Drink Made from Hydrosoluble Soybean Extract, Coconut Water and Umbu Pulp (Spondias tuberosa). Acta Sci. Technol. 2016, 38, 371–376. [Google Scholar] [CrossRef]
- Ribeiro, L.O.; Freitas, S.P.; Costa, S.D.O. Bioactive Compounds and Shelf Life of Clarified Umbu Juice. Int. Food Res. J. 2018, 25, 769–775. [Google Scholar]
- de Lima, L.L.A.; Oliveira e Silva, A.M.; Ferreira, I.M.; Nunes, T.P.; de Carvalho, M.G. Néctar Misto de Umbu (Spondias tuberosa Arr. câmera) e Mangaba (Hancornia Speciosa Gomes): Elaboração e Avaliação Da Qualidade. Braz. J. Food Technol. 2018, 21, e2017034. [Google Scholar] [CrossRef]
- Figueiredo, J.S.B.; Santos, G.L.M.; Lopes, J.P.A.; Fernandes, L.B.; Silva, F.N.; Faria, R.B.; Rocha, A.C.S.; Farias, P.K.S.; Lima, W.J.N.; Durães, C.A.F.; et al. Sensory Evaluation of Fermented Dairy Beverages Supplemented with Iron and Added by Cerrado Fruit Pulps. Food Sci. Technol. 2019, 39, 410–414. [Google Scholar] [CrossRef]
- Souza, M.M.B.; Santos, A.M.P.; Converti, A.; Maciel, M.I.S. Optimisation of Umbu Juice Spray Drying, and Physicochemical, Microbiological and Sensory Evaluation of Atomised Powder. J. Microencapsul. 2020, 37, 230–241. [Google Scholar] [CrossRef] [PubMed]
- de Souza, H.R.S.; Santos, A.M.; Ferreira, I.M.; e Silva, A.M.O.; Nunes, T.P.; Carvalho, M.G. Elaboração e Avaliação Da Qualidade de Geleia de Umbu (Spondias tuberosa arr. c.) e Mangaba (Hancornia Speciosa g.) Com Alegação Funcional. Segur. Aliment. Nutr. 2018, 25, 104–113. [Google Scholar] [CrossRef]
- da Silva, A.S.; de Santana, L.R.R.; Bispo, E.D.S.; Lopes, M.V. Use of Umbu (Spondias uberosa arr. camara) Pulp for Preparation of Diet Cereal Bar. Rev. Bras. Frutic. 2018, 40, e-540. [Google Scholar] [CrossRef]
- dos Santos Melo, C.; Ferreira, I.M.; Oliveira, A.M.; de Carvalho, M.G. Sorvete de Umbu e Mangaba Com Propriedade Funcional: Processamento e Caracterização. Segur. Aliment. Nutr. 2021, 28, e021028. [Google Scholar] [CrossRef]
- Xavier, V.L.; Feitoza, G.S.; Barbosa, J.; Maria, L.; Araújo, K.S.; Silva, M.V.; Correia, M.T.; Souza, M.P.; Carneiro-da-Cunha, M.D. Nutritional and Technological Potential of Umbu (Spondias tuberosa Arr. Cam.) Processing by-Product Flour. An. Acad. Bras. Cienc. 2022, 94, e20200940. [Google Scholar] [CrossRef] [PubMed]
- Zeraik, M.L.; Queiroz, E.F.; Castro-Gamboa, I.; Siqueira Silva, D.H.; Cuendet, M.; da Silva Bolzani, V.; Wolfender, J.L. Method for Extracting and Isolating Active Substances from Umbu Pulp, Nutraceutical and/or Functional Foods and Cosmetics Comprising Said Active Substances and Uses Thereof. WO 2016/058071A1, 21 April 2016. [Google Scholar]
- Zeraik, M.L.; Queiroz, E.F.; Castro-Gamboa, I.; Siqueira Silva, D.H.; Cuendet, M.; Marcourt, L.; Ciclet, O.; da Silva Bolzani, V.; Wolfender, J.L. Method for Extracting and Isolating Active Substances from Umbu Pulp, Nutraceutical and/or Functional Foods and Cosmetics Comprising Said Active Substances and Uses Thereof. WO 2016/058070A1, 21 April 2016. [Google Scholar]
- Silva, E.C.A.; Conceição, M.M.; Soares, J.K.B.; Silva, M.C.C.; Martins, A.C.S.; Viera, V.B.; Queiroga, R.C.R.E. Elaboração e Processamento de Farinha Da Casca e Do Caroço de Umbu (Spondias tuberosa Arruda Câmara). BR102017026708-3A2, 25 June 2019. [Google Scholar]
- Silva, E.C.A.; Conceição, M.M.; Soares, J.K.B.; Silva, M.C.C.; Queiroga, R.C.R.E.; Santos, A.C. Elaboração e Processamento de Pão de Forma Adicionado Da Farinha Da Casca e Do Caroço Do Umbu (Spondias tuberosa Arruda Câmara). BR 102017026726-1A2, 25 June 2019. [Google Scholar]
- Trindade, A.M.G.; Nunes, K.M.; Ferreira, M.C.A.; Amorim, B.S. Suplemento Alimentar a Base de Frutos da Caatinga. BR 102017010267-0A2, 4 December 2018. [Google Scholar]
- Almeida, M.D.A.; Mata, M.E.R.M.C.M.; Duarte, M.E.M.; Andre, A.M.M.C.N.; Leite Filho, M.T.; Melo, M.O.P.; Sousa, F.M. Umbuzada Em Pó Elaborada Com Leite Caprino. BR 102020019857-2A2, 12 April 2022. [Google Scholar]
- Akinlolu-Ojo, T.; Nwanna, E.E.; Badejo, A.A. Physicochemical Constituents and Anti-Oxidative Properties of Ripening Hog Plum (Spondias mombin) Fruits and the Quality Attributes of Jam Produced from the Fruits. Meas. Food 2022, 7, 100037. [Google Scholar] [CrossRef]
- Moura, L.G.; Rocha, É.M.; Afonso, M.R.; Rodrigues, S.; Costa, J.M. Physicochemical and Sensory Evaluation of Yellow Mombin (Spondias mombin L.) Atomized Powder. Rev. Caatinga 2015, 28, 244–252. [Google Scholar] [CrossRef]
- de Paula, C.M.; dos Santos, K.M.O.; de Oliveira, L.S.; da Silva Oliveira, J.; Buriti, F.C.A.; Saad, S.M.I. Fat Substitution by Inulin in Goat Milk Ice Cream Produced with Cajá (Spondias mombin) Pulp and Probiotic Cultures: Influence on Composition, Texture, and Acceptability among Consumers of Two Brazilian Regions. Emir. J. Food Agric. 2020, 32, 140–149. [Google Scholar] [CrossRef]
- de Santana Neto, D.C.; Cordeiro, Â.M.T.M.; Meireles, B.R.L.A.; Araújo, Í.B.S.; Estévez, M.; Ferreira, V.C.S.; Silva, F.A.P. Inhibition of Protein and Lipid Oxidation in Ready-to-Eat Chicken Patties by a Spondias mombin L. Bagasse Phenolic-Rich Extract. Foods 2021, 10, 1338. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, T.C.A.; Silva, E.L.L.; da Ferreira, V.C.S.; Madruga, M.S.; da Silva, F.A.P. Oxidative Stability of Green Weakfish (Cynoscion virescens) by-Product Surimi and Surimi Gel Enhanced with a Spondias mombin L. Waste Phenolic-Rich Extract during Cold Storage. Food Biosci. 2022, 50, 102021. [Google Scholar] [CrossRef]
- Ferraz, J.L.A.A.; Souza, L.O.; Soares, G.A.; Coutinho, J.P.; de Oliveira, J.R.; Aguiar-Oliveira, E.; Franco, M. Enzymatic Saccharification of Lignocellulosic Residues Using Cellulolytic Enzyme Extract Produced by Penicillium Roqueforti ATCC 10110 Cultivated on Residue of Yellow Mombin Fruit. Bioresour. Technol. 2018, 248, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.C.; da Silva Araújo, J.; de Paiva, W.K.V.; Ribeiro, E.S.S.; de Araújo Padilha, C.E.; de Assis, C.F.; dos Santos, E.S.; de Macêdo, G.R.; de Sousa Junior, F.C. Yellow Mombin Pulp Residue Valorization for Pectinases Production by Aspergillus Niger IOC 4003 and Its Application in Juice Clarification. Biocatal. Agric. Biotechnol. 2020, 30, 101876. [Google Scholar] [CrossRef]
- Marques, G.L.; Aguiar-Oliveira, E. Yellow Mombin and Jackfruit Seeds Residues Applied in the Production of Reducing Sugars by a Crude Multi-Enzymatic Extract Produced by Penicillium Roqueforti ATCC 101110. J. Sci. Food Agric. 2020, 100, 3428–3434. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Júnior, S.D.; de Araújo, J.S.; de Asevedo, E.A.; de Medeiros, F.G.M.; dos Santos, V.S.; de Sousa Júnior, F.C.; de Araújo, N.K.; dos Santos, E.S. Exploiting Films Based on Pectin Extracted from Yellow Mombin (Spondias Mombin L.) Peel for Active Food Packaging. Biomass Convers. Biorefin. 2021, 13, 1565–1579. [Google Scholar] [CrossRef]
- Santos, A.; Santos, T.; Lemos, V.; de Souza, A. Yellow Mombin (Spondias mombin L.) Seeds from Agro-Industrial Waste as a Novel Adsorbent for Removal of Hexavalent Chromium from Aqueous Solutions. J. Braz. Chem. Soc. 2021, 32, 437–446. [Google Scholar] [CrossRef]
- Santana Neto, D.C.; da Silva, F.A.P.; da Silva Ferreira, V.C.; da Silva Araújo, I.B.; Fragoso, S.P. Processo de Obtenção de Extrato Antioxidante Derivado de Resíduos Para Aplicação Em Produtos Alimentícios Destinados Ao Consumo Humano e Animal. BR102018067711-0A2, 17 March 2020. [Google Scholar]
- Santana Neto, D.C.; da Silva, F.A.P.; da Silva Ferreira, V.C.; da Silva Araújo, Í.B.; Fragoso, S.P. Hambúrguer Pronto Para Consumo Elaborado Com Antioxidante Natural de Resíduos. BR 102018072527-0A2, 26 May 2020. [Google Scholar]
- Souza, A.K.S.; Costa, C.B.; Stuker, C.Z.; Ferrari, C.R.; de Oliveira, D.H.; Zimbardi, D.; Shigeru Takano, F.; Reigada, J.B.; Arcuri, H.A.; Reigada, J.; et al. Method for Obtaining Bioactive Ingredients, Use of Subcritical-Water Extraction Process, Bioactive Ingredient, Use of Bioactive Ingredients and Cosmetic Composition. WO 2021/000037A1, 7 January 2021. [Google Scholar]
- Silva, M.E.P.; Gadelha, A.J.F.; Silva, J.M.A.; Rocha, C.O.; Batista, F.F.; Silva, H.A. Biossorvente Obtido a Partir Do Endocarpo Do Cajá (Spondias mombin L.) e Processo de Tratamento de Água e Efluentes Utilizando o Mesmo Biossorvente. BR 1020210192739A, 11 April 2023. [Google Scholar]
- Cornélio, M.L.; Guedes, L.M. Processo e Composição Cosmética e Dermatológica Para Hidratação e Elasticidade Da Pele Humana. BR102019017094-8A2, 2 March 2021. [Google Scholar]
- Pinedo, A.A.; Pereira, C.F.; Arévalo, Z.D.S. Elaboração de Bebida Fermentada à Base de Suco de Cajá (Spondias mombin L.). BR 102020002833-2A2, 24 August 2021. [Google Scholar]
- Rodrigues, T.J.A.; ALbuquerque, A.P.; Pasquali, M.A.B.; Rocha, A.T.; Araujo, G.T. Processo de Obtenção de Polpas Probióticas, Em Pó, de Frutas Spondias Por Secagem Em Leito de Jorro. BR 102021006902-3A2, 11 October 2022. [Google Scholar]
Solvent or Extraction Method | Total Bioactive Compounds/Antioxidant Capacity | Mains Classes or Compounds | References |
---|---|---|---|
S. tuberosa pulp | |||
Ethanol (95%) | TPC (40.4 ± 8.7 mg GAE/g dry extract) DPPH• (16.10 ± 0.88 RSA%-DPPH•) Ascorbic acid content (1.74 ± 0.04 mg/g) | - | Omena et al. [37] |
Distilled water 1:3 (w/v) | TPC (158.54 ± 4.54 mg GAE/Kg) TFC (69.30 ± 1.99 mg CTE/kg) Carotenoid(4.16 ± 0.05 mg β-carotene/100 g) DPPH• (45.59 ± 0.55% reduction) | - | Zielinski et al. [64] |
Maceration with hexane, dichloromethane, and methanol | DPPH• (89%), ABTS•+ (97%) and ORAC (64%) Assays at 40 µg/mL | Gallic acid, isotachioside, 5-hydroxyl, 4-methoxy-3-O-β-D-glucose benzoic acid, 4, 3,4-dihydroxyphenylethanol-5-β-D-glucose | Zeraik et al. [22] |
Acetone (70%), methanol (50%) | TPC (1746 mg GAE/100 g dw) TCC (4632 µg/100 g dw) ABTS•+ (105.24 µmol TE/g dw) | Rutin, quercetin, lutein, zeaxanthin, zeinoxanthin, β-cryptoxanthin, α-carotene, β-carotene, 13-cis-β-carotene, 9-cis-β-carotene | Ribeiro et al. [9] |
Ultrasonic bath (30 min) with methanol (50% v/v) and acetone (70% v/v), 20 mL each | TPC (380.69 ± 7.76 mg GAE/100 g) TFC (16.38 ± 2.36 mg QCE/100 g) Tannins (110.64 ± 13.12 mg TAE/100 g) Proanthocyanidins (259.03 ± 12.5 mg/100 g) | p-Coumaric, ellagic acid, procyanidin B2, protocatechuic acid, trigonelline, lutein, α-carotene, zeaxanthin, β-cryptoxanthin, β-carotene | Cangussu et al. [40] |
S. tuberosa peel | |||
Ethanol (95%) | TPC (52.5 ± 5.9 mg GAE/g) DPPH• (19.71 ± 1.47 (RSA%-DPPH•) Ascorbic acid content (1.52 ± 0.05 mg/g) | Phenols and tannins, anthraquinones, anthrones and coumarins, triterpenoids and sterols | Omena et al. [37] |
Acetone (70%), methanol (50%) | TPC (1775 mg GAE/100 g) TCC (2751 µg/100 g) ABTS•+ (142.78 µmol TE/g) | Rutin, quercetin, lutein, zeaxanthin, zeinoxanthin, β-cryptoxanthin, α-carotene, β-carotene, 13-cis- β-carotene, 9-cis-β-carotene | Ribeiro et al. [9] |
Ultrasonic bath (30 min) with methanol (50% v/v) and acetone (70% v/v), 20 mL each | TPC (1229.43 ± 125.34 mg GAE/100 g) TFC (50.61 ± 1.90 mg QCE/100 g) Tannins (1056.23 ± 55.20 mg TAE/100 g) | p-Coumaric, quercetin, ellagic acid, procyanidin B2, syringic acid, trigonelline, lutein, α-carotene, zeaxanthin, β-cryptoxanthin, β-carotene | Cangussu et al. [40] |
Ethanol (37%), solid–liquid of 1:38, at 74 °C, for 60 min under stirring of 130 rpm | TPC (1985 mg GAE/100 g) TFC (1364 mg RE/100 g) DPPH• (174 µmol/TE g) FRAP (468 µmol Fe2+/g) | Rutin, 3,5-dihydroxybenzoic acid, isoquercitrin, kaempferol 3-O-rutinoside, ferulic acid, sucrose, pipecolic acid, coumaric acid, rubinaphthin A, dihydroferulic acid | Ribeiro et al. [23] |
S. tuberosa seed | |||
Ethanol (95%) | TPC (202.2 ± 6.9 mg GAE/g) DPPH• (20.78 ± 0.34 RSA%-DPPH•) Ascorbic acid content (1.60 ± 0.06 mg/g) | Phenols and tannins, leucoanthocyanidins, catechins and flavanones, anthraquinones, anthrones and coumarins, triterpenoids and sterols | Omena et al. [37] |
Acetone (70%), methanol (50%) | TPC (~1200 mg GAE/100 g) ABTS•+ (84.3 µmol TE/g) | Rutin, quercetin | Ribeiro et al. [9] |
Supercritical fluid extraction (~25 g) with CO2, at 40 °C from 15 to 30 MPa and time of 180 min | TPC (2.5–76.0 mg GAE/g extract) Antioxidant activity (14.2–71.4% β-carotene/linoleic acid) | - | Dias et al. [65] |
S. mombin pulp | |||
Methanol (50%), acetone (70%), petroleum ether | TPC (260.21 ± 11.89 mg GAE/100 g) TCC (4869.5 ± 157.7 μg/100 g) TEAC (17.47 ± 3.27 mmol TEAC/g) | Lutein, zeinoxanthin, β-cryptoxanthin, α-carotene, and β-carotene | Tiburski et al. [18] |
Distilled water 1:3 (w/v) at 25 °C | TPC (270.43 ± 20.22 mg GAE/Kg) TFC (87.13 ± 4.52 mg CTE/kg) Carotenoids (9.44 ± 0.03 mg β-carotene/100 g) DPPH• (55.97 ± 3.20% reduction) FRAP (12,644.44 ± 784.78 µmol TE/kg) | - | Zielinski et al. [64] |
Acetone | TCC (28.4 ± 0.08 µg/g frozen pulp) | Lutein, zeaxanthin, zeinoxanthin, β-cryptoxanthin, α-carotene, β-carotene, β-cryptoxanthin myristate, β-cryptoxanthin palmitate, lutein dimyristate, zeinoxanthin stearate | Costa et al. [66] |
Ethanol (80%, v/v) | Capacity to scavenge the peroxyl radical (ROO●) (20.03 ± 1.00 µmol TE/g) Superoxide anion (O●−) scavenging effects (1447.94 ± 37.06 IC50 (µg/mL)) | Coumaric acid-O-hexoside II, Vanillic acid-O-hexoside I, Quercetin-7-O-glucoside I, ellagic acid I, Quercetin-7-O-glucoside II, quercetin II | Soares et al. [20] |
Methanol (50%), acetone (70%) | TPC (1340.15 ± 19.14 mg GAE/100 g) TFC (129.46 ± 10.68 µg QE/g) ABTS•+ (188.24 ± 65.46 µmol trolox/g) ORAC (332.46 ± 86.82 µmol trolox/g) | - | Aniceto et al. [13] |
S. mombin peel | |||
Ethanol (ratio 1:2) | TPC (557.65 ± 29.73 mg GAE/100 g) DPPH• (51.62 ± 1.27 µMTEAC/g) ABTS•+ (98.57 ± 2.49 µMTEAC/g) | Quercetin, rutin, kaempferol, gallic acid, ellagic acid, vanillin, esculin, chlorogenic acid, p-coumaric acid, cis-piceid, trans-piceid, dihydrochalcones, flavones, flavanones | Brito et al. [67] |
S. mombin seed | |||
The maceration method with methanol/water (70:30) | TPC (239.50 ± 7.9 mg GAE/g) TFC (105.3 ± 3.6 mg RE/g) DPPH• (IC50 of 58.64 ± 1.49 IC50 µg/mL) Hydrogen peroxide (IC50 of 44.03 ± 5.57 µg/mL) | Phenol amide (capsaicin, dihydrocapsaicin) Monoterpenoids (pyridine, 2-ethoxy-) Phenolic lipids ((Z)-3-(pentadec-8-en-1-yl) phenol) | Abiodun et al. [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Freitas, J.S.; Novo, A.d.A.; Kunigami, C.N.; Moreira, D.d.L.; Freitas, S.P.; da Matta, V.M.; Jung, E.P.; Ribeiro, L.d.O. Spondias tuberosa and Spondias mombin: Nutritional Composition, Bioactive Compounds, Biological Activity and Technological Applications. Resources 2024, 13, 68. https://doi.org/10.3390/resources13050068
de Freitas JS, Novo AdA, Kunigami CN, Moreira DdL, Freitas SP, da Matta VM, Jung EP, Ribeiro LdO. Spondias tuberosa and Spondias mombin: Nutritional Composition, Bioactive Compounds, Biological Activity and Technological Applications. Resources. 2024; 13(5):68. https://doi.org/10.3390/resources13050068
Chicago/Turabian Stylede Freitas, Jaqueline Souza, Alex de Aguiar Novo, Claudete Norie Kunigami, Davyson de Lima Moreira, Suely Pereira Freitas, Virgínia Martins da Matta, Eliane Przytyk Jung, and Leilson de Oliveira Ribeiro. 2024. "Spondias tuberosa and Spondias mombin: Nutritional Composition, Bioactive Compounds, Biological Activity and Technological Applications" Resources 13, no. 5: 68. https://doi.org/10.3390/resources13050068
APA Stylede Freitas, J. S., Novo, A. d. A., Kunigami, C. N., Moreira, D. d. L., Freitas, S. P., da Matta, V. M., Jung, E. P., & Ribeiro, L. d. O. (2024). Spondias tuberosa and Spondias mombin: Nutritional Composition, Bioactive Compounds, Biological Activity and Technological Applications. Resources, 13(5), 68. https://doi.org/10.3390/resources13050068