Why Do Small Earth Dams Deteriorate: Insights from Physical Investigations in the West African Sahel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Sampling of Dams
2.3. Physical Investigations through Detailed Technical Visits (DTVs)
2.4. Statistical Analyses
3. Results and Discussion
3.1. Observations from DTVs
3.2. Types of Degradation
3.3. Statistical Outlook of Degradation Types
3.4. Potential Causes of Degradations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schnitter, N.J. A History of Dams: The Useful Pyramids; A.A. Balkema: Rotterdam, The Netherlands, 1994; ISBN 978-90-5410-149-9. [Google Scholar]
- Andreini, M.; Schuetz, T.; Senzanje, A.; Rodríguez, L.; Andah, W.; Cecchi, P.; Boelee, E.; van de Giesen, N.; Kemp-Benedict, E.; Liebe, J.R. Small Multi-Purpose Reservoir Ensemble Planning; CGIAR Challenge Program on Water and Food: Colombo, Sri Lanka, 2009; pp. 1–14. Available online: https://www.researchgate.net/publication/241385289_Small_Multi-purpose_Reservoir_Ensemble_Planning_Innovative_Methods (accessed on 6 March 2024).
- Fowe, T.; Karambiri, H.; Paturel, J.-E.; Poussin, J.-C.; Cecchi, P. Water Balance of Small Reservoirs in the Volta Basin: A Case Study of Boura Reservoir in Burkina Faso. Agric. Water Manag. 2015, 152, 99–109. [Google Scholar] [CrossRef]
- Poussin, J.-C.; Renaudin, L.; Adogoba, D.; Sanon, A.; Tazen, F.; Dogbe, W.; Fusillier, J.-L.; Barbier, B.; Cecchi, P. Performance of Small Reservoir Irrigated Schemes in the Upper Volta Basin: Case Studies in Burkina Faso and Ghana. Water Resour. Rural. Dev. 2015, 6, 50–65. [Google Scholar] [CrossRef]
- Mounirou, L.A.; Sawadogo, B.; Yanogo, H.; Yonaba, R.; Zorom, M.; Faye, M.D.; Kafando, M.B.; Biaou, A.C.; Koïta, M.; Karambiri, H. Estimation of the Actual Specific Consumption in Drinking Water Supply Systems in Burkina Faso (West Africa): Potential Implications for Infrastructure Sizing. Water 2023, 15, 3423. [Google Scholar] [CrossRef]
- Cecchi, P.; Meunier-Nikiema, A.; Moiroux, N.; Sanou, B. Towards an Atlas of Lakes and Reservoirs in Burkina Faso. In Small Reservoirs Tool Kit; CGIAR: Colombo, Sri Lanka, 2008; pp. 1–20. [Google Scholar]
- Kafando, M.B.; Koïta, M.; Le Coz, M.; Yonaba, O.R.; Fowe, T.; Zouré, C.O.; Faye, M.D.; Leye, B. Use of Multidisciplinary Approaches for Groundwater Recharge Mechanism Characterization in Basement Aquifers: Case of Sanon Experimental Catchment in Burkina Faso. Water 2021, 13, 3216. [Google Scholar] [CrossRef]
- Cecchi, P.; Forkuor, G.; Cofie, O.; Lalanne, F.; Poussin, J.-C.; Jamin, J.-Y. Small Reservoirs, Landscape Changes and Water Quality in Sub-Saharan West Africa. Water 2020, 12, 1967. [Google Scholar] [CrossRef]
- Lèye, B.; Zouré, C.O.; Yonaba, R.; Karambiri, H. Water Resources in the Sahel and Adaptation of Agriculture to Climate Change: Burkina Faso. In Climate Change and Water Resources in Africa; Diop, S., Scheren, P., Niang, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 309–331. ISBN 978-3-030-61224-5. [Google Scholar]
- Venot, J.-P.; Cecchi, P. Use-Value or Performance: Towards a Better Understanding of Small Reservoirs in Sub-Saharan Africa. Cah. Agric. 2011, 20, 112–117. [Google Scholar] [CrossRef]
- Yonaba, R.; Biaou, A.C.; Koïta, M.; Tazen, F.; Mounirou, L.A.; Zouré, C.O.; Queloz, P.; Karambiri, H.; Yacouba, H. A Dynamic Land Use/Land Cover Input Helps in Picturing the Sahelian Paradox: Assessing Variability and Attribution of Changes in Surface Runoff in a Sahelian Watershed. Sci. Total Environ. 2021, 757, 143792. [Google Scholar] [CrossRef] [PubMed]
- Fowé, T.; Yonaba, R.; Mounirou, L.A.; Ouédraogo, E.; Ibrahim, B.; Niang, D.; Karambiri, H.; Yacouba, H. From Meteorological to Hydrological Drought: A Case Study Using Standardized Indices in the Nakanbe River Basin, Burkina Faso. Nat. Hazards 2023, 119, 1941–1965. [Google Scholar] [CrossRef]
- Giorgis, I.; Bonetto, S.; Giustetto, R.; Lawane, A.; Pantet, A.; Rossetti, P.; Thomassin, J.-H.; Vinai, R. The Lateritic Profile of Balkouin, Burkina Faso: Geochemistry, Mineralogy and Genesis. J. Afr. Earth Sci. 2014, 90, 31–48. [Google Scholar] [CrossRef]
- Flores-Berrones, R.; Ramírez-Reynaga, M.; Macari, E.J. Internal Erosion and Rehabilitation of an Earth-Rock Dam. J. Geotech. Geoenviron. Eng. 2011, 137, 150–160. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dam Safety: Technical Problems of Aging Embankment Dams. J. Earth Sci. Geotech. Eng. 2020, 10, 281–322. [Google Scholar]
- Chraibi, A.F.; Nombré, A. Comoe Dam Lateritic Foundation Treatment. In Grouting 2017; American Society of Civil Engineers: Honolulu, HI, USA, 2017; pp. 21–32. [Google Scholar]
- Persons, B.S. Laterite: Genesis, Location, Use; Monographs in Geoscience; Springer: New York, NY, USA, 2012; ISBN 978-1-4684-7215-8. [Google Scholar]
- Andreini, M.; Gardoni, P.; Pagliara, S.; Sassu, M. Probabilistic Models for the Erosion Rate in Embankments and Reliability Analysis of Earth Dams. Reliab. Eng. Syst. Saf. 2019, 181, 142–155. [Google Scholar] [CrossRef]
- Mbengue, M.T.M.; Lawane Gana, A.; Messan, A.; Pantet, A. Geotechnical and Mechanical Characterization of Lateritic Soil Improved with Crushed Granite. Civ. Eng. J. 2022, 8, 843–862. [Google Scholar] [CrossRef]
- Jalil, A.; Benamar, A.; Ebn Touhami, M. Assessment of a Dam Vulnerability to Internal Erosion Due to Climate Change in Morocco. Innov. Infrastruct. Solut. 2020, 5, 48. [Google Scholar] [CrossRef]
- Yonaba, R.; Tazen, F.; Cissé, M.; Mounirou, L.A.; Belemtougri, A.; Ouedraogo, V.A.; Koïta, M.; Niang, D.; Karambiri, H.; Yacouba, H. Trends, Sensitivity and Estimation of Daily Reference Evapotranspiration ET0 Using Limited Climate Data: Regional Focus on Burkina Faso in the West African Sahel. Theor. Appl. Climatol. 2023, 153, 947–974. [Google Scholar] [CrossRef]
- Leonards, G.A.; Narain, J. Flexibility of Clay and Cracking of Earth Dams. J. Soil Mech. Found. Div. 1963, 89, 47–98. [Google Scholar] [CrossRef]
- Sivakumar Babu, G.L.; Srivastava, A. Reliability Analysis of Earth Dams. J. Geotech. Geoenviron. Eng. 2010, 136, 995–998. [Google Scholar] [CrossRef]
- Foster, M.; Fell, R.; Spannagle, M. The Statistics of Embankment Dam Failures and Accidents. Can. Geotech. J. 2000, 37, 1000–1024. [Google Scholar] [CrossRef]
- Lautrin, D. Vieillissement et Réhabilitation des Petits Barrages en Terre; Cemagref Editions: Paris, France, 2003; Available online: https://www.eyrolles.com/BTP/Livre/vieillissement-et-rehabilitation-des-petits-barrages-en-terre-9782853625975/ (accessed on 6 March 2024).
- Costa, L.M.; Alonso, E.E. Predicting the Behavior of an Earth and Rockfill Dam under Construction. J. Geotech. Geoenviron. Eng. 2009, 135, 851–862. [Google Scholar] [CrossRef]
- Arulanandan, K.; Perry, E.B. Erosion in Relation to Filter Design Criteria in Earth Dams. J. Geotech. Energy 1983, 109, 682–698. [Google Scholar] [CrossRef]
- Planès, T.; Mooney, M.A.; Rittgers, J.B.R.; Parekh, M.L.; Behm, M.; Snieder, R. Time-Lapse Monitoring of Internal Erosion in Earthen Dams and Levees Using Ambient Seismic Noise. Géotechnique 2016, 66, 301–312. [Google Scholar] [CrossRef]
- Biswas, N.; Chakraborty, S.; Mosadegh, L.; Puppala, A.J.; Corcoran, M. Influence of Anisotropic Permeability on Slope Stability Analysis of an Earthen Dam during Rapid Drawdown. In Proceedings of the Geo-Congress 2020, Minneapolis, MN, USA, 21 February 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 29–39. [Google Scholar]
- Kacimov, A.R.; Yakimov, N.D.; Šimůnek, J. Phreatic Seepage Flow through an Earth Dam with an Impeding Strip. Comput. Geosci. 2020, 24, 17–35. [Google Scholar] [CrossRef]
- Fell, R.; Wan, C.F.; Cyganiewicz, J.; Foster, M. Time for Development of Internal Erosion and Piping in Embankment Dams. J. Geotech. Geoenviron. Eng. 2003, 129, 307–314. [Google Scholar] [CrossRef]
- Benz, T.; Nordal, S. Numerical Methods in Geotechnical Engineering: (NUMGE 2010); A Balkema Book; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-0-203-84236-2. [Google Scholar]
- Tourment, R.; Beullac, B.; Deniaud, Y.; Simm, J.; Wallis, M.; Sharp, M.; Pohl, R.; Van Hemert, H. De l’EDD Des Digues En France Aux Travaux de l’ILH Sur Les Mécanismes Élémentaires et Les Scénarios de Défaillance. In Proceedings of the Digues Maritimes et Fluviales de Protection Contre les Submersions-2ème Colloque National-Digues 2013, Aix-en-Provence, France, 12–14 June 2013; pp. 289–297. [Google Scholar]
- Bambara, G.; Curt, C.; Mériaux, P.; Vennetier, M.; Vanloot, P. Évaluation de La Vulnérabilité des Digues Fluviales Soumises Au Développement d’une Végétation Arborescente. In Proceedings of the 32èmes Rencontres Universitaires de Génie Civil, Orléans, France, 4–6 June 2014; pp. 379–388. [Google Scholar]
- Boussafir, Y.; Saussaye, L.; Dissler, E.; Durand, E. Des Anomalies Géotechniques à l’origine de Propositions d’indicateurs de Durabilité Pour Les Digues Fluviales. In Proceedings of the 9èmes JNGG: Journées Nationales de Géotechnique et de Géologie de L’ingénieur 2018, Champs sur Marne, France, 13–15 June 2018; p. 33. [Google Scholar]
- Boussafir, Y.; Tourment, R.; Veylon, G.; Durand, E.; Saussaye, L.; Reiffsteck, P. Évaluer L’ Impact du Vieillissement des Digues Sur Les Mécanismes et Scénarios de Rupture. In Proceedings of the Digues Maritimes et Fluviales de Protection Contre les Inondations—3e Colloque—Digues 2019, Aix-en-Provence, France, 20–21 March 2019; p. 9. [Google Scholar]
- Saliba, F.; Nassar, R.B.; Khoury, N.; Maalouf, Y. Internal Erosion and Piping Evolution in Earth Dams Using an Iterative Approach. In Proceedings of the Geo-Congress 2019, Philadelphia, PA, USA, 21 March 2019; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 67–75. [Google Scholar]
- Venot, J.-P.; Torou, B.M.; Daré, W. Territorialisation ou spatialisation: Les agences et comités locaux de l’eau au Burkina Faso. L’Espace Géogr. 2014, 43, 148–163. [Google Scholar] [CrossRef]
- Zouré, C.; Queloz, P.; Koïta, M.; Niang, D.; Fowé, T.; Yonaba, R.; Consuegra, D.; Yacouba, H.; Karambiri, H. Modelling the Water Balance on Farming Practices at Plot Scale: Case Study of Tougou Watershed in Northern Burkina Faso. Catena 2019, 173, 59–70. [Google Scholar] [CrossRef]
- Zouré, C.O.; Kiema, A.; Yonaba, R.; Minoungou, B. Unravelling the Impacts of Climate Variability on Surface Runoff in the Mouhoun River Catchment (West Africa). Land 2023, 12, 2017. [Google Scholar] [CrossRef]
- Cecchi, P. Les petits barrages au Burkina Faso: Un vecteur du changement social et de mutations des réalités rurales. In Pre Forum Mondial de l’Eau; IRD: Ouagadougou, Burkina Faso, 2006; Volume 12. [Google Scholar]
- Boelee, E.; Yohannes, M.; Poda, J.-N.; McCartney, M.; Cecchi, P.; Kibret, S.; Hagos, F.; Laamrani, H. Options for Water Storage and Rainwater Harvesting to Improve Health and Resilience against Climate Change in Africa. Reg. Environ. Change 2013, 13, 509–519. [Google Scholar] [CrossRef]
- Daré, W.; Venot, J.-P. Room for Manoeuvre: User Participation in Water Resources Management in Burkina Faso. Dev. Policy Rev. 2018, 36, 175–189. [Google Scholar] [CrossRef]
- Boutonnier, L.; Boussafir, Y.; Tourment, R.; Courivaud, J.-R. Effet Du Changement Climatique Sur Les Mécanismes de Retrait-Gonflement et La Stabilité des Digues et Barrages. In Proceedings of the Vingt Septieme Congrès des Grands Barrages, Marseille, France, 27 May–3 June 2022; Commission Internationale des Grands Barrages—CIGB: Paris, France, 2022; p. 21. [Google Scholar]
- Ghimire, S.N.; Schulenberg, J.W. Impacts of Climate Change on the Environment, Increase in Reservoir Levels, and Safety Threats to Earthen Dams: Post Failure Case Study of Two Cascading Dams in Michigan. Civ. Environ. Eng. 2022, 18, 551–564. [Google Scholar] [CrossRef]
- Gbohoui, Y.P.; Paturel, J.-E.; Tazen, F.; Mounirou, L.A.; Yonaba, R.; Karambiri, H.; Yacouba, H. Impacts of Climate and Environmental Changes on Water Resources: A Multi-Scale Study Based on Nakanbé Nested Watersheds in West African Sahel. J. Hydrol. Reg. Stud. 2021, 35, 100828. [Google Scholar] [CrossRef]
- ADF. Small Dam Rehabilitation Programme; African Development Fund: The Central Plateau, Burkina Faso, 2022; p. 49. [Google Scholar]
- Cochran, W.G. Sampling Techniques. In Wiley Series in Probability and Mathematical Statistics, 3rd ed.; Wiley: New York, NY, USA, 1977; ISBN 978-0-471-16240-7. [Google Scholar]
- Daniel, W.W.; Cross, C.L. Biostatistics: A Foundation for Analysis in the Health Sciences, 11th ed.; Wiley: Hoboken, NJ, USA, 2019; ISBN 978-1-119-49666-3. [Google Scholar]
- Mercklé, S.; Poulain, D. Barrage de Montbel (09). Compte Rendu de Visite Technique Approfondie Réalisée Le 12 Août 2010; Irstea: Paris, France, 2010; p. 25. [Google Scholar]
- EPL. Note Technique N°3—Visites Techniques Approfondies; Note Technique; Etablissment Public Loire: Orléans, France, 2013; p. 8. [Google Scholar]
- Cramér, H. Mathematical Methods of Statistics; Princeton Mathematical Series; Princeton University Press: Princeton, NJ, USA, 1991; ISBN 978-0-691-08004-8. [Google Scholar]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research. In R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Harrell, F.E. Binary Logistic Regression. In Regression Modeling Strategies; Springer Series in Statistics; Springer International Publishing: Cham, Switzerland, 2015; pp. 219–274. ISBN 978-3-319-19424-0. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Mounirou, L.A.; Yonaba, R.; Tazen, F.; Ayele, G.T.; Yaseen, Z.M.; Karambiri, H.; Yacouba, H. Soil Erosion across Scales: Assessing Its Sources of Variation in Sahelian Landscapes under Semi-Arid Climate. Land 2022, 11, 2302. [Google Scholar] [CrossRef]
- Bayoumi, A.; Meguid, M.A. Wildlife and Safety of Earthen Structures: A Review. J. Fail. Anal. Prevent. 2011, 11, 295–319. [Google Scholar] [CrossRef]
- Chassé, P.; Deniaud, Y.; Goutaland, D.; Kahan, J.M.; Lebreton, P.; Ledoux, P.; Rouxel, N.; Salmon, D.; Tourment, R.; Poulain, D.; et al. Référentiel Technique Digues Maritimes et Fluviales; MEDD—DGPR; HAL: Lyon, France, 2015. [Google Scholar]
- Zanetti, C.; Vennetier, M.; Mériaux, P.; Royet, P.; Provansal, M. Managing Woody Vegetation on Earth Dikes: Risks Assessment and Maintenance Solutions. Procedia Environ. Sci. 2011, 9, 196–200. [Google Scholar] [CrossRef]
- Zanetti, C.; Vennetier, M.; Mériaux, P. Développement et Décomposition des Systèmes Racinaires: Risques Induits Pour Les Digues et Solutions de Gestion. In Proceedings of the Digues Maritimes et Fluviales de Protection Contre les Submersions, Aix-en-Provence, France, 12–14 June 2013; Hermès Lavoisier: Paris, France, 2013; pp. 536–540. [Google Scholar]
- Bellin, N.; Van Wesemael, B.; Meerkerk, A.; Vanacker, V.; Barbera, G.G. Abandonment of Soil and Water Conservation Structures in Mediterranean Ecosystems. Catena 2009, 76, 114–121. [Google Scholar] [CrossRef]
- Vennetier, M.; Zanetti, C.; Meriaux, P.; Mary, B. Tree Root Architecture: New Insights from a Comprehensive Study on Dikes. Plant Soil 2015, 387, 81–101. [Google Scholar] [CrossRef]
- Talukdar, P.; Dey, A. Hydraulic Failures of Earthen Dams and Embankments. Innov. Infrastruct. Solut. 2019, 4, 42. [Google Scholar] [CrossRef]
- Onda, Y.; Itakura, N. An Experimental Study on the Burrowing Activity of River Crabs on Subsurface Water Movement and Piping Erosion. Geomorphology 1997, 20, 279–288. [Google Scholar] [CrossRef]
- Karastathis, V.K.; Karmis, P. Geophysical Investigations of Seepage and Settlement Effects at Mornos Dam. In Proceedings of the 74th EAGE Conference and Exhibition incorporating EUROPEC 2012, Copenhagen, Denmark, 4 June 2012; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2012. [Google Scholar]
- Karastathis, V.; Karmis, P. Investigation of Seepage and Settlement Problems at the Mornos Earth Dam, Greece, by Geophysical Methods. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems 2012, Tucson, AZ, USA, 1 January 2012; Environment and Engineering Geophysical Society: Denver, CO, USA, 2012; p. 180. [Google Scholar]
- Nourani, V.; Aminfar, M.H.; Alami, M.T.; Sharghi, E.; Singh, V.P. Unsteady 2-D Seepage Simulation Using Physical Analog, Case of Sattarkhan Embankment Dam. J. Hydrol. 2014, 519, 177–189. [Google Scholar] [CrossRef]
- Palladino, M.R.; Barbetta, S.; Camici, S.; Claps, P.; Moramarco, T. Impact of Animal Burrows on Earthen Levee Body Vulnerability to Seepage. J. Flood Risk Manag. 2020, 13, e12559. [Google Scholar] [CrossRef]
- Calamak, M.; Larocque, L.A.; Chaudhry, M.H. Numerical Modelling of Seepage through Earthen Dams with Animal Burrows: A Case Study. J. Hydraul. Res. 2021, 59, 488–499. [Google Scholar] [CrossRef]
- Ceccato, F.; Malvestio, S.; Simonini, P. Effect of Animal Burrows on the Vulnerability of Levees to Concentrated Erosion. Water 2022, 14, 2777. [Google Scholar] [CrossRef]
- Richards, K.S.; Reddy, K.R. Critical Appraisal of Piping Phenomena in Earth Dams. Bull. Eng. Geol. Environ. 2007, 66, 381–402. [Google Scholar] [CrossRef]
- Fu, X.T.; Zhang, L.P.; Wang, Y. Effect of Slope Length and Rainfall Intensity on Runoff and Erosion Conversion from Laboratory to Field. Water Resour. 2019, 46, 530–541. [Google Scholar] [CrossRef]
- Ponce, V.M.; Tsivoglou, A.J. Modeling Gradual Dam Breaches. J. Hydr. Div. 1981, 107, 829–838. [Google Scholar] [CrossRef]
Approval | Small Dam | Medium Dam | Large Dam |
---|---|---|---|
W-BAH1 | H ≤ 5 m and V < 5,000,000 m3 low risks in the event of an incident | ||
W-BAH2 | 2 m < H ≤ 5 m and V < 5,000,000 m3 low risks in the event of an incident | 5 m < H ≤ 10 m and V < 5,000,000 m3 medium-high risk in the event of an incident | |
W-BAH3 | H > 10 m and V > 5,000,000 m3 high risk in the event of an incident |
Region | Number of Dams | Year of Construction | Usable Capacity (m3) | Dike Length (m) | Crest Width (m) |
---|---|---|---|---|---|
Centre Region | 2 | <1980 | 75,000–4,470,000 | 170–710 | 2.5–7.0 |
11 | 1980–2000 | ||||
2 | >2000 | ||||
Centre-West Region | 1 | <1980 | 200,000–1,275,000 | 70–830 | 3.0–7.0 |
4 | 1980–2000 | ||||
1 | >2000 | ||||
Northern Region | 2 | <1980 | 10,000–100,000 | 200 | 3.0–4.0 |
1 | 1980–2000 |
TrCrack | EroEmb | WavEro | DegEm | Burr | MalfIntake | MalfSpill | WatLeak | VegEm | |
TrCrack | - | 0.29 | 0.29 | 0.29 | 0.08 | 0.29 | 0.25 | 0.43 * | - |
EroEmb | - | - | 1.00 ** | 1.00 ** | 0.11 | 1.00 ** | 0.65 ** | −0.13 | - |
WavEro | - | - | - | 1.00 ** | 0.11 | 1.00 ** | 0.65 ** | −0.13 | - |
DegEm | - | - | - | - | 0.11 | 1.00 ** | 0.65 ** | −0.13 | - |
Burr | - | - | - | - | - | 0.11 | −0.17 | 0.30 * | - |
MalfIntake | - | - | - | - | - | - | 0.65 ** | −0.136 | - |
MalfSpill | - | - | - | - | - | - | - | 0.00 | - |
WatLeak | - | - | - | - | - | - | - | - | - |
VegEm | - | - | - | - | - | - | - | - | - |
Type of Degradation | Explanatory Variables | |||
---|---|---|---|---|
Length (L) | Width (W) | Age (Y) | Weir Position (Weir) | |
TrCrack | 0.09 * | 0.34 | 0.94 | 0.45 |
EroEmb | 1.00 | 1.00 | 1.00 | 1.00 |
WavEro | 1.00 | 1.00 | 1.00 | 1.00 |
DegEm | 1.00 | 1.00 | 1.00 | 1.00 |
Burr | 0.61 | 0.66 | 0.55 | 0.64 |
MalfIntake | 1.00 | 1.00 | 1.00 | 1.00 |
MalfSpill | 0.10 | 0.25 | 0.55 | 0.09 * |
WatLeak | 0.66 | 0.08 * | 0.78 | 0.55 |
VegEm | 1.00 | 1.00 | 1.00 | 1.00 |
Types of Degradation | Degradations | Potential Causes |
---|---|---|
External (or superficial) degradation | Transverse cracks | Poor sizing or implementation |
Erosion of the embankment | Rainwater runoff in the direction of the slopes | |
Scouring (or wave erosion) of the embankment | Wave action against up-facing slopes | |
Vegetation on the embankment | Lack of maintenance | |
Burrows in the embankment fill | Presence of burrowing animals | |
Malfunction of associated structures (spillways, intake structure, etc.) | Lack of maintenance, poor sizing | |
Internal degradation | Differential settlement | Overweight applied over time, reducing the void the volume of the affected medium |
Interstitial pressures during construction | Pressure during construction under the effect of the embankment’s weight | |
Interstitial pressures in the embankment during operation | Hydrostatic pressures combined with a directed force in the flow direction, poorly controlled during implementation | |
Sub-pressures in the dam foundation | Water infiltration in the foundation during impoundment | |
Internal erosion (piping, backward erosion) | Concentrated water flowing through the embankment | |
Internal version (external suffusion) | Selective entrainment of small particles inside the interconnected pore spaces of soils by water flow paths | |
Internal erosion (internal suffusion) | Entrainment of fine elements by infiltration flow paths |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaboré, M.P.J.; Lawane, A.; Yonaba, R.; Biaou, A.C.; Nadjibou, A.; Pantet, A. Why Do Small Earth Dams Deteriorate: Insights from Physical Investigations in the West African Sahel. Resources 2024, 13, 71. https://doi.org/10.3390/resources13060071
Kaboré MPJ, Lawane A, Yonaba R, Biaou AC, Nadjibou A, Pantet A. Why Do Small Earth Dams Deteriorate: Insights from Physical Investigations in the West African Sahel. Resources. 2024; 13(6):71. https://doi.org/10.3390/resources13060071
Chicago/Turabian StyleKaboré, Mamadou Pousga Junior, Abdou Lawane, Roland Yonaba, Angelbert Chabi Biaou, Abdoulaye Nadjibou, and Anne Pantet. 2024. "Why Do Small Earth Dams Deteriorate: Insights from Physical Investigations in the West African Sahel" Resources 13, no. 6: 71. https://doi.org/10.3390/resources13060071
APA StyleKaboré, M. P. J., Lawane, A., Yonaba, R., Biaou, A. C., Nadjibou, A., & Pantet, A. (2024). Why Do Small Earth Dams Deteriorate: Insights from Physical Investigations in the West African Sahel. Resources, 13(6), 71. https://doi.org/10.3390/resources13060071