Assessing the Relationship Between Production and Land Transformation for Chilean Copper Mines Using Satellite and Operational Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Terminology Declaration
2.2. Scope and Feature Distinction
2.3. Mapping Using Satellite Imagery and GIS
2.4. Data Analysis
3. Results
3.1. Site-Specific Mapping and Feature Composition Analysis
3.2. Assessing Land Transformation Versus Mining Activity
3.2.1. Temporal Changes in Copper Production and Land Transformation
3.2.2. Comparative Analysis of LTFs
3.2.3. The Variations and Disparities in LTFs
4. Discussion
4.1. On the Importance and Benefits of Spatial Data
- 1.
- Enabling a combination of temporally georeferenced attribute data. In this study, we combined GIS polygons and operational data to calculate the temporal land transformation factor site-specifically. Attribute data, such as locally measured data on water contamination, soil properties, population density, and economic data, if available, can also be supplemented and integrated for a more comprehensive analysis.
- 2.
- The visualization of land occupation/transformation can easily be achieved in the form of maps. The process of land transformation is illustrated in Figure 3, which can be used to improve the basis for decision-making in industry and other organizations.
- 3.
- Integrated spatial analysis can be conducted by overlaying it with other types of maps (e.g., geological, water system, and urban planning maps) to improve the accuracy [28] and reliability of the environmental evaluation and risk assessment of mining projects.
4.2. On the Reconsideration of Land-Related Factors in LCA
4.3. Recommendations for Sustainable and Responsible Mining
4.3.1. Waste Management
- 1.
- During the detection and planning phase, in addition to selecting appropriate locations and construction methods for all facilities, post-closure rehabilitation measures should also be planned properly.
- 2.
- During the operational phase, these facilities must be properly managed to minimize pollution and prevent potential disasters like tailings dams’ failure.
- 3.
- During the post-mining phase, these facilities should be subject to long-term monitoring, and the land should be gradually reclaimed and rehabilitated to minimize the environmental impacts and associated risks.
4.3.2. Public Attention and Information Disclosure
4.4. Uncertainties and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DEM | Digital elevation model |
EDP | Ecosystem damage potential |
GIS | Geographic information system |
GLIO | Global link input–output model |
GloVis | Global Visualization Viewer |
GPG-LULUCF | Good Practice Guidance for Land Use, Land-Use Change and Forestry |
GWP | Global warming potential |
IVAM | Integrated value-added model |
LCA | Life cycle assessment |
LCIA | Life-cycle impact assessment |
LP(s) | Leaching pad(s) |
LTF | Land transformation factor |
LULUC | Land use and land-use change(s) |
MLT | Mining-induced land transformation |
OLAP | Oxide Leach Area Project (of Mine Escondida) |
OSM | OpenStreetMap |
RS | Remote sensing |
SDGs | Sustainable Development Goals |
SNP | S&P Capital IQ Pro |
TSF(s) | Tailings storage facility(ies) |
WDR(s) | Weighted disturbance rate(s) |
WRD(s) | Waste rock dump(s) |
WSF(s) | Waste storage facility(ies) |
Appendix A. Discussion of Land-Related Terminology
- Land cover refers to the physical material on Earth’s surface [24], comprising natural substances (e.g., rocks, water, vegetation, humus, ice, and soil) and artificial substances (e.g., asphalt, pitch, concrete, and glass). In the context of the natural environment, disturbance to land cover has impacts including but not limited to (1) nearsurface water circulation (evapotranspiration, surface runoff, and infiltration) and (2) surface radiation balance and local temperature (surface radiation absorption/reflection under different surface albedo values [8]), (3) biophysical and biogeochemical effects (e.g., carbon sink and soil organic matter), which subsequently results in the fact that local temperature extremes reach more than mean values [8].
- Land use refers to the functional dimension and corresponds to the description of areas in terms of their purpose [24], normally using categories defined in [22], including forest land, cropland, grassland, wetland, settlements, and other land. Land use, defined by [8], refers to the total arrangements, activities, and inputs undertaken in a certain land cover type. Compared to land cover, land use is a more complex and ambiguous expression due to the extensiveness of term “use”. In different disciplines and fields, such as policy, climate change, biodiversity, ecosystem service, and spatial planning, “land use” has different meanings [24]. For example, categories in [22] relate to the type and amount of vegetation cover due to the fact that “climate change” is the main topic of IPCC, which can be part of the reason why “mining” was not included in the classification despite its negative impacts. Land use change refers to a change from one type to another within the “land use category”, making it difficult to evaluate in the context of “mining”.
- Land use is further divided into two separate categories in LCA terminology: land occupation and land transformation [24].
- Land occupation refers to the continuous cover of land with one type for a certain human-controlled purpose to achieve a specific outcome [28], measured as area time (m2a) [24]. Land occupied can be considered the most relevant terms to describe mining activity, which continuously occupies a wide area of land to extract resources (specific outcome).
- Land transformation is the change from one land use type/category to another, which can be caused by both artificial and natural processes [24,28]. Land transformation is normally measured as area from and to (m2 from x to y). The impact of land transformation can be considered an integral part of land occupation impacts at different points of time.
- 1.
- The high level of concern about global warming;
- 2.
- The main topic in [22] focused on (or GHG) emission indirectly induced via carbon pools (aboveground biomass, belowground biomass, dead wood, litter, and soil C) loss due to land use changes when considering its background history as a major undertaking by the IPCC National Greenhouse Gas Inventories Programme (IPCC-NGGIP);
- 3.
- GIS/RS-based analyses have paid great attention to forests [63], probably because of the ability to use the NDVI (normalized difference vegetation index) for vegetation recognition;
- 4.
- Inadequate knowledge of land transformation and its associated impacts due to the complexity of land.
No. | Reference | Terminology Used | Study Area (s) | Commodity | Time Scale |
1 | Abood et al. [79] | Land cover | Indonesia | Coal | 2000–2010 |
2 | Akiwumi and Butler [80] | Landscape(s) Land Use and Land Cover Change (LULCC) Land use change | Southwestern Sierra Leone | Ti | 1967–1995 |
3 | ALLUM and DREISINGER [81] | Vegetation change(s) | Sudbury, Ontario, Canada | Ni, Cu | 1973–1983 |
4 | Almeida-Filho and Shimabukuro [82] | Degraded areas Land cover change | Roraima State, Brazilian Amazon | Diamond, Au | 1987–1999 |
5 | Alvarado et al. [83] | - | Hunter Valley, Australia | Coal | 2014–2015 |
6 | Alvarez-Berríos and Aide [9] | Forest change Change in forest Land use | South America | Au | 2001–2013 |
7 | Berríos [84] | Land change | South America | Au | 2001–2013 |
8 | Asner et al. [85] | Forest loss Forest degradation Deforestation | Western Amazonia | Au | 1999–2012 |
9 | Bao et al. [86] | Landscape(s) Land cover | Kidston, Queensland, Australia | Au | 2005 |
10 | Caballero Espejo et al. [76] | Deforestation Forest degradation Land use and land cover change | Western Amazon, Peru | Au | 1984–2017 |
11 | Charou et al. [87] | Derelict land Changes in surface land use Changes on land | Vegoritis basin, Greece | Coal | 2000 |
12 | Chevrel et al. [88] | - | Greenland, Finland, Austria, Germany, UK Portugal | Talc, Coal, Sn, Cu, Pb, Zn | 2000 |
13 | Chitade and Katyar [89] | Land use/land cover (LULC) Land use | Wardha basin, Chandrapur, India | Coal | 1990–2010 |
14 | Demirel et al. [90] | Land use change Changes in land cover and land use Land disturbances Land-use change Land cover Landscape | Goynuk, Bolu, Turkey | Coal | 2004–2008 |
15 | DeWitt et al. [91] | Land cover (change) Land use(s) (change) Land use/land cover (LULC) | Tortiya, Cote d’Ivoire | Diamond | 1984–2014 |
16 | Durán et al. [77] | Protected area (PA) | Global | Al, Cu, Zn, Fe | 2009 |
17 | Erener [92] | Rehabilitation field | Seyitömer, Turkey | Coal | 1987–2006 |
18 | Fernández-Manso et al. [93] | Land cover/land use change (LCLUC) | El Bierzo, Castilla y León, Spain; Eastern Kentucky, USA; Upper Hunter Valley, New South Wales, Australia | Coal | 2006–2011 |
19 | Garai and Narayana [94] | Land use/land cover change(s) Land use Land use/land cover | Godavari, Southern India | Coal | 1990-2014 |
20 | Gillanders et al. [95] | Land cover change Changes in land cover Land cover variations Land cover classification | Athabasca, Alberta, Canada | Oil sands | 1984–2005 |
21 | Hendrychová and Kabrna [96] | Changes in a landscape Landscape transformations Land use Condition of the landscape Land-use categories Land-use changes Landscape diversity | Northwest Bohemia, Czech Republic | Coal | 1845, 1954, 1975, 1989, 2010, 2050 |
22 | Hill and Phinn [97] | Mining rehabilitation | North Stradbroke Island, Queensland, Australia | Mineral sands | 1992 |
23 | Iwatsuki et al. [37] | Land use change Land-use intensity | New Caledonia | Ni | 1986, 1994/1995, 2012/2013 |
24 | Lau et al. [98] | Rehabilitation monitoring Landscape Function Analysis (LFA) | Darling Ranges, Western Australia | Al | 2006 |
25 | Lechner et al. [99] | Land disturbance Mined landscapes Post-mining land use Mine disturbance Mining land cover disturbance typology Land cover Land use types | Fitzroy Basin (37 sites), Queensland, Australia | Coal | 2006–2012 |
26 | Martin et al. [100] | - | Cornwall, England | U | 2014 |
27 | Maxwell and Warner [101] | Mine-related grassland Land cover Land use/land cover | Upper Kanawha, Coal River and Upper Guyandotte regions of West Virginia, USA | Coal | 2006–2012 |
28 | Mazabanda et al. [102] | (Reference cannot be found) | Mirador, Ecuadorian Amazon | Au | 2001–2017 |
29 | Joshi et al. [103] | Areas deforested by coal mining | Korba, Chattisgrarh, India | Coal | 1972–2004 |
30 | Karan et al. [104] | Reclamation Degraded lands Change in vegetation cover | Block II area of Jharia coal field, India | Coal | 2000–2015 |
31 | Koruyan et al. [105] | Mining land Changes in the natural vegetation Land cover and narural vegetation | Mugla region, Turkey | Marble | 2001–2009 |
32 | Liao et al. [106] | Mining area Landscape spatial structure | Fuxing Mining Area, Liaoning province, China | Coal | 2008–2020 |
33 | Liu et al. [107] | Vegetation coverage change and stability Land reclamation | Antaibao, Northern Shanxi province, China | Coal | 1990–2015 |
34 | Manu et al. [108] | Spatial extent of environmental degradation | Tarkwa, Ghana | Au | 1986–2000 |
35 | Murguía [109] | Area disturbed | Global | Fe, Al, Cu, Au, Ag | Various |
36 | Murguía et al. [41] | Overlap between mines and protected areas | Global | Fe, Al, Cu, Au, Ag | 2014–2015 |
37 | Murguía and Bringezu [34] | Land requirements Land use Land disturbed by mining Cumulative net area disturbances | Global | Fe, Al, Cu, Au, Ag | 2013–2015 |
38 | Olden and Neumann (2018) | (Reference cannot be found) | Canada, India, Indonesia, Australia | Coal | 2014 |
39 | Padmanaban et al. [110] | Reclaimed mine area Geological changes Landscape dynamics Land-use and landcover dynamics Land cover change | Reclaimed sites, Kircheller Heide, Germany | Coal, Fe | 2013–2016 |
40 | Paull et al. [111] | Landscape transformation Land cover changes | PT Freeport, Papua, Indonesia | Cu | 1988-2004 |
41 | Prakash and Gupta [112] | Land-use (mapping, classes, patterns) | Jharia Coalfield, Bihar, India | Coal | 1975–1994 |
42 | Redondo-Vega et al. [7] | Changes in land use Land use (change) Landscape | Sil River basin, Leon Province, Spain | Slate, Gravel, Coal | 1956–2014 |
43 | Reis et al. [113] | - | Lousal Mine, Portual | Pb | 2004 |
44 | Santo and Sánchez [114] | Land cover | Paraiba de Sul River Floodplain, Brazil | Sand | 1962, 1986/1988, 1997/1998 |
45 | Sari and Rosalina [115] | Mining area | South Bangka Recency, Indonesia | Sn | 1997, 2009, 2014 |
46 | Schmidt and Glaesser [116] | Mining area Vegetation cover | Eastern Germany | Coal | 1989–1994 |
47 | Schueler et al. [11] | Land use system Land use Land cover change Ghana LUCC | Western Ghana | Au | 1986–2002 |
48 | Singh et al. [117] | Landuse pattern Land resources Forest cover and agricultural land | Singrauli Coalfield, Uttar Pradesh, India | Coal | 1975, 1986, 1991 |
49 | Snapir et al. [118] | Extent and expansion of mines Change area | Galamsey mines, Southern Ghana | Au | 2011–2015 |
50 | Sonter et al. [119] | Land use change dynamics Land use classification | Quadrilátero Ferrífero, Minas Gerais, Brazil | Fe | 1990–2010 |
51 | Sonter et al. [10] | Mining-induced deforestation | Brazilian Amazon | Various | 1985–2015 |
52 | Sonter et al. [120] | Mining footprint | Global | Various | 2017 |
53 | Swenson et al. [121] | Mining deforestation Land use and land cover changes | Madre de Dios, Peruvian Amazon | Au | 2003–2009 |
54 | Townsend et al. [122] | Land cover land use change (LULCC) Surface mine extent Land cover conversion Mined and reclaimed cover | Central Appalachians, USA | Coal | 1976, 1987, 1999, 2006 |
55 | Vasuki et al. [123] | Land cover changes Land cover distribution Land clearing and rehabilitation | Darling Ranges, Western Australia | Al (Bauxite) | 1988–2014 |
56 | Weisse and Naughton-Treves [124] | Landscape conservation | Peruvian Amazon | Au | 2005–2012 |
57 | Wu et al. [125] | Vegetation coverage Land desertification | Shendong coal mining area, Northwest China | Coal | 1999–2008 |
58 | Yang et al. [126] | Vegetation disturbance and recovery Vegetation cover dynamics Land cover change | Curragh, Queensland, Australia | Coal | 1988–2015 |
59 | Yu et al. [127] | Change in/of land cover Land cover (change) | Global | Multiple | 1984–2016 |
60 | Zhang et al. [128] | Land cover/land use changes Land cover changes | USA, China | P | 2008 |
Append | |||||
61 | Werner et al. [38] | Mine areas Land use | Global | Cu, Au, Ag, PGE, Mo, Pb–Zn, Ni, U, Diamond | Various |
62 | Islam et al. [40] | Land use change | Phu Kham copper-gold deposit, Savannakhet province, Laos | Cu, Au, Ag | 2007, 2010, 2014, 2018 |
63 | Maus et al. [1] | Mining areas Area used for mineral extraction | Global | Multiple | 2010–2017 |
64 | Tang and Werner [39] | Land use Mining lands | Global | Multiple | Various |
Appendix B. Definitions of and Distinctions Between Features
Mine Site | References |
---|---|
Escondida | Basto [130]: Slide 12, 15, 25, 26, and 28; BHP [58]: Figures 13–16, 15-2, and 15-7. |
Collahuasi | Map tool from Mapcarta [131]; Description text from Mining Technology [132]. |
Radomiro Tomic | Calderón D. et al. [133]: Figure 2 on page 6, and other in the report; Figures on page 4 and 5. |
Los Pelambres | - |
Sierra Gorda | Lopez and Ristorcelli [134]: Figures 5-5, 23-9, and 23-15. |
Centinela Sulfide | Antofagasta plc. [135]: Figures on page 6, 10, 19, and 29. |
Ministro Hales | Knight Piésold [136]: Figures 2.2-2, 2.2-3, 2.2-4, and 3.1-1; Boric et al. [137]: Figures 1 and 2a; Campos P. [138]: pages 2 and 9. |
Candelaria | Lundin mining [139]: Figures on pages 19, 23, 31, 67, 68, and 73. |
Spence | BHP Billiton [140]: Figures of project layout on pages 2 and 3; BHP Billiton [141]: Figures on page 25, 31, and 49. |
Caserones | Walker [142]: Figures 4.2, 4.5, 5.3, and 5.4. |
Gabriela Mistral | - |
Zaldivar | Evans and Lambert [59]: Figures 4-2, 4-3, and 18-1. |
Centinela Oxide | Antofagasta plc. [135]: Figures on pages 6, 10, 19, and 29. |
Antucoya | - |
El Abra | Adkerson et al. [143]: Description text on pages 14 and 25, as well as other pages. |
Appendix C. Detailed Information of Study Areas and Satellite Images
Mine Site | Start Year | Stage | Commodities | Method | Image Date | Satellite Series | Sensor |
Escondida | 1990 | Operating | Cu, Au, Ag | Open Pit | 1989.05.20 1995.01.05 2000.02.12 2005.01.16 2010.01.14 2015.04.02 2020.03.30 | Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 8–9 Landsat 8–9 | TM TM TM TM TM OLI/TIRS OLI/TIRS |
Collahuasi | 1999 | Expansion | Cu, Mo, Ag, Au | Open Pit | 1999.04.13 2005.03.12 2010.04.11 2015.02.20 2020.02.02 | Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 8–9 Landsat 8–9 | TM TM TM OLI/TIRS OLI/TIRS |
Radomiro Tomic | 1997 | Operating | Cu, Mo | Open Pit | 1997.12.19 2000.11.25 2005.11.23 2010.12.07 2015.12.21 2020.12.18 | Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 8–9 Landsat 8–9 | TM TM TM TM OLI/TIRS OLI/TIRS |
Los Pelambres | 1999 | Expansion | Cu, Mo, Au, Ag | Open Pit Underground | 1995.12.07 2001.02.06 2005.03.05 2010.12.16 2015.12.14 2020.12.27 | Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 8–9 Landsat 8–9 | TM TM TM TM OLI/TIRS OLI/TIRS |
Sierra Gorda | 2015 | Operating | Cu, Mo, Au, Ag | Open Pit | 2014.12.02 2016.12.23 2018.12.13 2020.12.02 | Landsat 8–9 Landsat 8–9 Landsat 8–9 Landsat 8–9 | OLI/TIRS OLI/TIRS OLI/TIRS OLI/TIRS |
Centinela Sulfide | 2011 | Operating | Cu, Au, Ag, Mo | Open Pit | 2011.10.23 2015.12.21 2020.12.02 | Landsat 4–5 Landsat 8–9 Landsat 8–9 | TM OLI/TIRS OLI/TIRS |
Ministro Hales | 2010 | Operating | Cu, Ag, Mo, Au | Open Pit Underground | 2010.12.07 2013.12.31 2015.12.21 2017.12.26 2020.12.18 | Landsat 8–9 Landsat 8–9 Landsat 8–9 Landsat 8–9 Landsat 8–9 | OLI/TIRS OLI/TIRS OLI/TIRS OLI/TIRS OLI/TIRS |
Candelaria | 1994 | Operating | Cu, Au, Ag, Fe | Open Pit | 1995.07.23 2000.10.24 2005.09.04 2010.11.21 2015.11.19 2020.08.28 | Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 8–9 Landsat 8–9 | TM TM TM TM OLI/TIRS OLI/TIRS |
Spence | 2006 | Expansion | Cu, Ag, Mo, Au | Open Pit | 2006.12.28 2010.12.07 2015.12.21 2020.12.02 | Landsat 4–5 Landsat 4–5 Landsat 8–9 Landsat 8–9 | TM TM OLI/TIRS OLI/TIRS |
Caserones | 2013 | Operating | Cu, Mo | Open Pit | 2013.11.22 2015.12.30 2017.12.03 2020.12.27 | Landsat 8–9 Landsat 8–9 Landsat 8–9 Landsat 8–9 | OLI/TIRS OLI/TIRS OLI/TIRS OLI/TIRS |
Gabriela Mistral | 2008 | Operating | Cu, Mo | Open Pit | 2008.12.26 2010.12.16 2015.12.30 2020.12.11 | Landsat 4–5 Landsat 4–5 Landsat 8–9 Landsat 8–9 | TM TM OLI/TIRS OLI/TIRS |
Zaldivar | 1995 | Operating | Cu | Open Pit | 1995.01.05 2000.02.12 2005.01.16 2010.01.14 2015.04.02 2020.03.30 | Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 8–9 Landsat 8–9 | TM TM TM TM OLI/TIRS OLI/TIRS |
Centinela Oxide | 2001 | Operating | Cu, Mo, Au | Open Pit | 2001.12.30 2005.11.23 2010.12.07 2015.12.21 2020.12.02 | Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 8–9 Landsat 8–9 | TM TM TM OLI/TIRS OLI/TIRS |
Antucoya | 2015 | Operating | Cu | Open Pit | 2015.12.21 2017.12.26 2020.12.02 | Landsat 8–9 Landsat 8–9 Landsat 8–9 | OLI/TIRS OLI/TIRS OLI/TIRS |
El Abra | 1996 | Operating | Cu, Au, Mo, Ag | Open Pit | 1996.12.16 2000.11.25 2005.11.23 2010.12.07 2015.12.21 2020.12.02 | Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 4–5 Landsat 8–9 Landsat 8–9 | TM TM TM TM OLI/TIRS OLI/TIRS |
Appendix D. Results of Mapping and Feature Composition for Each Mine Site
Appendix E. Detailed Land Transformation Analysis Results
Sitename | Year | Area (km2) | LTFOre (m2/kg) | LTFCopper (m2/kg) | LTFWaste (m2/kg) |
---|---|---|---|---|---|
Escondida | 1989 1995 2000 2005 2010 2015 2020 | 0.50 16.63 31.13 71.89 115.74 141.66 149.61 | inf 0.000208 0.000109 0.000117 0.000112 0.000101 0.000076 | inf 0.008404 0.004696 0.006173 0.006492 0.006101 0.005204 | inf 0.000024 0.000013 0.000018 0.000017 0.000014 0.000012 |
Average | 0.000121 | 0.006178 | 0.000016 | ||
Collahuasi | 1998 2005 2010 2015 2020 | 10.85 28.37 44.45 54.81 58.11 | 0.001072 0.000097 0.000069 0.000055 0.000043 | 0.226019 0.009265 0.008142 0.007246 0.005615 | 0.000139 0.000018 0.000014 0.000011 0.000009 |
Average | 0.000267 | 0.051257 | 0.000038 | ||
Radomiro Tomic | 1997 2000 2005 2010 2015 2020 | 5.13 11.66 18.42 28.43 36.24 42.82 | 0.005169 0.000115 0.000047 0.000041 0.000036 0.000034 | 1.266449 0.021305 0.011387 0.010800 0.007961 0.007078 | 0.001115 0.000031 0.000014 0.000012 0.000011 0.000009 |
Average | 0.000907 | 0.220830 | 0.000199 | ||
Los Pelambres | 1995 2000 2005 2010 2015 2020 | 1.27 7.45 12.03 16.50 18.27 20.63 | inf 0.000183 0.000047 0.000033 0.000022 0.000018 | inf 0.024916 0.006022 0.004524 0.003249 0.002788 | inf 0.000049 0.000011 0.000007 0.000004 0.000003 |
Average | 0.000061 | 0.008300 | 0.000015 | ||
Sierra Gorda | 2014 2016 2018 2020 | 12.98 30.20 35.07 38.08 | inf 0.000533 0.000262 0.000172 | 1.180215 0.159857 0.091603 0.059516 | -0.687322 0.000070 0.000037 0.000026 |
Average | 0.000322 | 0.372798 | 0.000044 | ||
Centinela Sulfide | 2011 2014 2016 2018 2020 | 13.50 18.03 28.13 30.67 36.15 | 0.000536 0.000132 0.000140 0.000115 0.000108 | 0.149785 0.029999 0.030356 0.024615 0.022665 | 0.000088 0.000020 0.000022 0.000018 0.000017 |
Average | 0.000206 | 0.051484 | 0.000033 | ||
Ministro Hales | 2013 2015 2017 2020 | 9.19 11.06 11.99 14.63 | 0.005103 0.000336 0.000154 0.000106 | 0.273606 0.026779 0.013856 0.010578 | 0.000068 0.000031 0.000019 0.000012 |
Average | 0.001425 | 0.081205 | 0.000032 | ||
Candelaria | 1994 2000 2005 2010 2015 2020 | 1.29 8.39 10.98 13.50 15.80 23.14 | 0.000530 0.000084 0.000049 0.000038 0.000031 0.000036 | 0.046087 0.007379 0.005120 0.004418 0.004044 0.004958 | 0.000047 0.000012 0.000008 0.000005 0.000005 0.000006 |
Average | 0.000128 | 0.012001 | 0.000014 | ||
Spence | 2007 2010 2015 2020 | 12.49 16.94 26.27 34.21 | inf inf inf inf | 0.165475 0.030777 0.018823 0.014832 | −0.066392 −0.013349 −0.010458 −0.008994 |
Average | nan | 0.057477 | nan | ||
Caserones | 2013 2015 2017 2020 | 4.01 5.76 7.47 9.90 | inf 0.000083 0.000045 0.000031 | 0.247678 0.041774 0.019867 0.012599 | −0.112732 0.000029 0.000019 0.000014 |
Average | 0.000053 | 0.080479 | 0.000021 | ||
Gabriela Mistral | 2008 2010 2015 2020 | 5.45 9.30 14.75 18.08 | 0.000354 0.000149 0.000065 0.000043 | 0.080508 0.027952 0.015395 0.011928 | 0.000105 0.000050 0.000021 0.000016 |
Average | 0.000153 | 0.033946 | 0.000048 | ||
Zaldivar | 1995 2000 2005 2010 2015 2020 | 1.95 12.02 15.24 17.49 22.31 23.75 | 0.000830 0.000139 0.000089 0.000065 0.000055 0.000043 | 0.097963 0.019182 0.011531 0.008661 0.008536 0.007593 | 0.000081 0.000018 0.000015 0.000011 0.000011 0.000009 |
Average | 0.000203 | 0.025578 | 0.000024 | ||
Centinela Oxide | 2001 2005 2010 2015 2020 | 2.96 6.56 13.33 18.16 19.62 | 0.000667 0.000164 0.000144 0.000133 0.000094 | 0.068823 0.015794 0.015169 0.013422 0.011336 | 0.000091 0.000022 0.000017 0.000015 0.000010 |
Average | 0.000241 | 0.024909 | 0.000031 | ||
Antucoya | 2015 2017 2020 | 4.79 10.19 14.48 | inf 0.000217 0.000110 | 0.392442 0.064117 0.037881 | −0.143797 0.000066 0.000035 |
Average | 0.000164 | 0.164813 | 0.000050 | ||
El Abra | 1996 2000 2005 2010 2015 2020 | 4.62 7.87 11.51 21.05 22.99 24.37 | 0.001697 0.000049 0.000023 0.000028 0.000024 0.000022 | 0.247293 0.009208 0.005827 0.007430 0.006421 0.006088 | 0.000604 0.000021 0.000012 0.000016 0.000012 0.000010 |
Average | 0.000307 | 0.047045 | 0.000112 |
References
- Maus, V.; Giljum, S.; Gutschlhofer, J.; Silva, D.; Probst, M.; Gass, S.; Luckeneder, S.; Lieber, M.; Mccallum, I. A global-scale data set of mining areas. Sci. Data 2020, 7, 289. [Google Scholar] [CrossRef]
- Maus, V.; Giljum, S.; Gutschlhofer, J.; Luckeneder, S.; Lieber, M. The Global Economy Uses More Than 100,000 km2 of Land for Mining. Technical Report, FINEPRINT. 2022. Available online: https://www.fineprint.global/wp-content/uploads/2022/11/fineprint_brief_no_16.pdf (accessed on 20 January 2025).
- Miranda, M.; Burris, P.; Bingcang, J.F.; Shearman, P.; Briones, J.O.; La Viña, A.; Menard, S.; Kool, J.; Miclat, S.; Mooney, C.; et al. Mining and Critical Ecosystems: Mapping the Risks; World Resources Institute: Washington, DC, USA, 2003. [Google Scholar]
- Gibowicz, S.J. Seismicity induced by mining: Recent research. Adv. Geophys. 2009, 51, 1–53. [Google Scholar] [CrossRef]
- Petersen, M.D.; Harmsen, S.C.; Jaiswal, K.S.; Rukstales, K.S.; Luco, N.; Haller, K.M.; Mueller, C.S.; Shumway, A.M. Seismic hazard, risk, and design for South America. Bull. Seismol. Soc. Am. 2018, 108, 781–800. [Google Scholar] [CrossRef]
- Mackel, R.; Schneider, R.; Friedmann, A.; Seidel, J. Environmental changes and human impact on the relief development in the Upper Rhine valley and Black Forest (South-West Germany) durin the Holocene. Z. Fur Geomorphol. Suppl. 2002, 2002, 31–45. Available online: https://www.researchgate.net/profile/Arne-Friedmann/publication/284183362_Environmental_Changes_and_Human_Impact_on_the_Relief_Development_in_the_Upper_Rhine_Valley_and_Black_Forest_South-West_Germany_during_the_Holocene/links/564f036908aefe619b116874/Environmental-Changes-and-Human-Impact-on-the-Relief-Development-in-the-Upper-Rhine-Valley-and-Black-Forest-South-West-Germany-during-the-Holocene.pdf (accessed on 20 January 2025).
- Redondo-Vega, J.; Gómez-Villar, A.; Santos-González, J.; González-Gutiérrez, R.; Álvarez-Martínez, J. Changes in land use due to mining in the north-western mountains of Spain during the previous 50 years. Catena 2017, 149, 844–856. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Land-Climate Interactions; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Alvarez-Berríos, N.L.; Aide, T.M. Global demand for gold is another threat for tropical forests. Environ. Res. Lett. 2015, 10, 014006. [Google Scholar] [CrossRef]
- Sonter, L.J.; Herrera, D.; Barrett, D.J.; Galford, G.L.; Moran, C.J.; Soares-Filho, B.S. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 2017, 8, 1013. [Google Scholar] [CrossRef] [PubMed]
- Schueler, V.; Kuemmerle, T.; Schröder, H. Impacts of surface gold mining on land use systems in Western Ghana. Ambio 2011, 40, 528–539. [Google Scholar] [CrossRef]
- Root-Bernstein, M.; Montecinos Carvajal, Y.; Ladle, R.; Jepson, P.; Jaksic, F. Conservation easements and mining: The case of Chile. Earth’s Future 2013, 1, 33–38. [Google Scholar] [CrossRef]
- Gbedzi, D.D.; Ofosu, E.A.; Mortey, E.M.; Obiri-Yeboah, A.; Nyantakyi, E.K.; Siabi, E.K.; Abdallah, F.; Domfeh, M.K.; Amankwah-Minkah, A. Impact of mining on land use land cover change and water quality in the Asutifi North District of Ghana, West Africa. Environ. Chall. 2022, 6, 100441. [Google Scholar] [CrossRef]
- Montana Public Radio. Groups Seek to Stop Copper Mine Near Montana’s Popular Smith River. 2020. Available online: https://www.mtpr.org/montana-news/2020-06-04/groups-seek-to-stop-copper-mine-near-montanas-popular-smith-river (accessed on 1 November 2023).
- Cacciuttolo, C.; Atencio, E. Past, Present, and Future of Copper Mine Tailings Governance in Chile (1905–2022): A Review in One of the Leading Mining Countries in the World. Int. J. Environ. Res. Public Health 2022, 19, 13060. [Google Scholar] [CrossRef] [PubMed]
- Pallo, T.; Sepp, K. Anthropogenetic Changes in Ecosystems Elements of North-East Estonia. 1991; ISBN 87-7303-644-7. Available online: https://www.osti.gov/etdeweb/biblio/5624983 (accessed on 20 January 2025).
- Climate Change Committee. Land Use: Reducing Emissions and Preparing for Climate Change; Technical Report, Committee on Climate Change Copyright. 2018. Available online: https://www.theccc.org.uk/wp-content/uploads/2018/11/Land-use-Reducing-emissions-and-preparing-for-climate-change-CCC-2018-1.pdf (accessed on 20 January 2025).
- Owen, J.R.; Kemp, D.; Lechner, A.M.; Ern, M.A.L.; Lèbre, É.; Mudd, G.M.; Macklin, M.G.; Saputra, M.R.U.; Witra, T.; Bebbington, A. Increasing mine waste will induce land cover change that results in ecological degradation and human displacement. J. Environ. Manag. 2024, 351, 119691. [Google Scholar] [CrossRef] [PubMed]
- Deetman, S.; de Boer, H.; Van Engelenburg, M.; van der Voet, E.; van Vuuren, D. Projected material requirements for the global electricity infrastructure—Generation, transmission and storage. Resour. Conserv. Recycl. 2021, 164, 105200. [Google Scholar] [CrossRef]
- Bainton, N.; Kemp, D.; Lèbre, E.; Owen, J.R.; Marston, G. The energy-extractives nexus and the just transition. Sustain. Dev. 2021, 29, 624–634. [Google Scholar] [CrossRef]
- Sonter, L.J.; Moran, C.J.; Barrett, D.J.; Soares-Filho, B.S. Processes of land use change in mining regions. J. Clean. Prod. 2014, 84, 494–501. [Google Scholar] [CrossRef]
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry/The Intergovernmental Panel on Climate Change; Penman, J., Ed.; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2003; ISBN 978-4-88788-003-0. Available online: https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf (accessed on 20 January 2025).
- De Rosa, M. Land use and land-use changes in life cycle assessment: Green modelling or black boxing? Ecol. Econ. 2018, 144, 73–81. [Google Scholar] [CrossRef]
- Mattila, T.; Helin, T.; Antikainen, R.; Soimakallio, S.; Pingoud, K.; Wessman, H. Land Use in Life Cycle Assessment; Finnish Environment; Finnish Environment Institute SYKE: Helsinki, Finland, 2011; Available online: https://core.ac.uk/download/pdf/14925706.pdf (accessed on 20 January 2025).
- Farjana, S.H.; Huda, N.; Mahmud, M.P.; Saidur, R. A review on the impact of mining and mineral processing industries through life cycle assessment. J. Clean. Prod. 2019, 231, 1200–1217. [Google Scholar] [CrossRef]
- Lindeijer, E.; van Kampen, M.; Fraanje, P.; van Gooben, H.; Nabuurs, G.; Schouwenberg, E.; Prins, A.; Dankers, N.; Leopold, M. Biodiversity and land use indicators for land use impacts in LCA. Minist. Vyw Publ. Grondstoffen 1998, 7. [Google Scholar]
- Koellner, T. Land use in product life cycles and its consequences for ecosystem quality. Int. J. Life Cycle Assess. 2002, 7, 130. [Google Scholar] [CrossRef]
- Koellner, T.; Scholz, R. Assessment of land use impacts on the natural environment. Part 1: An analytical framework for pure land occupation and land use change (8 pp). Int. J. Life Cycle Assess. 2007, 12, 16–23. [Google Scholar] [CrossRef]
- Weidema, B.; Lindeijer, E. Physical Impacts of Land Use in Product Life Cycle Assessment; Final report of the EURENVIRON-LCAGAPS sub-project on land use; Technical University of Denmark: Lyngby, Denmark, 2001. [Google Scholar]
- Beck, T.; Bos, U.; Wittstock, B.; Baitz, M.; Fischer, M.; Sedlbauer, K. LANCA—Land Use Indicator Value Calculation in Life Cycle Assessment; Fraunhofer Verlag: Stuttgart, Germany, 2010. [Google Scholar]
- Baitz, M.; Colodel, C.M.; Kupfer, T.; Pflieger, J.; Schuller, O.; Hassel, F.; Kokborg, M.; Köhler, A.N.; Stoffregen, A. GaBi Database & Modelling Principles 2012; Version 6.0; Technical Report, PE International Sustainability Performance. 2012. Available online: http://gabi-6-lci-documentation.gabi-software.com/xml-data/external_docs/GaBiModellingPrinciples.pdf (accessed on 20 January 2025).
- Sphera GaBi—GaBi Databases & Modelling Principles 2022. Available online: https://www.scribd.com/document/809221342/MODELING-PRINCIPLES-GaBi-Databases-2022 (accessed on 20 January 2025).
- Classen, M.; Althaus, H.J.; Blaser, S.; Scharnhorst, W. Life Cycle Inventories of Metals; Final Report Ecoinvent Data v2.1 10; Swiss Centre for Life Cycle Inventories, EMPA Dübendorf: Dübendorf, Switzerland, 2009; Reports Section of Version 2. of the Ecoinvent Database; Available online: https://support.ecoinvent.org/ecoinvent-version-2 (accessed on 20 January 2025).
- Murguía, D.I.; Bringezu, S. Measuring the specific land requirements of large-scale metal mines for iron, bauxite, copper, gold and silver. Prog. Ind. Ecol. Int. J. 2016, 10, 264–285. [Google Scholar] [CrossRef]
- Tang, L.; Nakajima, K.; Murakami, S.; Itsubo, N.; Matsuda, T. Estimating land transformation area caused by nickel mining considering regional variation. Int. J. Life Cycle Assess. 2016, 21, 51–59. [Google Scholar] [CrossRef]
- Nakajima, K.; Nansai, K.; Matsubae, K.; Tomita, M.; Takayanagi, W.; Nagasaka, T. Global land-use change hidden behind nickel consumption. Sci. Total. Environ. 2017, 586, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Iwatsuki, Y.; Nakajima, K.; Yamano, H.; Otsuki, A.; Murakami, S. Variation and changes in land-use intensities behind nickel mining: Coupling operational and satellite data. Resour. Conserv. Recycl. 2018, 134, 361–366. [Google Scholar] [CrossRef]
- Werner, T.T.; Mudd, G.M.; Schipper, A.M.; Huijbregts, M.A.; Taneja, L.; Northey, S.A. Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Glob. Environ. Chang. 2020, 60, 102007. [Google Scholar] [CrossRef]
- Tang, L.; Werner, T.T. Global mining footprint mapped from high-resolution satellite imagery. Commun. Earth Environ. 2023, 4, 134. [Google Scholar] [CrossRef]
- Islam, K.; Vilaysouk, X.; Murakami, S. Integrating remote sensing and life cycle assessment to quantify the environmental impacts of copper-silver-gold mining: A case study from Laos. Resour. Conserv. Recycl. 2020, 154, 104630. [Google Scholar] [CrossRef]
- Murguía, D.I.; Bringezu, S.; Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation. J. Environ. Manag. 2016, 180, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Mervine, E.M.; Valenta, R.K.; Paterson, J.S.; Mudd, G.M.; Werner, T.T.; Nursamsi, I.; Sonter, L.J. Biomass carbon emissions from nickel mining have significant implications for climate action. Nat. Commun. 2025, 16, 481. [Google Scholar] [CrossRef]
- Von Huene, R.; Weinrebe, W.; Heeren, F. Subduction erosion along the North Chile margin. J. Geodyn. 1999, 27, 345–358. [Google Scholar] [CrossRef]
- Hervé, F.; Godoy, E.; Parada, M.A.; Ramos, V.; Rapela, C.; Mpodozis, C.; Davidson, J. A general view on the Chilean-Argentine Andes, with emphasis on their early history. Circum-Pac. Orog. Belts Evol. Pac. Ocean. Basin 1987, 18, 97–113. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Harris, M.; Camus, F. Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe; Society of Economic Geologists: Littleton, CO, USA, 2012. [Google Scholar] [CrossRef]
- Radetzki, M. Seven thousand years in the service of humanity—The history of copper, the red metal. Resour. Policy 2009, 34, 176–184. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2019; Technical Report; U.S. Geological Survey: Reston, VA, USA, 2019. [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2023; Technical Report; U.S. Geological Survey: Reston, VA, USA, 2023. [CrossRef]
- NASA. SRTM30 Documentation. Data. 2000. Available online: https://icesat.gsfc.nasa.gov/icesat/tools/SRTM30_Documentation.html (accessed on 20 January 2025).
- S&P Capital IQ Pro. Metals and Mining Properties. 2023. Available online: https://www.spglobal.com/marketintelligence/jp/solutions/sp-capital-iq-pro (accessed on 15 September 2023).
- USGS Earth Resources Observation and Science (EROS) Center. Landsat Products: Landsat 4-5 and 8-9. Data. 2024. Available online: https://www.usgs.gov/landsat-missions (accessed on 20 January 2025).
- USGS. USGS Global Visualization Viewer (GloVis). 2001. Available online: https://glovis.usgs.gov/app (accessed on 20 January 2025).
- Rouault, E.; Warmerdam, F.; Schwehr, K.; Kiselev, A.; Butler, H.; Łoskot, M.; Szekeres, T.; Tourigny, E.; Landa, M.; Miara, I.; et al. GDAL Documentation, Technical Report. Version v3.10.1. Open Source Geospatial Foundation: Beaverton, OR, USA, 2025. [CrossRef]
- QGIS.org. QGIS Geographic Information System. Software. 2024. Available online: https://qgis.org (accessed on 20 January 2025).
- OpenStreetMap Contributors. Data. 2017. Available online: https://planet.osm.org (accessed on 20 January 2025).
- Jordahl, K.; Van den Bossche, J.; Fleischmann, M.; Wasserman, J.; McBride, J.; Gerard, J.; Tratner, J.; Perry, M.; Badaracco, A.G.; Farmer, C.; et al. geopandas/geopandas: v0.8.1, Software; Zenodo: Geneva, Switzerland, 2020. [CrossRef]
- EPSG.io. Coordinate Systems Worldwide. Online. 2023. Available online: https://epsg.io/ (accessed on 20 January 2025).
- BHP. Technical Report Summary—Minera Escondida Limitada; Technical Report; BHP Group Limited: Melbourne, VIC, Australia, 2022; Available online: https://minedocs.com/23/Escondida-TR-6302022.pdf (accessed on 27 August 2024).
- Evans, L.; Lambert, R.J. Technical Report on the ZaldÍvar Mine, Region II, Chile; Technical Report; Roscoe Postle Associates Inc.: Vancouver, BC, Australia, 2012; Available online: https://minedocs.com/21/Zaldivar-TR-03162012.pdf (accessed on 28 August 2024).
- CODELCO. 2005 Annual Report; Technical Report; Corporacion Nacional del Cobre de Chile: Santiago, Chile, 2006; Available online: https://www.codelco.com/prontus_codelco/site/artic/20110818/asocfile/20110818175851/annualreport2005.pdf (accessed on 20 January 2025).
- Inaba, A.; Itsubo, N. Preface. Int. J. Life Cycle Assess. 2018, 23, 2271–2275. [Google Scholar] [CrossRef]
- Moomen, A.W.; Bertolotto, M.; Lacroix, P.; Jensen, D. Inadequate adaptation of geospatial information for sustainable mining towards agenda 2030 sustainable development goals. J. Clean. Prod. 2019, 238, 117954. [Google Scholar] [CrossRef]
- Werner, T.; Bebbington, A.; Gregory, G. Assessing impacts of mining: Recent contributions from GIS and remote sensing. Extr. Ind. Soc. 2019, 6, 993–1012. [Google Scholar] [CrossRef]
- Mudd, G.M. A Comprehensive dataset for Australian mine production 1799 to 2021. Sci. Data 2023, 10, 391. [Google Scholar] [CrossRef] [PubMed]
- Jasansky, S.; Lieber, M.; Giljum, S.; Maus, V. An open database on global coal and metal mine production. Sci. Data 2023, 10, 52. [Google Scholar] [CrossRef]
- Lima, A.T.; Mitchell, K.; O’Connell, D.W.; Verhoeven, J.; Van Cappellen, P. The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environ. Sci. Policy 2016, 66, 227–233. [Google Scholar] [CrossRef]
- Owen, O.S.; Chiras, D.D. Natural Resource Conservation: Management for a Sustainable Future; Prentice Hall: Hoboken, NJ, USA, 1995; p. 586. [Google Scholar]
- Shrestha, R.K.; Lal, R. Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma 2011, 161, 168–176. [Google Scholar] [CrossRef]
- Vitousek, P.M. Beyond global warming: Ecology and global change. Ecology 1994, 75, 1861–1876. [Google Scholar] [CrossRef]
- Mills, M.P. Mines, Minerals, and “Green” Energy: A Reality Check; Technical Report; Manhattan Institute: New York, NY, USA, 2020; Available online: http://www.goinggreencanada.ca/green_energy_reality_check.pdf (accessed on 20 January 2025).
- Beckett, C.; Keeling, A. Rethinking remediation: Mine reclamation, environmental justice, and relations of care. Local Environ. 2019, 24, 216–230. [Google Scholar] [CrossRef]
- Pitkiiz, R.M. The importance of the abstract. Obstet. Gynecol. 1987, 70, 267. [Google Scholar]
- Alspach, J.G. Writing for publication 101: Why the abstract is so important. Crit. Care Nurse 2017, 37, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Saitz, R. Things that work, things that don’t work, and things that matter—Including words. J. Addict. Med. 2015, 9, 429–430. [Google Scholar] [CrossRef] [PubMed]
- Chow, Z.L.; Indave, B.I.; Lokuhetty, M.D.S.; Ochiai, A.; Cree, I.A.; White, V.A. Misleading terminology in pathology: Lack of definitions hampers communication. Virchows Archiv 2021, 479, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Caballero Espejo, J.; Messinger, M.; Román-Dañobeytia, F.; Ascorra, C.; Fernandez, L.E.; Silman, M. Deforestation and forest degradation due to gold mining in the Peruvian Amazon: A 34-year perspective. Remote Sens. 2018, 10, 1903. [Google Scholar] [CrossRef]
- Durán, A.P.; Rauch, J.; Gaston, K.J. Global spatial coincidence between protected areas and metal mining activities. Biol. Conserv. 2013, 160, 272–278. [Google Scholar] [CrossRef]
- Limpitlaw, D.; Alsum, A.; Neale, D. Calculating ecological footprints for mining companies-an introduction to the methodology and an assessment of the benefits. J. S. Afr. Inst. Min. Metall. 2017, 117, 13–18. [Google Scholar] [CrossRef]
- Abood, S.A.; Lee, J.S.H.; Burivalova, Z.; Garcia-Ulloa, J.; Koh, L.P. Relative Contributions of the Logging, Fiber, Oil Palm, and Mining Industries to Forest Loss in Indonesia. Conserv. Lett. 2015, 8, 58–67. [Google Scholar] [CrossRef]
- Akiwumi, F.A.; Butler, D.R. Mining and environmental change in Sierra Leone, West Africa: A remote sensing and hydrogeomorphological study. Environ. Monit. Assess. 2008, 142, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Allum, J.A.E.; Dreisinger, B.R. Remote sensing of vegetation change near Inco’s Sudbury mining complexes. Int. J. Remote Sens. 1987, 8, 399–416. [Google Scholar] [CrossRef]
- Almeida-Filho, R.; Shimabukuro, Y.E. Digital processing of a Landsat-TM time series for mapping and monitoring degraded areas caused by independent gold miners, Roraima State, Brazilian Amazon. Remote Sens. Environ. 2002, 79, 42–50. [Google Scholar] [CrossRef]
- Alvarado, M.; Gonzalez, F.; Fletcher, A.; Doshi, A. Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites. Sensors 2015, 15, 19667–19687. [Google Scholar] [CrossRef]
- Berríos, N.L.Á. Land Change, Urban Expansion, and Gold Mining in Latin America: A Land System Science Approach. Ph'D Thesis, Universidad de Puerto Rico, San Juan, PR, USA, 2016. [Google Scholar]
- Asner, G.P.; Llactayo, W.; Tupayachi, R.; Luna, E.R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl. Acad. Sci. USA 2013, 110, 18454–18459. [Google Scholar] [CrossRef] [PubMed]
- Bao, N.; Lechner, A.M.; Johansen, K.; Ye, B. Object-based classification of semi-arid vegetation to support mine rehabilitation and monitoring. J. Appl. Remote Sens. 2014, 8, 083564. [Google Scholar] [CrossRef]
- Charou, E.; Stefouli, M.; Dimitrakopoulos, D.; Vasiliou, E.; Mavrantza, O. Using remote sensing to assess impact of mining activities on land and water resources. Mine Water Environ. 2010, 29, 45–52. [Google Scholar] [CrossRef]
- Chevrel, S.; Kuosmannen, V.; Belocky, R.; Marsh, S.; Tukiainen, T.; Mollat, H.; Quental, L.; Vosen, P.; Schumacher, V.; Kuronen, E.; et al. Hyperspectral airborne imagery for mapping mining-related contaminated areas in various European environments–first results of the MINEO project. In Proceedings of the Presented at the Fifth International Airborne Remote Sensing Conference, San Francisco, CA, USA, 17–20 September 2001; Volume 17, p. 20. [Google Scholar]
- Chitade, A.Z.; Katyar, S. Impact analysis of open cast coal mines on land use/land cover using remote sensing and GIS technique: A case study. Int. J. Eng. Sci. Technol. 2010, 2, 7171–7176. Available online: https://www.idc-online.com/technical_references/pdfs/civil_engineering/IMPACT%20ANALYSIS.pdf (accessed on 20 January 2025).
- Demirel, N.; Düzgün, S.; Emil, M.K. Landuse change detection in a surface coal mine area using multi-temporal high-resolution satellite images. Int. J. Mining Reclam. Environ. 2011, 25, 342–349. [Google Scholar] [CrossRef]
- DeWitt, J.D.; Chirico, P.G.; Bergstresser, S.E.; Warner, T.A. Multi-scale 46-year remote sensing change detection of diamond mining and land cover in a conflict and post-conflict setting. Remote Sens. Appl. Soc. Environ. 2017, 8, 126–139. [Google Scholar] [CrossRef]
- Erener, A. Remote sensing of vegetation health for reclaimed areas of Seyitömer open cast coal mine. Int. J. Coal Geol. 2011, 86, 20–26. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Quintano, C.; Roberts, D. Evaluation of potential of multiple endmember spectral mixture analysis (MESMA) for surface coal mining affected area mapping in different world forest ecosystems. Remote Sens. Environ. 2012, 127, 181–193. [Google Scholar] [CrossRef]
- Garai, D.; Narayana, A. Land use/land cover changes in the mining area of Godavari coal fields of southern India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 375–381. [Google Scholar] [CrossRef]
- Gillanders, S.N.; Coops, N.C.; Wulder, M.A.; Goodwin, N.R. Application of Landsat satellite imagery to monitor land-cover changes at the Athabasca Oil Sands, Alberta, Canada. Can. Geogr. 2008, 52, 466–485. [Google Scholar] [CrossRef]
- Hendrychová, M.; Kabrna, M. An analysis of 200-year-long changes in a landscape affected by large-scale surface coal mining: History, present and future. Appl. Geogr. 2016, 74, 151–159. [Google Scholar] [CrossRef]
- Hill, G.J.; Phinn, S. Revegetated sand mining areas, swamp wallabies and remote sensing: North Stradbroke Island, Queensland. Aust. Geogr. Stud. 1993, 31, 3–13. [Google Scholar] [CrossRef]
- Lau, I.; Hewson, R.; Ong, C.; Tongway, D. Remote mine site rehabilitation monitoring using airborne hyperspectral imaging and landscape function analysis (LFA). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2008, 37, 325–330. [Google Scholar]
- Lechner, A.M.; Kassulke, O.; Unger, C. Spatial assessment of open cut coal mining progressive rehabilitation to support the monitoring of rehabilitation liabilities. Resour. Policy 2016, 50, 234–243. [Google Scholar] [CrossRef]
- Martin, P.G.; Payton, O.D.; Fardoulis, J.S.; Richards, D.A.; Scott, T.B. The use of unmanned aerial systems for the mapping of legacy uranium mines. J. Environ. Radioact. 2015, 143, 135–140. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A. Differentiating mine-reclaimed grasslands from spectrally similar land cover using terrain variables and object-based machine learning classification. Int. J. Remote Sens. 2015, 36, 4384–4410. [Google Scholar] [CrossRef]
- Mazabanda, C.; Kemper, R.; Thieme, A.; Hettler, B.; Finer, M. Impacts of Mining Project “Mirador” in the Ecuadorian Amazon; Monitoring Andean Amazon Project (MAAP); Amazon Conservation Association: Washington, DC, USA, 2018. [Google Scholar]
- Joshi, P.; Kumar, M.; Midha, N.; Yanand, V.; Paliwal, A. Assessing areas deforested by coal mining activities through satellite remote sensing images and GIS in parts of Korba, Chattisgarh. J. Indian Soc. Remote Sens. 2006, 34, 104. [Google Scholar] [CrossRef]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Koruyan, K.; Deliormanli, A.; Karaca, Z.; Momayez, M.; Lu, H.; Yalcin, E. Remote sensing in management of mining land and proximate habitat. J. S. Afr. Inst. Min. Metall. 2012, 112, 667–672. [Google Scholar]
- Liao, X.; Li, W.; Hou, J. Application of GIS based ecological vulnerability evaluation in environmental impact assessment of master plan of coal mining area. Procedia Environ. Sci. 2013, 18, 271–276. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, W.; Bai, Z. Vegetation coverage change and stability in large open-pit coal mine dumps in China during 1990–2015. Ecol. Eng. 2016, 95, 447–451. [Google Scholar] [CrossRef]
- Manu, A.; Twumasi, Y.A.; Coleman, T.L. Application of remote sensing and GIS technologies to assess the impact of surface mining at Tarkwa, Ghana. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar] [CrossRef]
- Murguía, D.I. Global Area Disturbed and Pressures on Biodiversity by Large-Scale Metal Mining; Kassel University Press GmbH: Kassel, Germany, 2015; ISBN 978-3-7376-0041-0. Available online: https://www.uni-kassel.de/upress/online/OpenAccess/978-3-7376-0040-8.OpenAccess.pdf (accessed on 20 January 2025).
- Padmanaban, R.; Bhowmik, A.K.; Cabral, P. A remote sensing approach to environmental monitoring in a reclaimed mine area. ISPRS Int. J. Geo Inf. 2017, 6, 401. [Google Scholar] [CrossRef]
- Paull, D.; Banks, G.; Ballard, C.; Gillieson, D. Monitoring the environmental impact of mining in remote locations through remotely sensed data. Geocarto Int. 2006, 21, 33–42. [Google Scholar] [CrossRef]
- Prakash, A.; Gupta, R. Land-use mapping and change detection in a coal mining area-a case study in the Jharia coalfield, India. Int. J. Remote Sens. 1998, 19, 391–410. [Google Scholar] [CrossRef]
- Reis, A.; Da Silva, E.F.; Sousa, A.; Matos, J.; Patinha, C.; Abenta, J.; Fonseca, E.C. Combining GIS and stochastic simulation to estimate spatial patterns of variation for lead at the Lousal mine, Portugal. Land Degrad. Dev. 2005, 16, 229–242. [Google Scholar] [CrossRef]
- Santo, E.; Sánchez, L. GIS applied to determine environmental impact indicators made by sand mining in a floodplain in southeastern Brazil. Environ. Geol. 2002, 41, 628–637. [Google Scholar] [CrossRef]
- Sari, S.P.; Rosalina, D. Mapping and monitoring of mangrove density changes on tin mining area. Procedia Environ. Sci. 2016, 33, 436–442. [Google Scholar] [CrossRef]
- Schmidt, H.; Glaesser, C. Multitemporal analysis of satellite data and their use in the monitoring of the environmental impacts of open cast lignite mining areas in Eastern Germany. Int. J. Remote Sens. 1998, 19, 2245–2260. [Google Scholar] [CrossRef]
- Singh, N.; Mukherjee, T.K.; Shrivastava, B. Monitoring the impact of coal mining and thermal power industry on landuse pattern in and around Singrauli coalfield using remote sensing data and GIS. J. Indian Soc. Remote Sens. 1997, 25, 61–72. [Google Scholar] [CrossRef]
- Snapir, B.; Simms, D.M.; Waine, T.W. Mapping the expansion of galamsey gold mines in the cocoa growing area of Ghana using optical remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 225–233. [Google Scholar] [CrossRef]
- Sonter, L.J.; Barrett, D.; Moran, C.; Soares-Filho, B. Mining, deforestation and conservation opportunities: A case study of the Quadrilátero Ferrífero land use change dynamics. In Proceedings of the XVI Brazilian Remote Sensing Symposium, Foz do Iguaçu, Brazil, 13–18 April 2013. [Google Scholar]
- Sonter, L.J.; Ali, S.H.; Watson, J.E. Mining and biodiversity: Key issues and research needs in conservation science. Proc. R. Soc. B 2018, 285, 20181926. [Google Scholar] [CrossRef] [PubMed]
- Swenson, J.J.; Carter, C.E.; Domec, J.C.; Delgado, C.I. Gold mining in the Peruvian Amazon: Global prices, deforestation, and mercury imports. PloS ONE 2011, 6, e18875. [Google Scholar] [CrossRef] [PubMed]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Vasuki, Y.; Yu, L.; Holden, E.J.; Kovesi, P.; Wedge, D.; Grigg, A.H. The spatial-temporal patterns of land cover changes due to mining activities in the Darling Range, Western Australia: A Visual Analytics Approach. Ore Geol. Rev. 2019, 108, 23–32. [Google Scholar] [CrossRef]
- Weisse, M.J.; Naughton-Treves, L.C. Conservation beyond park boundaries: The impact of buffer zones on deforestation and mining concessions in the Peruvian Amazon. Environ. Manag. 2016, 58, 297–311. [Google Scholar] [CrossRef]
- Wu, L.X.; Ma, B.D.; Liu, S.J. Analysis to vegetation coverage change in Shendong mining area with SPOT NDVI data. Meitan Xuebao/J. China Coal Soc. 2009, 34, 1217–1222. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70349387525&partnerID=40&md5=c35c686306ab90d4671b50d1d0d948b7 (accessed on 20 January 2025).
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Yu, L.; Xu, Y.; Xue, Y.; Li, X.; Cheng, Y.; Liu, X.; Porwal, A.; Holden, E.J.; Yang, J.; Gong, P. Monitoring surface mining belts using multiple remote sensing datasets: A global perspective. Ore Geol. Rev. 2018, 101, 675–687. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, H.; Li, X.; Ross, M. Effects of mining on the ecosystems integrating GIS and hydrological model. In Proceedings of the 2009 17th International Conference on Geoinformatics, Fairfax, VA, USA, 12–14 August 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, W.; Wen, S.; Wang, H.; Zhao, W.; Han, G. Flotation of copper oxide minerals: A review. Int. J. Min. Sci. Technol. 2022, 32, 1351–1364. [Google Scholar] [CrossRef]
- Basto, E. Escondida Site Tour. 2012. Available online: https://mapcarta.com/W868130633 (accessed on 20 January 2025).
- Mapcarta. Collahuasi Mine. Webpage. 2024. Available online: https://www.bhp.com/-/media/bhp/documents/investors/reports/2012/121001_escondida-site-visit-presentation.pdf (accessed on 24 May 2023).
- Mining Technology. Collahuasi Copper Mine, Northern Chile. Webpage. 2020. Available online: https://www.mining-technology.com/projects/collahuasi/ (accessed on 20 January 2025).
- Calderón, D.C.; Cavieres, P.M.A.; Pastore, H.C. Informe de Fiscalización Ambiental: Inspección Ambiental Radomiro Tomic (DFZ-2019-239-II-RCA-IA); Technical Report; Superintendencia del Medio Ambiente–Gobierno de Chile. 2019. Available online: https://snifa.sma.gob.cl/v2/General/Descargar/1104202385 (accessed on 28 August 2024).
- Lopez, L.; Ristorcelli, S. Technical Report for the Sierra Gorda Project, Chile; Technical Report; Pincock, Allen & Holt: Lakewood, CO, USA, 2011; Available online: https://minedocs.com/20/Sierra_Gorda_Project_Technical_Report_2907887_06082011.pdf (accessed on 28 August 2024).
- Antofagasta plc. Centinela-Site Visit. 2016. Available online: https://minedocs.com/17/Centinela_Site_visit_presentation_12052016.pdf (accessed on 28 August 2024).
- Knight Piésold. Declaración de Impacto Ambiental: Proyecto “Mina Chuquicamata Subterránea”; Technical Report; Knight Piésold Consulting: Windhoek, Namibia, 2010; Available online: https://biblioteca.cehum.org/bitstream/123456789/551/1/Knightavailable (accessed on 28 August 2024).
- Boric, R.; Díaz, J.; Becerra, H.; Zentilli, M. Geology of the Ministro Hales Mine (MMH), Chuquicamata District, Chile. In Proceedings of the Actas XII Congreso Geológico Chileno, Santiago (Electronic Version), Santiago, Chile,, 22–26 November 2009; p. 3. [Google Scholar]
- Campos, P.C. Proyecto Estructural División Ministro Hales; Technical Report; Codelco-Chile: Santiago, Chile, 2012; Available online: https://docplayer.es/88801489-Proyecto-estructural-division-ministro-hales.html (accessed on 17 August 2023).
- Lundin Mining. Candelaria Mining Complex Site Visit. 2018. Available online: https://lundinmining.com/site/assets/files/7461/lundin_mining_-_candelaria_copper_mining_complex_-_investor_analyst_site_visit_-_sept_2018.pdf (accessed on 18 August 2023).
- BHP Billiton. Spence Briefing. 2004. Available online: https://www.bhp.com/-/media/bhp/documents/investors/news/spencebriefing.pdf (accessed on 28 August 2024).
- BHP Billiton. Spence - Project to Operations: Analyst Visit. 2007. Available online: https://www.bhp.com/-/media/bhp/documents/investors/reports/2007/spenceanalystvisit19march2007.pdf (accessed on 20 January 2025).
- Walker, G. NI 43-101 Technical Report Caserones Copper-Molybdenum Mine Royalty Region III, Chile. Online. 2022. Available online: https://minedocs.com/22/Caserones-TR-02282022.pdf (accessed on 28 August 2024).
- Adkerson, R.C.; Moffett, J.R.; Rankin, J.B.M.; Quirk, K.L.; Donald Whitmire, J.C.; Allison, J.R.J.; Day, R.A.; Ford, G.J.; Graham, J.H.D.; Krulak, C.C.; et al. Annual Report Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934–For the Fiscal Year Ended December 31, 2011; Technical Report; Freeport-McMoRan Copper & Gold Inc.: Phoenix, AZ, USA, 2013. Available online: https://www.nrc.gov/docs/ML1503/ML15036A367.pdf (accessed on 28 August 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Werner, T.T.; Komai, T.; Matsubae, K. Assessing the Relationship Between Production and Land Transformation for Chilean Copper Mines Using Satellite and Operational Data. Resources 2025, 14, 25. https://doi.org/10.3390/resources14020025
Xiao J, Werner TT, Komai T, Matsubae K. Assessing the Relationship Between Production and Land Transformation for Chilean Copper Mines Using Satellite and Operational Data. Resources. 2025; 14(2):25. https://doi.org/10.3390/resources14020025
Chicago/Turabian StyleXiao, Junbin, Tim T. Werner, Takeshi Komai, and Kazuyo Matsubae. 2025. "Assessing the Relationship Between Production and Land Transformation for Chilean Copper Mines Using Satellite and Operational Data" Resources 14, no. 2: 25. https://doi.org/10.3390/resources14020025
APA StyleXiao, J., Werner, T. T., Komai, T., & Matsubae, K. (2025). Assessing the Relationship Between Production and Land Transformation for Chilean Copper Mines Using Satellite and Operational Data. Resources, 14(2), 25. https://doi.org/10.3390/resources14020025