Research Progress on Comprehensive Utilization of Silkworm Excrement Bioresource
Abstract
1. Introduction
2. Literature Search Strategy
3. Basic Properties of Silkworm Excrement
4. Key Technological Advances in the Comprehensive Utilization of Silkworm Excrement
4.1. Extraction Technology
4.2. Fermentation Technology
4.3. Biochar Technology
4.4. Omics Technologies
5. Comprehensive Utilization of Silkworm Excrement
5.1. Silkworm Excrement Serves as Animal Feed
5.2. Silkworm Excrement Serves as Fertilizer
5.3. Silkworm Excrement Serves as Traditional Chinese Medicine
5.3.1. Traditional Chinese Medicine Diseases
5.3.2. Insomnia
5.3.3. Diabetes Mellitus
5.3.4. Cancer
5.3.5. Anemia
5.3.6. Migraine
5.3.7. Arthritis
5.4. Chemical Engineering
5.4.1. Production of Chlorophyll
5.4.2. Production of Pectin
5.4.3. Production of Flavonoids and 1-Deoxynojirimycin
5.4.4. Production of Lutein and β-Carotene
5.4.5. Preparation of Corrosion/Scale Inhibitors
5.4.6. Production of Other Products by Easy Extraction
5.4.7. Production of Other High-Value Substances Such as Microbial Carbon Source
5.5. Materials
5.5.1. Adsorption Materials
5.5.2. Electrode/Capacitor Materials
5.5.3. Sensing Materials
5.5.4. Biomedical Materials
5.6. Environmental Protection
5.6.1. Treatment of Heavy Metal Pollution
5.6.2. Management of Herbicide Pollution
5.6.3. Control of Antibiotic Pollution
5.6.4. Reducing Carbon Emissions
6. Summary and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CF | crude fiber |
MS | mass spectrometry |
NMR | nuclear magnetic resonance |
PHBV | poly(3-hydroxybutyrate-co-3-hydroxyvalerate) |
3-HV | 3-hydroxyvalerate |
DNJ | 1-Deoxynojirimycin |
T2D | type II diabetes |
DGP | diabetic gastroparesis |
SXN | Shengxuening |
HPLC | high-performance liquid chromatography |
GBC | functionalized biochar |
BC | biochar |
SBC | SiO2NPs@BC composite |
SEB | silkworm excrement biochar |
SEMC | silkworm excrement microporous carbon |
SCDs | red-emissive carbon dots |
HF-SCDs@Cu | a novel nanomedicine |
N-CNPs | nitrogen-doped carbon nanoparticles |
SEPC | silkworm excrement porous carbon |
SEPC-PbO | SEPC–lead oxide composite |
CT3 | Raoultella ornithinolytica CT3 |
MHD | maintenance hemodialysis |
rHuEPO | recombinant human erythropoietin |
NA | noradrenaline |
5-HT | 5-hydroxytryptamine |
DA | dopamine |
AMPK | AMP-activated protein kinase |
PI3K | phosphatidylinositol 3-kinase |
Akt | protein kinase B |
JAK2 | Janus kinase 2 |
STAT3 | signal transducer and activator of transcription 3 |
IL-6 | Interleukin-6 |
TRPV1 | transient receptor potential vanilloid 1 |
TRPA1 | transient receptor potential ankyrin 1 |
References
- Tanga, C.M.; Ekesi, S. Dietary and Therapeutic Benefits of Edible Insects: A Global Perspective. Annu. Rev. Entomol. 2024, 69, 303–331. [Google Scholar] [CrossRef] [PubMed]
- Sharifinia, M. Improve aquaculture with insect meal. Science 2024, 383, 838. [Google Scholar] [CrossRef] [PubMed]
- van Huis, A.; Gasco, L. Insects as feed for livestock production Insect farming for livestock feed has the potential to replace conventional feed. Science 2023, 379, 138–139. [Google Scholar] [CrossRef]
- Stull, V.J.; Weir, T.L. Chitin and omega-3 fatty acids in edible insects have underexplored benefits for the gut microbiome and human health. Nat. Food 2023, 4, 283–287. [Google Scholar] [CrossRef]
- Hazarika, A.K.; Kalita, U. Human consumption of insects Farming edible insects can help improve food security and boost developing economies. Science 2023, 379, 140–141. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Qian, Z.; Zhu, X.; Zhang, N.; He, J.; Xiao, J.; Shen, X.; Muhammad, A.; Sun, C.; Shao, Y. Fitness effects of synthetic and natural diet preservatives on the edible insect Bombyx mori. Npj Sci. Food 2024, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; He, J.; Zhang, N.; Li, Y.; Lei, X.; Sun, C.; Muhammad, A.; Shao, Y. Assessing the quality and eco-beneficial microbes in the use of silkworm excrement compost. Waste Manag. 2024, 183, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, X.; Zhang, M.; Zhang, Y.; Zhao, Y.; Jiang, X.; Xin, X.; Zhang, Z.; Zhang, R.; Gui, Z. Accelerated degradation of cellulose in silkworm excrement by the interaction of housefly larvae and cellulose-degrading bacteria. J. Environ. Manag. 2022, 323, 10. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, Y.; Qin, S.; Jiang, Y.; Zhang, Y.; Xiao, W.; Zhou, A. Effects of different feeding modes on microbial community structure of silkworm excrement. Southwest China J. Agric. Sci. 2023, 36, 2822–2828. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.Y.; Nurfikari, A.; van de Zande, E.M.; Wantulla, M.; van Loon, J.J.A.; de Boer, W.; Dicke, M. Insect frass and exuviae to promote plant growth and health. Trends Plant Sci 2022, 27, 646–654. [Google Scholar] [CrossRef]
- Poveda, J. Insect frass in the development of sustainable agriculture. A review. Agron. Sustain. Dev. 2021, 41, 10. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, W.; He, M.; Wang, L.; Li, X. Study on the Mechanism of Action of Qinjiao-Cansha in the treatment of ofrheumatoid arthritis Based on Network Pharmacology. Gansu. Med. 2024, 43, 238–242. [Google Scholar] [CrossRef]
- Zhou, R.; You, S.; Huang, L.; Wang, K. Spatio-temporal Pattern Evolution and Driving Factors of the Globally Important Agricultural Heritage System Mulberry-Dykes and Fish-Ponds. J. Zhejiang Univ. 2024, 50, 200–208. [Google Scholar]
- Zhao, J.; Zhou, W.; Qi, Z. Agricultural Waste Substrate Utilization. J. Green Sci. Technol. 2019, 232–234+241. [Google Scholar] [CrossRef]
- Liao, S. Thoughts on Developing the Ecological Sericulture Industry. Sci. Seric. 2018, 44, 181–187. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, R.; Jiang, S.; Qin, Z.; Li, Z. Research Progress on the Diversified Utilization of Silkworm Excrement. North Seric. 2019, 40, 1–7+12. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, Y.; Huang, H.; Muhammad, Y.; Huang, Z.; Winarta, J.; Zhang, Y.; Nie, S.; Zhao, Z.; Mu, B. Porous Fe@C Composites Derived from Silkworm Excrement for Effective Separation of Anisole Compounds. Acs Omega 2019, 4, 21204–21213. [Google Scholar] [CrossRef]
- Liao, S.T.; Yang, Q.; Zhang, F.B.; Xiao, G.S.; Luo, G.Q.; Gao, Y.C.; Wu, Y.; Xing, D.; Huang, Y. An Idea for Establishing a Hazard-free Treatment Technological System for Fertilizer Utilization of Silkworm Excrement in South China Sericultural Area. Sci. Seric. 2011, 37, 1086–1088. [Google Scholar] [CrossRef]
- Jia, S.; Li, Y.; Mei, H.; Liu, J.; Jia, X. Research Progress on the Nutritional Characteristics, Processing Technology and Application of Silkworm Excrement in Animal Production. China Anim. Husb. Vet. Med. 2024, 51, 1893–1902. [Google Scholar] [CrossRef]
- Huang, Z. Research on the Extraction of Chlorophyll and Carotenoids from Silkworm Sand and Their Medicinal Value. Acta Sericologica Sin. 1964, 73–74. [Google Scholar]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Ren, W.; Li, T.; Wang, Y. Separation Technology Supercritical Extraction. Mod. Food 2019, 162–163. [Google Scholar] [CrossRef]
- Yan, D.; Wei, Q. Optimization of SEF-CO2Process for Volatile Oil from Artemisia mongolica. Food Ind. 2014, 35, 133–136. [Google Scholar]
- Zhao, R.; Wang, M.; Zhang, K.; Li, Y.; Wang, Z.; Wang, K.; He, J. Optimization of Extraction Method of Total Flavonoids from Eucommia ulmoides Leaves by Ultrasonic Combine Ethanol. Feed Ind. 2025, 46, 151–158. [Google Scholar] [CrossRef]
- Li, K.; Li, P.; Hou, P.; Zhang, J. Advancements in the application of ultrasonic technology in the extraction of plant natural products. Agric. Prod. Oils Sci. Eng. 2025, 39, 24–30. [Google Scholar]
- Liu, Z.; Lü, S.; Zhao, L.; Zhang, Y.; Li, Q.; Tan, W. Optimization of Microwave Assisted Extraction of Anthocyanins from Grape Skin Residue and Their Antioxidant Properties Study. Food Ind. 2024, 45, 73–77. [Google Scholar]
- Zhang, J.; Liang, H.; Zhao, D.; Dai, W.; Gao, T. Research Progress on Ganoderma Lucidum Polysaccharide Extraction Technology. Food Saf. J. 2024, 158–160. [Google Scholar] [CrossRef]
- Wang, D.; Xing, Z.; Liu, Y.; Ma, K.; Liu, B. Optimization of Ultra-high Pressure Technology of Saponin of Ginseng Under Forest at Yichun area. For. By Prod. Spec. China 2022, 14–16. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, Y.; Liu, H.; Wang, X.; Ye, Z.; Liu, S.; Wang, C. Research progress on the application of ultra-high pressure in the extraction of plant active substances. J. Agric. Eng. Italy 2024, 40, 272–282. [Google Scholar]
- Liu, Y.; Liu, C. Optimization of Hemp Seed Protein Extraction by Cellulase Assisted Alkali Extraction. Mod. Food 2024, 30, 60–63. [Google Scholar] [CrossRef]
- Ju, X.; Li, J.; Yu, J.; Ding, Y.; Zou, R.; Zhang, J.; Xu, T. Research Progress on Enzyme-Assisted Extraction of Plant Natural Active Substances. Food Res. Dev. 2024, 45, 202–211. [Google Scholar]
- Yang, Q.; Qu, K.; Dong, X.; Wang, C.; Pan, H.; Liu, S.; Zhang, Y. Progress in Improving the Antibacterial Activity of biocontrol strain Based on Modern Fermentation Technology. China Biotechnol. 2025, 1–16. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Y.; Du, X.; Peng, X.; Hu, G. Research, Development, and Application Progress of Silkworm Sand Organic Fertilizer. Newsl. Seric. Tea 2015, 3–6. [Google Scholar]
- Qin, Z.; Tang, H. Test of silkworm feces as fermenting materials for household biogas digester. Renew. Energy Resour. 2010, 28, 88–90. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.; Liu, D. Preparation and Process Optimization of Corn Stover Biochar. J. Agric. Sci. Technol. Iran 2024, 1–11. [Google Scholar] [CrossRef]
- Wu, X.; Zou, Z. Research on Physical and Mechanical Properties of Biochar-Cement Cured Expanded Soil and Its Influence Mechanisms. Highway 2025, 70, 409–416. [Google Scholar]
- Lin, Y.; Ding, T.; Hu, H.; Zhang, X.; Liu, Y.; Liu, Z. Research progress of biochar and its composite materials prepared from plantation wastes. Acta Mater. Compos. Sin. 2024, 1–13. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Lin, Y.; Wei, X.; Wu, Y.; Wu, G.; Zhao, Z. Preparation of silkworm excrement-based porous biocarbon and synergistic adsorption and slow-release performance for monosultap and dinotefuran. Chem. Ind. Eng. Prog. 2024, 43, 3964–3971. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, X.; Jiang, S.; Cao, H.; Wang, M.; Li, Z. Influence of biochar derived from Cd polluted silkworm excrement on the phytoavailability of Cd in a paddy soil and its accumulation in mulberry. Ecotoxicol. Environ. Saf. 2025, 289, 9. [Google Scholar] [CrossRef]
- Pimsawat, A.; Tangtrakarn, A.; Pimsawat, N.; Khamkongkaeo, A.; Daengsakul, S. Microwave assisted activation of silkworm excrement for fast adsorption of methylene blue and high performance supercapacitor. Sci. Rep. 2024, 14, 13. [Google Scholar] [CrossRef]
- Moco, S.; Bino, R.J.; De Vos, R.C.H.; Vervoort, J. Metabolomics technologies and metabolite identification. Trac. Trends Anal. Chem. 2007, 26, 855–866. [Google Scholar] [CrossRef]
- He, W.; Wang, J.; Yang, L.; Hu, Q.; Zhao, Y.; Ma, H. Prediction of anti-radiation quality markers in Houttuynia cordata broken wall decoction based on network pharmacology, metabolomics and molecular docking technology. Chin. Tradit. Pat. Med. 2025, 47, 1014–1023. [Google Scholar]
- Yu, H.Y.; Xia, P.Y. Discussion on the Development and Utilization of Medicinal Value of Mulberry Resources. Guangxi. Seric. 2019, 56, 47–51. [Google Scholar] [CrossRef]
- Yan, L. Effects of Faeces Bombycis on Intestinal Microflora and Metabonomics in Rats with Syndrome of Damp Retention in Middle-Jiao. Master’s Thesis, Jiangxi University of Traditional Chinese Medicine, Nanchang, China, 2020. Available online: https://link.cnki.net/doi/10.27180/d.cnki.gjxzc.2020.000195 (accessed on 6 August 2025).
- Gao, G.F.; Chu, H.Y. Techniques and methods of microbiomics and their applications. J. Plant Ecol. 2020, 44, 395–408. [Google Scholar] [CrossRef]
- Lai, Y.; Wu, L.; Wang, Y.; Chen, L.; Guan, Y.; Yang, H. Effects of Faeces Bombycis on the intestinal microflora of the rats with syndrome of damp retention in middle-jiao by PCR-DGGE. China J. Tradit. Chin. Med. Pharm. 2020, 35, 5726–5729. [Google Scholar]
- Yang, Z.; Zhao, J.; Ni, H. Silkworm excrement organic fertilizer substitution compound fertilizer improves bamboo shoot yield by altering soil properties and bacterial communities of Moso bamboo (Phyllostachys edulis) forests in subtropical China. Front Plant Sci. 2025, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhong, K.; Tan, J.; Nong, X.; Chen, J.; Zhang, C. Changes in Microbial Community and Activity Caused by Application of Silkworm Excrement and Biochar Under Atrazine Stress in Soil. Soil Sediment Contam. 2024, 33, 1499–1514. [Google Scholar] [CrossRef]
- Yang, X. Study on asymmetry and persistence of feed raw material price fluctuation in China—An empirical analysis based on Markov state transition autoregressive model. Feed Res. 2024, 47, 184–188. [Google Scholar] [CrossRef]
- Liang, L.; Wei, H.; Wu, H.; Wu, Q.; Mo, D. Production technology and application of fermented silkworm excrement. China Anim. Ind. 2020, 57–58. [Google Scholar]
- Yuan, H.; Chen, B.; Cao, J.; Xing, D. The Application Progress of Fermented Silkworm Excrement in Animal Feed. Feed Ind. 2024, 1–9. [Google Scholar]
- Qian, F.; Lu, F.; Yang, L.; Li, T. Cultivation of earthworms and analysis of associated bacterial communities during earthworms’ growth using two types of agricultural wastes. Bioresour. Bioprocess. 2024, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, Y.; Zhang, L.; Yang, T.; Zhou, C. A Study on Biotransformation of Hermetia illucens on Silkworm Excrement. Chin. J. Anim. Nutr. 2023, 35, 8111–8121. [Google Scholar]
- Wu, C.C.; He, J.X.; Wu, B.L.; Huang, L.; Chen, J.; Chen, X.J.; Wang, X. Effects of Dietary Fermented Silkworm Excrement on Growth, Digestive, Immune and Inflammation of Grass Carp(Ctenopharyngodon idella). Chin. J. Anim. Nutr. 2023, 35, 1883–1894. [Google Scholar]
- Zhou, D.; Fu, B.; Zhong, W.; Li, S.; Tian, L.; Wu, X.; Xing, D.; Kuang, Z. Effects of Silkworm Excrement Supplementation on Growth Performance, Liver and Intestine Histomorphology and Muscle Quality of Grass Carp (Ctenopharyngodon idellus). Feed Ind. 2024, 45, 24–31. [Google Scholar] [CrossRef]
- Yang, Q.; Li, L.; Xing, D.; Li, Q.; Xiao, Y.; Ye, M.; Liao, S. Influence of Adding Silkworm Excrement Organic Fertilizer in Mulberry Field on Soil Enzyme Activity and Mulberry Leaf Yield and Quality. Acta Sericologica Sin. 2016, 42, 968–972. [Google Scholar] [CrossRef]
- Bin, R.; Mao, L.; Lan, B.; Teng, W.; Huang, R.; Huang, H.; Luo, J.; Huang, Y.; Dong, G.; Tang, Q. The Effect of Inoculation with Silkworm Sand and Mulberry Branch Waste Compost on the Yield of Mulberry Trees and Soil Improvement in Stone Desertification Areas. China Seric. 2020, 41, 16–21. [Google Scholar] [CrossRef]
- Lochynska, M.; Frankowski, J. The Effects of Silkworm Excrement Organic Fertilizer on the Hemp Yield. J. Nat. Fibers. 2022, 19, 847–857. [Google Scholar] [CrossRef]
- Ni, H.J.; Zhao, J.C.; Yang, Z.Y.; Shi, J.; Chen, Y.J.; Wu, Y.F.; Qiu, G. The Effects of Organic Fertilizer Derived from Silkworm Excrement on the Soil Physicochemical Properties and Enzyme Activity of Phyllostachys Violascens ‘Prevernalis’ Forests. J. Northeast For. Univ. 2024, 52, 109–114. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Q.R.; Xing, D.X.; Xiao, Y.; Lin, L.H.; Zhi, H.Y. Effect of Silkworm Waste Fertilizer on Tomato Quality and Soil Fertility. Guangdong Seric. 2022, 56, 11–13. [Google Scholar]
- Luo, P.; Wei, C.; Tang, M.; Li, L. Application Effect of Silkworm Sand Bio-organic Fertilizer on Sugarcane Cultivation. China Seric. 2019, 40, 9–12. [Google Scholar] [CrossRef]
- Li, T.; Zhou, H.; Zhang, J.; Zhang, Z.; Yu, Y.; Wei, Y.; Hu, J. Effects of silkworm excrement and water management on the accumulation of Cd and As in different varieties of rice and an assessment of their health risk. Ecotoxicol. Environ. Saf. 2021, 228, 10. [Google Scholar] [CrossRef]
- Liu, S.A.; Hu, J.M.; Wu, H.; Lin, D.S.; Zhang, J.H.; Li, T.T.; Liu, B. Effects of the combined application of silkworm excrement and sepiolite on Cd bioavailability in rhizosphere soil and Cd accumulation in grains of rice. J. Agro-Environ. Sci. 2021, 40, 1686–1695. [Google Scholar]
- Chen, J.; Huang, H.; Zhang, C.; Huang, D.; Zhu, Y.; Chai, X. The mechanism of Cd sorption by silkworm excrement organic fertilizer and its effect on Cd accumulation in rice. J. Soil Sediments 2022, 22, 2184–2195. [Google Scholar] [CrossRef]
- Li, T.; Wei, Y.; Yu, Y.; Zhang, J.; Zhang, Z.; Zheng, F.; Hu, J. Silkworm excrement reduces cadmium and arsenic accumulation in rice grains by altering soil chemical properties, microbial community, and promoting iron plaque formation. Appl. Soil Ecol. 2023, 182, 12. [Google Scholar] [CrossRef]
- Li, Q.R.; Liao, S.T.; Xing, D.X.; Xiao, Y.; Zhao, C.Y.; Yang, Q. Isolation and identification of phosphate-solubilizing strain SEM-5 from silkworm excrement and its phosphorus dissolution function. J. South. Agric. 2021, 52, 797–805. [Google Scholar]
- Zhou, Y.; Xve, Z.; Jin, X.; Han, Z.; Kang, W. Screening and Identification of Phosphate-solubilizing Bacteria from Excrement of Antheraea pernyi. North Seric. 2022, 43, 32–35. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; Zhang, H. Advancements in medical research on silkworm droppings. Chin. Contemp. Med. 2023, 30, 39–42. [Google Scholar]
- Wu, H.; Li, B.; Lin, Z.; Song, T.; Li, B.; Lin, Y. Cooling effect of water decoction of bamboo shavings, silkworm excrement and tangerine peel on febrile rats induced by dry yeast. J. Med. Sci. Yanbian Univ. 2021, 44, 168–171. [Google Scholar] [CrossRef]
- Wang, Y. Effects of Faeces Bombycis on the Expression of Aquaporin Andmechanism in Rats with Syndrome of Damp Retention Inmiddle-Jiao. Master’s Thesis, Jiangxi University of Traditional Chinese Medicine, Nanchang, China, 2020. [Google Scholar] [CrossRef]
- Liu, L.; Li, C.; Yang, Q.; Zhang, W.; Liu, Y.; Zhu, H. Clinical and neuroimaging features of a Chinese patient with fatal familial insomnia. Sleep Med. 2017, 32, 280–281. [Google Scholar] [CrossRef] [PubMed]
- Gong, F. Study on the Anti-Insomnia Mechanism and the Change Rule Ofanti-Insomnia Core Components of Faeces Bombycis Basedon the Network Pharmacology. Master’s Thesis, Jiangxi University of Traditional Chinese Medicine, Nanchang, China, 2021. [Google Scholar] [CrossRef]
- Fang, P.; Shi, M.; Zhu, Y.; Bo, P.; Zhang, Z. Type 2 diabetes mellitus as a disorder of galanin resistance. Exp. Gerontol. 2016, 73, 72–77. [Google Scholar] [CrossRef]
- Li, Y.G.; Zhong, S.; Lv, Z.Q.; Lin, T.B.; Ji, D.F. Inhibitory Kinetics of α-Sucrase by 1-Deoxynojirimycin from Mul-berry Leaves. Sci. Seric. 2010, 6, 885–888. [Google Scholar] [CrossRef]
- Li, Y.; Ji, D.; Zhong, S.; Lin, T.; Lv, Z.; Hu, G.; Wang, X. 1-deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice. Sci. Rep. 2013, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Zhang, Q.; Liu, J.; Li, R.; Peng, W.; Wu, C. An Integrated Approach Based on Network Pharmacology Combined with Experimental Verification Reveals AMPK/PI3K/Akt Signaling is an Important Way for the Anti-Type 2 Diabetic Activity of Silkworm Excrement. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 601–616. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, A.; Memon, G.F.; Shaikh, A.A.; Khoso, M.M.; Meher, T.; Ghafoor, A.; Shehzad, N.A.; Ahmed, S.; Nawaz, Z.; Rehan, M.; et al. Efficacy and safety of itopride SR for upper gastrointestinal symptoms in patients with diabetic gastroparesis: Real-world evidence from Pakistan. Drugs Context 2023, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, W.; Zhao, K.; Qiu, Y. Effect of Faeces Bombycis Extract on Cajal Interstitial Cells in Diabetic Gastroparesis Rats Based on PI3K/Akt/mTOR Signaling Pathway. Chin. J. Exp. Tradit. Med. Formulae 2024, 30, 66–73. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Ma, B.; Qi, J.; Zhang, X.; Zhao, H. A ferroptosis-related risk model for non-coding RNA AC002331.1 in colon cancer: Construction via competing endogenous RNA network analysis. Discov. Oncol. 2025, 16, 1473. [Google Scholar] [CrossRef] [PubMed]
- Han, X. Lupeol from Silkworm Dropping Inhibits Theinvasion and Metastasis of Colon Cancer Cellvia IL-6/JAK2/STAT3 Pathway. Master’s Thesis, Lanzhou University, Lanzhou, China, 2022. [Google Scholar] [CrossRef]
- Dy, G.K.; Adjei, A.A. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA A Cancer J. Clin. 2013, 63, 249–279. [Google Scholar] [CrossRef]
- Ding, L.; Tan, Y.; Xu, L.; Jin, Y.; Liu, Y.; Tu, H.; Zhang, D.; Wu, B.; Chen, Y.; Shen, H.; et al. Shengxuening Extracted from Silkworm Excrement Mitigates Myelosuppression via SCF-Mediated JAK2/STAT3 Signaling. Chem. Biodivers. 2021, 18, 8. [Google Scholar] [CrossRef]
- McLean, E.; Cogswell, M.; Egli, I.; Woidyla, D.; de Benoist, B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2009, 12, 444–454. [Google Scholar] [CrossRef]
- Cheng, X.; Yu, G.; Hu, J.; Xu, X.; Luo, F.; Shen, P.; Zhang, G.; Yang, N. Clinical study of Shengxuening tablet combined with rHuEPO for the treatment of renal anemia of maintenance hemodialysis patients. Exp. Ther. Med. 2016, 12, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Xu, L.; Jin, Y.; Wei, Y.; Pan, Y.; Sattar, S.; Tan, Y.; Yang, T.; Zhou, F. Efficacy of SXN in the Treatment of Iron Deficiency Anemia: A Phase IV Clinical Trial. Evid. Based Complement. Altern. Med. 2019, 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.M.; Schneider, G.; Yeaw, J.; Nordstrom, B.; Robbins, S.; Pettitt, D. Anemia as a predictor of cardiovascular events in patients with elevated serum creatinine. J. Am. Soc. Nephrol. 2006, 17, 2293–2298. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.K.; Boyd, R.; Krockenberger, M.B.; Burgio, G. Progression of anemia and its relationship with renal function, blood pressure, and erythropoietin in rats with chronic kidney disease. Vet. Clin. Path. 2015, 44, 342–354. [Google Scholar] [CrossRef]
- Kowalska, M.; Prendecki, M.; Piekut, T.; Kozubski, W.; Dorszewska, J. Migraine: Calcium Channels and Glia. Int. J. Mol. Sci. 2021, 22, 2688. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Jiang, M.; Jin, Y.; Li, H.; Li, Y.; Liu, Y.; Yu, H.; Huang, X. Phytol from Faeces Bombycis alleviated migraine pain by inhibiting Nav1.7 sodium channels. J. Ethnopharmacol. 2023, 306, 9. [Google Scholar] [CrossRef] [PubMed]
- Sfriso, P.; Punzi, L.; Ianniello, A.; Lazzarin, P.; Ostuni, P.A.; Gambari, P.F. Clinical, radiological and laboratory aspects of rheumatoid arthritis associated with high serum levels of IgA. Clin. Exp. Rheumatol. 1994, 12, 690–691. [Google Scholar]
- Zheng, T.Y.; Su, S.L.; Dai, X.X.; Zhang, L.W.; Duan, J.A.; Zhen, O.Y. Metabolomic Analysis of Biochemical Changes in the Serum and Urine of Freund’s Adjuvant-Induced Arthritis in Rats after Treatment with Silkworm Excrement. Molecules 2018, 23, 1490. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Zhao, Y.; Jia, R.; Yao, Y.; Yang, Y.; Bai, S.; Xu, J.; Liu, M.; Li, J.; Zhou, Q. Determination of chlorophyll a and chlorophyll b content in food by high performance liquid chromatography. J. Food Saf. Qual. Test. 2024, 15, 313–320. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Liu, C.; Mu, L.; Lin, Q.; Zhou, S.; Xu, J. Study on Preparation and Stability of Sodium Zinc Chlorophyllin from Silkworm. Food Ferment. Ind. 2008, 34, 79–82. [Google Scholar]
- Tang, D.; Fang, P.; Chen, F. Research on the Extraction Technology of Silkworm Sand Chlorophyll. Guangdong Seric. 2015, 49, 27–29. [Google Scholar]
- Han, M. Technological parameters of ultrasonic assisted extraction silkworm faeces chlorophyll in research. Appl. Chem. Ind. 2015, 44, 1485–1487. [Google Scholar] [CrossRef]
- Cui, Q.; Zhang, H.; Zheng, L.; Sun, J.; Zhang, C.; Zhao, B. Optimization of chlorophyll extraction process by response surface methodology. China Food Addit. 2023, 34, 109–114. [Google Scholar] [CrossRef]
- Emran, T.B.; Islam, F.; Mitra, S.; Paul, S.; Nath, N.; Khan, Z.; Das, R.; Chandran, D.; Sharma, R.; Lima, C.M.G.; et al. Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential. Molecules 2022, 27, 7405. [Google Scholar] [CrossRef]
- Fu, M.; Liu, X.S.; Zhang, H.L. Extraction of Pectin from Silkworm Excrement by Molysite Method. Adv. Eng. Sci. 2004, 36, 73–76. [Google Scholar]
- Zhang, R.; Zhou, W.; Lv, B. Study on extraction of low methoxyl pectin from silkworm excrement. Sci. Technol. Food Ind. 2015, 36, 267–270. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef]
- Li, Y. Study on the Extraction and Purification of Flavonoids from Silkworm Excrement. Liaoning Tussah Silk 2006, 10–11. [Google Scholar]
- Yu, S.; Shen, F. Optimized Technology in Distillation of Flavonoids from Wasted Silkworm Faeces. Food Res. Dev. 2007, 46–48. [Google Scholar]
- Wang, H.; Shen, Y.; Zhao, L.; Ye, Y. 1-Deoxynojirimycin and its Derivatives: A Mini Review of the Literature. Curr. Med. Chem. 2021, 28, 628–643. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Ma, L.; Ren, B.; Chen, J.; Li, W.; Liu, Y. Study on the Extraction Process of 1-Deoxynojirimycin from Silkworm Excrement. Her. Med. 2014, 33, 1506–1508. [Google Scholar]
- Mitra, S.; Rauf, A.; Tareq, A.M.; Jahan, S.; Emran, T.B.; Shahriar, T.G.; Dhama, K.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Rebezov, M.; et al. Potential health benefits of carotenoid lutein: An updated review. Food Chem. Toxicol. 2021, 154, 112328. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, T. Study on Extraction of Xanthophylls from Silkworm Excrement. Resour. Dev. Mark. 2007, 964–965. [Google Scholar]
- Stutz, H.; Bresgen, N.; Eckl, P.M. Analytical tools for the analysis of beta-carotene and its degradation products. Free Radic. Res. 2015, 49, 650–680. [Google Scholar] [CrossRef]
- Lin, M.; Liu, L.; Li, L.; Cai, L. Research on the Extraction of β-Carotene from Silkworm Excrement. China Foreign Med. Treat. 2007, 49–50. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, X.; Lu, L.; Zhang, M.; Song, S.; Zhao, Y. Determination and Extraction Condition Optimization of Lutein and β-Carotene in Silkworm Excrement. Food Drug. 2022, 24, 127–132. [Google Scholar]
- Guo, X.; Wu, F.; Cheng, T.; Huang, H. Extraction of a high efficiency and long-acting green corrosion inhibitor from silkworm excrement and its adsorption behavior and inhibition mechanism on copper. Colloid Surf. A 2021, 631, 13. [Google Scholar] [CrossRef]
- Liu, X.; Shi, C.; Zhang, Y.; Wang, Y.; Luo, B.; Fu, Z.; Shu, S.; Su, Y.; Liu, S.; Wang, Y. Study on scale inhibition and corrosion inhibition of silkworm sand extract in brine solution. Ind. Water Treat. 2024, 44, 105–112. [Google Scholar] [CrossRef]
- Lee, Y.R.; Park, J.; Castaneda Molina, R.; Nam, Y.H.; Lee, Y.; Hong, B.N.; Baek, N.; Kang, T.H. Skin depigmenting action of silkworm (Bombyx mori L.) droppings in zebrafish. Arch. Dermatol. Res. 2018, 310, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Xia, W.; Li, Z.; Li, Q. Novel and environmentally friendly paste-bath dyeing of protein fibers with mulberry leaf and silkworm excrement. Ind. Crop. Prod. 2024, 209, 7. [Google Scholar] [CrossRef]
- Cheng, X.; Tian, H.; Dong, S.; Zhang, H.; Wei, M. Analysis of Volatile Components in Silkworm Sand Extract and Its Application in Cigarettes. Jiangsu Agric. Sci. 2011, 39, 395–397. [Google Scholar] [CrossRef]
- Cai, S.; Wu, Y.; Li, Y.; Yang, S.; Liu, Z.; Ma, Y.; Lv, J.; Shao, Y.; Jia, H.; Zhao, Y.; et al. Production of Polyhydroxyalkanoates in Unsterilized Hyper-Saline Medium by Halophiles Using Waste Silkworm Excrement as Carbon Source. Molecules 2021, 26, 7122. [Google Scholar] [CrossRef]
- Haile, S.; Ayele, A. Pectinase from Microorganisms and Its Industrial Applications. Sci. World J. 2022, 2022, 1881305. [Google Scholar] [CrossRef]
- Lu, F.; Qian, F.; He, X.; Li, L.; Wang, L. Optimization of fermentation conditions for pectinase production from silkworm excrement by Aspergillus niger. China Food Addit. 2023, 34, 83–88. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Chen, J.; Nong, X.; Li, N. Study on adsorption and removal of cadmium by KOH activated silkworm excrement-based biochar. Chin. J. Environ. Eng. 2021, 15, 3504–3514. [Google Scholar]
- Pimsawat, A.; Tangtrakarn, A.; Pimsawat, N.; Khamkongkaeo, A.; Daengsakul, S. Super activated carbon-silica composite from silkworm excrement by microwave-assisted KOH activation for adsorption and supercapacitor. Environ. Technol. Innov. 2025, 37, 14. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, Y.; Sun, H.; Zhao, J.; Cheng, Z.; Kang, X. MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors. Int. J. Min. Met. Mater. 2021, 28, 1735–1744. [Google Scholar] [CrossRef]
- Hu, Y.T.; Li, J.C.; Ali, A.; Shen, P.K. Using silkworm excrement and spent lead paste to prepare additives for improving the cycle life of lead-acid batteries. J. Energy Storage 2021, 41, 8. [Google Scholar] [CrossRef]
- Wu, C. Research on Silkworm Sand Biochar-Basedcomposite Materials Layer-Modified Separtorfor Lithium-Sulfur Batteries. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2022. [Google Scholar] [CrossRef]
- Jiang, S.; Wu, C.; Liu, R.; Wang, J.; Xu, Y.; Cao, F. Multifunctional Interlayer Engineering for Silkworm Excrement-Derived Porous Carbon Enabling High-Energy Lithium Sulfur Batteries. Chemsuschem 2024, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.; Xu, X.; Cheng, Y.; Song, D.; Jiang, H.; Su, Z. Synthesis of Carbon Dots from Silkworm Excrement and Its Performance Characterization. Guangzhou Chem. Ind. 2018, 46, 30–32. [Google Scholar]
- Lu, X.; Li, C.; Wang, Z.; Yang, J.; Xu, M.; Dong, J.; Wang, P.; Gu, J.; Cao, F. Nitrogen-Doped Carbon Nanoparticles Derived from Silkworm Excrement as On-Off-On Fluorescent Sensors to Detect Fe(III) and Biothiols. Nanomaterials 2018, 8, 443. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lian, C.; Zhou, J.; Huang, Z.; Kang, X.; Huang, Z.; Guan, Y. Investigation of Excitation-, pH-, MetaI Ion-, Temperature-, and PoIarity-Dependent FIuorescence of Carbon Dots Derived from SiIkworm Excrement. Acta Phys. Chim. Sin. 2019, 35, 1267–1275. [Google Scholar] [CrossRef]
- Mu, G.; He, W.; He, J.; Muhammad, Y.; Shi, Z.; Zhang, B.; Zhou, L.; Zhao, Z.; Zhao, Z. High strength, anti-freezing and conductive silkworm excrement cellulose-based ionic hydrogel with physical-chemical double cross-linked for pressure sensing. Int. J. Biol. Macromol. 2023, 236, 13. [Google Scholar] [CrossRef]
- Xu, X.L.; Jiang, H.T.; Wang, X.P.; Wang, S.Y.; Liu, W.W.; Ma, W.; Wang, M.Y.; Ma, S.Y. A novel glycol sensor of silkworm excrement based microporous carbons (SEMCs)/SnO2 nanoparticles. Vacuum 2023, 209, 5. [Google Scholar] [CrossRef]
- Bao, Y.; Li, G.; Liu, M.; Li, S.; Zhou, H.; Yang, Z.; Wang, Z.; Guo, C.; Jin, Y. A novel silkworm excrement -derived nanomedicine integrating ferroptosis and photodynamic therapy, well-suitable for PD-L1-mediated immune checkpoint blockade. Chem. Eng. J. 2025, 505, 13. [Google Scholar] [CrossRef]
- Shi, S.; Yang, J.; Lin, M.; Chen, Q.; Wang, B.; Zhao, J.; Rensing, C.; Liu, H.; Fan, Z.; Feng, R. Using silkworm excrement to restore vegetation and soil ecology in heavily contaminated mining soils by multiple metal(loid)s: A recyclable sericulture measure. J. Hazard. Mater. 2023, 459, 12. [Google Scholar] [CrossRef]
- Hou, D.; Jia, X.; Wang, L.; McGrath, S.P.; Zhu, Y.; Hu, Q.; Zhao, F.; Bank, M.S.; O’Connor, D.; Nriagu, J. Global soil pollution by toxic metals threatens agriculture and human health. Science 2025, 388, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Rui, Q.; Yang, L.; Zi-jie, Y.; Hai-xia, W.; Lang, Z.; Ke, L. Remediation of Lead Zinc Mine Polluted Soil with Red Mud, Silkworm Sand, Ferrous Sulfate Passivating Agents. Sci. Technol. Eng. 2024, 24, 15725–15735. [Google Scholar]
- Luo, K.; Huang, Y.; Qin, H.; Yang, Y.; Liao, C.; Li, Q.; Liu, S. Study on the Inhibition Effect of Silkworm Sand Passivation Material on Cadmium and Zinc Pollution in Farmland Soil Around Mining Area. Light Ind. Sci. Technol. 2020, 36, 62–63. [Google Scholar]
- Liu, J.; He, T.; Yang, Z.; Peng, S.; Zhu, Y.; Li, H.; Lu, D.; Li, Q.; Feng, Y.; Chen, K.; et al. Insight into the mechanism of nano-TiO2-doped biochar in mitigating cadmium mobility in soil-pak choi system. Sci. Total Environ. 2024, 916, 12. [Google Scholar] [CrossRef]
- Bian, P.; Liu, Y.; Zheng, X.; Shen, W. Removal and Mechanism of Cadmium, Lead and Copper in Water by Functional Modification of Silkworm Excrement Biochar. Polymers 2022, 14, 2889. [Google Scholar] [CrossRef]
- Peng, S.; Liu, J.; Pan, G.; Qin, Y.; Yang, Z.; Yang, X.; Gu, M.; Zhu, Z.; Wei, Y. Combining SiO 2 NPs with biochar: A novel composite for enhanced cadmium removal from wastewater and alleviation of soil cadmium stress. Environ. Geochem. Health 2024, 46, 20. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Wang, M.; Shohag, M.J.I.; Lu, L.; He, T.; Liao, C.; Zhang, Z.; Chen, J.; You, X.; Zhao, Y.; et al. Biochar performance for preventing cadmium and arsenic accumulation, and the health risks associated with mustard (Brassica juncea) grown in co-contaminated soils. Ecotoxicol. Environ. Saf. 2023, 263, 11. [Google Scholar] [CrossRef] [PubMed]
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ. Technol. Inno. 2020, 19, 22. [Google Scholar] [CrossRef]
- Liu, J.; Yang, M.; Wang, Y.; Qu, L.; Zhong, G. Enhanced diuron remediation by microorganism-immobilized silkworm excrement composites and their impact on soil microbial communities. J. Hazard. Mater. 2019, 376, 29–36. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, X.; Zheng, Y.; Yang, H.; Cao, W. How far do we still need to go with antibiotics in aquatic environments? Antibiotic occurrence, chemical-free or chemical-limited strategies, key challenges, and future perspectives. Water Res. 2025, 275, 123179. [Google Scholar] [CrossRef]
- Zhou, S. Performance and Mechanism of Tetracyclineremoval by Silkworm Excrement Biochar/Fe-Co Co-Doped g-C3 N4 with Persulfate Activation. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2022. [Google Scholar] [CrossRef]
- Jiang, X.; Li, H.; Kong, J.; Li, Y.; Xin, X.; Zhou, J.; Zhang, R.; Lee, K.S.; Jin, B.R.; Gui, Z. Comprehensive analysis of biotransformation pathways and products of chloramphenicol by Raoultella ornithinolytica CT3: Pathway elucidation and toxicity assessment. J. Hazard. Mater. 2024, 480, 16. [Google Scholar] [CrossRef]
- Yue, Y.; Gao, Z.; Yang, J. Application of Biomass Pyrolysis Technology in Biofuel Production. Biol. Chem. Eng. 2024, 10, 254–256. [Google Scholar]
- Luo, H.; Li, J.; Zhang, H. Study on the Conditions of Silkworm Excrement Fermentation. China Biogas 2001, 19, 34–36. [Google Scholar]
- Huan, H.; Wang, L.; Zhang, Y. Regional differences, convergence characteristics, and carbon peaking prediction of agricultural carbon emissions in China. Environ. Pollut. 2025, 366, 11. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhang, H.; Jin, J. Research on the Basic Status and Driving Factors of Agricultural Carbon Emissions in China. J. Yunnan Agric. Univ. 2024, 18, 149–155. [Google Scholar] [CrossRef]
- Liu, S.A.; Wu, H.; Hu, J.M.; Wei, X.H.; Liu, K.Q.; Meng, Y.C.; Wei, Z.H. Effects of chemical fertilizer combined with green manure and silkworm excrement on soil carbon pool balance in no-tillage paddy field. J. South. Agric. 2020, 51, 2690–2696. [Google Scholar]
Technology | Principle | Advantages | Limitations | References |
---|---|---|---|---|
Supercritical fluid extraction technology | Utilizing supercritical fluids’ excellent solubility and diffusivity to penetrate plant cell walls efficiently. | Achieving efficient extraction of natural active ingredients at lower temperatures with no solvent residue. | It has shortcomings such as insufficient selectivity and difficulty in extracting strongly polar substances and substances with large molecular weights. | [21,22,23] |
Ultrasonic-assisted extraction technology | Ultrasonic waves destroy the cell wall structure to increase the permeability of the cell wall, thereby achieving efficient extraction. | It boasts high extraction efficiency, short extraction times, and effectively preserves the active ingredients. | It easily causes the extraction temperature to rise, leading to the decomposition of heat-sensitive substances and resulting in the loss of active ingredients. | [21,24,25] |
Microwave-assisted extraction technology | Leveraging both the thermal and non-thermal effects of microwave radiation, the extraction process is accelerated, and its efficiency is enhanced. | It offers advantages such as a short time frame, high efficiency, and a simple process, which saves energy consumption and can be implemented in large-scale production plants. | It has shortcomings that need improvement, such as requiring additional cleaning steps and having limitations with polar solvents. | [21,26,27] |
Ultra-high-pressure technology | Excessive pressure alters plant materials’ structure and enhances cell wall permeability. | It has obvious advantages, such as high operability, short use time, energy savings, environmental protection, being green and pollution-free, and being able to extract heat-sensitive compounds. | The equipment cost is high, and the maintenance expense is substantial; high pressure may damage the structure of macromolecules such as polysaccharides, affecting their biological activity. | [21,28,29] |
Enzyme-assisted extraction technology | An enzyme’s catalytic action destroys the structure of the plant cell wall to release active ingredients in cells and achieve efficient extraction. | Enzymes can improve extraction efficiency, shorten extraction time, and reduce the use of organic solvents. | Enzyme preparation costs are high; the extraction solution contains numerous impurities such as polysaccharides and proteins. | [21,30,31] |
Disease Category | Subtype of Disease | Active Components/Related Extracts of Silkworm Excrement | Mechanism of Action | References |
---|---|---|---|---|
Traditional Chinese Medicine diseases | Fever (temperature-lowering effect) | Water decoction of bamboo shavings, silkworm excrement, and tangerine peel | Exhibits more effective temperature-lowering effect than aspirin, with less stimulation to the gastrointestinal tract, liver, and kidneys; mechanism may be associated with impacting levels of mediators (noradrenaline (NA), 5-hydroxytryptamine (5-HT), dopamine (DA)) affecting the thermoregulatory center | [69] |
Syndrome of damp retention in the middle-jiao | Fagomine, 3-epi-fagomine, astragalin, quercitrin in silkworm excrement | Regulates aquaporin expression, playing a “dampness-resolving” role; mechanism may be related to the cAMP-PKA-CREB signaling pathway | [44,46,70] | |
Insomnia | Insomnia (neurological disorder) | Geranylacetone, farnesylacetone, phytol, phytone, isoquercitrin, GABA, glutamic acid, butyric acid | Targets specific receptors and modulates signaling pathways (e.g., GABAergic signaling pathway), thereby effectively alleviating insomnia. | [71,72] |
Diabetes mellitus | Type II diabetes (T2D) | Alkaloids such as 1-Deoxynojirimycin (1-DNJ) in silkworm excrement | Inhibits glucose absorption in the small intestine by suppressing α-glucosidase activity; lowers blood glucose by modulating hepatic enzymes involved in glucose metabolism; key pathway involves AMPK/PI3K/Akt signaling pathway | [73,74,75,76] |
Diabetic gastroparesis (DGP) | Silkworm excrement extract | Modulates the PI3K/Akt/mTOR signaling pathway to increase gastric emptying rate, attenuate apoptosis of Cajal mesenchymal stromal cells, and reduce stochastic blood glucose levels in rats with DGP | [77,78] | |
Cancer | Colon cancer | Lupeol (isolated from silkworm excrement) | Has significant anti-inflammatory and anti-tumor effects; inhibits proliferation, migration, and invasion of colon cancer cells HCT116 by suppressing IL-6/JAK2/STAT3 pathway activation and down-regulating pro-inflammatory factor expression. | [79,80] |
Radiation/chemotherapy-induced bone marrow suppression | Silkworm excrement extract | Promotes stem cell factor secretion, activates JAK2/STAT3 signaling pathway, and facilitates bone marrow repair, thereby alleviating bone marrow suppression. | [81,82] | |
Anemia | Iron deficiency anemia | Shengxuening (SXN) tablets (derived from silkworm excrement) | Demonstrates efficacy in treating iron deficiency anemia with a proven safety record | [83,84,85] |
Renal anemia (especially in patients undergoing maintenance hemodialysis) | Shengxuening (SXN) tablets (derived from silkworm excrement) | Effective in treating renal anemia, including that in patients undergoing maintenance hemodialysis, with a proven safety record | [84,85,86,87] | |
Migraine | Migraine (neurological disorder) | Petroleum ether extract of silkworm excrement (phytol as key component) | Phytol blocks the inactivation state of Nav1.7 sodium channel, shows high selectivity for Nav1.7, weak antagonism for TRPV1 and TRPA1 channels, and is independent of local anesthetic action sites. | [88,89] |
Arthritis | Rheumatoid arthritis (RA) | Aqueous and ethanolic extracts of silkworm excrement | Regulates six significantly associated metabolic pathways, restoring 33 endogenous metabolites (e.g., succinic semialdehyde, stearic acid, adrenergic acid) to a certain extent. | [90,91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, R.; Li, Y.; Shen, X.; Shao, Y. Research Progress on Comprehensive Utilization of Silkworm Excrement Bioresource. Resources 2025, 14, 128. https://doi.org/10.3390/resources14080128
Xue R, Li Y, Shen X, Shao Y. Research Progress on Comprehensive Utilization of Silkworm Excrement Bioresource. Resources. 2025; 14(8):128. https://doi.org/10.3390/resources14080128
Chicago/Turabian StyleXue, Rongxiang, Yu Li, Xiaoqiang Shen, and Yongqi Shao. 2025. "Research Progress on Comprehensive Utilization of Silkworm Excrement Bioresource" Resources 14, no. 8: 128. https://doi.org/10.3390/resources14080128
APA StyleXue, R., Li, Y., Shen, X., & Shao, Y. (2025). Research Progress on Comprehensive Utilization of Silkworm Excrement Bioresource. Resources, 14(8), 128. https://doi.org/10.3390/resources14080128