Fermentable Sugar Production from the Peels of Two Durian (Durio zibethinus Murr.) Cultivars by Phosphoric Acid Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Durian Peel
2.2. Analytical Methods
2.3. Phosphoric Acid Pretreatment of the Durian Peel Biomass
2.4. Enzymatic Saccharification
2.5. Scanning Electron Microscopy (SEM)
2.6. X-ray Diffraction (XRD)
2.7. Statistical Analysis
3. Results
3.1. Composition of the Durian Peel Biomass
3.2. Changes in the Chemical Composition of the Durian Peel Biomass during Phosphoric Acid Pretreatment
3.3. Enzymatic Hydrolysis of the Durian Peel Biomass
3.4. Changes of the Durian Peel Biomass Surface Morphology
3.5. Changes of the Cellulose Crystalline Structure of the Durian Peel Biomass
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yan, Q.; Wang, Y.; Rodiahwati, W.; Spiess, A.; Modigell, M. Alkaline-assisted screw press pretreatment affecting enzymatic hydrolysis of wheat straw. Bioprocess Biosyst. Eng. 2017, 40, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.A.; Yang, J.M.; Bae, H.J. Bioethanol production from individual and mixed agricultural biomass residues. Ind. Crops Prod. 2017, 95, 718–725. [Google Scholar] [CrossRef]
- Ho, L.-H.; Bhat, R. Exploring the potential nutraceutical values of durian (Durio zibethinus L.)—An exotic tropical fruit. Food Chem. 2015, 168, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Wisutiamonkul, A.; Ampomah-Dwamena, C.; Allan, A.C.; Ketsa, S. Carotenoid accumulation and gene expression during durian (Durio zibethinus) fruit growth and ripening. Sci. Hortic. 2017, 220, 233–242. [Google Scholar] [CrossRef]
- Unhasirikul, M.; Narkrugsa, W.; Naranong, N. Sugar production from durian (Durio zibethinus Murray) peel by acid hydrolysis. Afr. J. Biotechnol. 2013, 12, 5244–5251. [Google Scholar]
- Foo, K.Y.; Hameed, B.H. Transformation of durian biomass into a highly valuable end commodity: Trends and opportunities. Biomass Bioenergy 2011, 35, 2470–2478. [Google Scholar] [CrossRef]
- Tan, Y.L.; Abdullah, A.Z.; Hameed, B.H. Fast pyrolysis of durian (Durio zibethinus L) shell in a drop-type fixed bed reactor: Pyrolysis behavior and product analyses. Bioresour. Technol. 2017, 243, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Zaafouri, K.; Ziadi, M.; Ben Farah, R.; Farid, M.; Hamdi, M.; Regaya, I. Potential of Tunisian Alfa (Stipa tenassicima) fibers for energy recovery to 2G bioethanol: Study of pretreatment, enzymatic saccharification and fermentation. Biomass Bioenergy 2016, 94, 66–77. [Google Scholar] [CrossRef]
- Foston, M.; Ragauskas, A.J. Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass. Biomass Bioenergy 2010, 34, 1885–1895. [Google Scholar] [CrossRef]
- Fougere, D.; Nanda, S.; Clarke, K.; Kozinski, J.A.; Li, K. Effect of acidic pretreatment on the chemistry and distribution of lignin in aspen wood and wheat straw substrates. Biomass Bioenergy 2016, 91, 56–68. [Google Scholar] [CrossRef]
- Lewandowska, M.; Szymańska, K.; Kordala, N.; Dąbrowska, A.; Bednarski, W.; Juszczuk, A. Evaluation of Mucor indicus and Saccharomyces cerevisiae capability to ferment hydrolysates of rape straw and Miscanthus giganteus as affected by the pretreatment method. Bioresour. Technol. 2016, 212, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Obeng, A.K.; Premjet, D.; Premjet, S. A review article of biological pretreatment of agricultural biomass. Pertanika J. Trop. Agric. Sci. 2018, 41, 19–40. [Google Scholar]
- Parmar, I.; Rupasinghe, H.P.V. Optimization of dilute acid-based pretreatment and application of laccase on apple pomace. Bioresour. Technol. 2012, 124, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Jung, S.; Ragauskas, A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour. Technol. 2012, 117, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Siripong, P.; Duangporn, P.; Takata, E.; Tsutsumi, Y. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis. Bioresour. Technol. 2016, 203, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-H.P.; Cui, J.; Lynd, L.R.; Kuang, L.R. A Transition from Cellulose Swelling to Cellulose Dissolution by o-Phosphoric Acid: Evidence from Enzymatic Hydrolysis and Supramolecular Structure. Biomacromolecules 2006, 7, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Nieves, I.U.; Geddes, C.C.; Miller, E.N.; Mullinnix, M.T.; Hoffman, R.W.; Fu, Z.; Tong, Z.; Ingram, L.O. Effect of reduced sulfur compounds on the fermentation of phosphoric acid pretreated sugarcane bagasse by ethanologenic Escherichia coli. Bioresour. Technol. 2011, 102, 5145–5152. [Google Scholar] [CrossRef] [PubMed]
- Sathitsuksanoh, N.; Zhu, Z.; Zhang, Y.-H.P. Cellulose solvent-based pretreatment for corn stover and avicel: Concentrated phosphoric acid versus ionic liquid [BMIM]Cl. Cellulose 2012, 19, 1161–1172. [Google Scholar] [CrossRef]
- Boonsombuti, A.; Luengnaruemitchai, A.; Wongkasemjit, S. Effect of Phosphoric Acid Pretreatment of Corncobs on the Fermentability of Clostridium beijerinckii TISTR 1461 for Biobutanol Production. Prep. Biochem. Biotechnol. 2015, 45, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.B.; Lundin, M.; Brandberg, T.; Lennartsson, P.R.; Taherzadeh, M.J. Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind. Crops Prod. 2015, 69, 314–323. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; National Renewable Energy Laboratory: Golden, CO, USA, 2012.
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass; National Renewable Energy Laboratory: Golden, CO, USA, 2008.
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; National Renewable Energy Laboratory: Golden, CO, USA, 2008.
- Searle, S.Y.; Malins, C.J. Waste and residue availability for advanced biofuel production in EU Member States. Biomass Bioenergy 2016, 89, 2–10. [Google Scholar] [CrossRef]
- Hoşgün, E.Z.; Berikten, D.; Kıvanç, M.; Bozan, B. Ethanol production from hazelnut shells through enzymatic saccharification and fermentation by low-temperature alkali pretreatment. Fuel 2017, 196, 280–287. [Google Scholar] [CrossRef]
- Kacem, I.; Koubaa, M.; Maktouf, S.; Chaari, F.; Najar, T.; Chaabouni, M.; Ettis, N.; Chaabouni, E.S. Multistage process for the production of bioethanol from almond shell. Bioresour. Technol. 2016, 211, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, J.Y.; Jang, H.M.; Lee, M.W.; Park, J.M. Sequential dilute acid and alkali pretreatment of corn stover: Sugar recovery efficiency and structural characterization. Bioresour. Technol. 2015, 182, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Vadivel, V.; Moncalvo, A.; Dordoni, R.; Spigno, G. Effects of an acid/alkaline treatment on the release of antioxidants and cellulose from different agro-food wastes. Waste Manag. 2017, 64, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.H.; Kim, I.J.; Kim, H.K.; Kim, K.H. Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresour. Technol. 2013, 132, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Rocha, G.J.M.; Martin, C.; Soares, I.B.; Maior, A.M.S.; Baudel, H.M.; de Abreu, C.A.M. Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioenergy 2011, 35, 663–670. [Google Scholar] [CrossRef]
- De Carvalho, D.M.; Sevastyanova, O.; Penna, L.S.; de Silva, B.P.; Lindström, M.E.; Colodette, J.L. Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Ind. Crops Prod. 2015, 73, 118–126. [Google Scholar] [CrossRef]
- Ishola, M.M.; Isroi; Taherzadeh, M.J. Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresour. Technol. 2014, 165, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Henriksson, G.; Gellerstedt, G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 2007, 98, 3061–3068. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-Y.; Kim, B.-R.; Han, S.-H.; Shin, S.-J. Different response between woody core and bark of goat willow (Salix caprea L.) to concentrated phosphoric acid pretreatment followed by enzymatic saccharification. Energy 2015, 81, 21–26. [Google Scholar] [CrossRef]
- Yoo, H.Y.; Lee, J.H.; Kim, D.S.; Lee, J.H.; Lee, S.K.; Lee, S.J.; Park, C.; Kim, S.W. Enhancement of glucose yield from canola agricultural residue by alkali pretreatment based on multi-regression models. J. Ind. Eng. Chem. 2017, 51, 303–311. [Google Scholar] [CrossRef]
- Zhang, Y.-H.P.; Ding, S.-Y.; Mielenz, J.R.; Cui, J.-B.; Elander, R.T.; Laser, M.; Himmel, M.E.; McMillan, J.R.; Lynd, L.R. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 2007, 97, 214–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Wang, Z.; Shen, F.; Hu, J.; Sun, F.; Lin, L.; Yang, G.; Zhang, Y.; Deng, S. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: Evaluating the pretreatment flexibility on feedstocks and particle sizes. Bioresour. Technol. 2014, 166, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-F.; Fan, Y.-M.; Xu, F.; Sun, R.-C.; Zhang, X.-L. Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: Characterization of the cellulose rich fraction. Ind. Crops Prod. 2010, 32, 551–559. [Google Scholar] [CrossRef]
- Cai, D.; Li, P.; Chen, C.; Wang, Y.; Hu, S.; Cui, C.; Qin, P.; Tan, T. Effect of chemical pretreatments on corn stalk bagasse as immobilizing carrier of Clostridium acetobutylicum in the performance of a fermentation-pervaporation coupled system. Bioresour. Technol. 2016, 220, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Noppadon, S.; Zhiguang, Z.; Sungsool, W.; Zhang, Y.-H.P. Cellulose solvent-based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass. Biotechnol. Bioeng. 2011, 108, 521–529. [Google Scholar] [CrossRef]
- Takata, E.; Tsutsumi, K.; Tsutsumi, Y.; Tabata, K. Production of monosaccharides from napier grass by hydrothermal process with phosphoric acid. Bioresour. Technol. 2013, 143, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Hideno, A.; Kawashima, A.; Endo, T.; Honda, K.; Morita, M. Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers on the surface. Bioresour. Technol. 2013, 132, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Behzad, S.; Keikhosro, K.; Akram, Z. Oil, chitosan, and ethanol production by dimorphic fungus Mucor indicus from different lignocelluloses. J. Chem. Technol. Biotechnol. 2016, 91, 1835–1843. [Google Scholar] [CrossRef]
Composition | Monthong (% dw) | Chanee (% dw) |
---|---|---|
Glucan | 44.74 ± 0.21 a | 42.06 ± 0.28 b |
Xylan | 13.00 ± 0.15 a | 12.28 ± 0.20 b |
Galactan | 1.30 ± 0.05 a | 1.29 ± 0.09 a |
Arabinan | 3.23 ± 0.05 a | 2.97 ± 0.05 b |
Ash | 4.05 ± 0.04 b | 4.87 ± 0.06 a |
Extractive | 9.10 ± 0.13 b | 10.18 ± 0.08 a |
AIL | 10.23 ± 0.24 b | 11.73 ± 0.29 a |
ASL | 3.21 ± 0.16 a | 3.20 ± 0.13 a |
Total lignin | 13.44 ± 0.23 b | 14.93 ± 0.31 a |
Composition (dw) | Untreated (%) | 70% | 75% | 80% | 85% |
---|---|---|---|---|---|
Glucan | 44.74 ± 0.71 e | 67.55 ± 0.70 c | 70.47 ± 0.62 b | 75.23 ± 0.75 a | 57.48 ± 0.69 d |
Xylan | 13.00 ± 0.65 a | 3.41 ± 0.67 b | 1.54 ± 0.64 c | 0.32 ± 0.62 d | n.d. |
AIL | 10.23 ± 0.74 a | 10.81 ± 0.68 a | 10.70 ± 0.76 a | 10.56 ± 0.74 a | 10.49 ± 0.74 a |
ASL | 3.21 ± 0.66 a | 1.77 ± 0.61 b | 1.27 ± 0.60 c | 1.13 ± 0.60 c | 1.04 ± 0.58 c |
Total lignin | 13.44 ± 0.73 a | 12.58 ± 0.68 b | 11.97 ± 0.72 c | 11.69 ± 0.74 c | 11.53 ± 0.74 c |
Composition (dw) | Untreated (%) | 70% | 75% | 80% | 85% |
---|---|---|---|---|---|
Glucan | 42.06 ± 0.78 e | 60.20 ± 0.77 c | 63.36 ± 0.74 b | 69.29 ± 0.75 a | 53.69 ± 0.85 d |
Xylan | 12.28 ± 0.70 a | 3.54 ± 0.66 b | 1.65 ± 0.66 c | 0.35 ± 0.70 d | n.d. |
AIL | 11.73 ± 0.79 a | 12.29 ± 0.78 a | 11.97 ± 0.71 a | 11.92 ± 0.81 a | 11.76 ± 0.72 a |
ASL | 3.20 ± 0.63 a | 1.74 ± 0.62 b | 1.32 ± 0.62 c | 1.12 ± 0.62 c | 1.04 ± 0.67 c |
Total lignin | 14.93 ± 0.81 a | 14.02 ± 0.78 b | 13.29 ± 0.74 b c | 13.04 ± 0.83 c | 12.81 ± 0.74 c |
Cultivar | Untreated (%) | 70% | 75% | 80% | 85% |
---|---|---|---|---|---|
Monthong | 31.21 | 40.21 | 40.04 | 39.92 | 18.56 |
Chanee | 21.49 | 28.16 | 26.63 | 25.31 | 18.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obeng, A.K.; Premjet, D.; Premjet, S. Fermentable Sugar Production from the Peels of Two Durian (Durio zibethinus Murr.) Cultivars by Phosphoric Acid Pretreatment. Resources 2018, 7, 60. https://doi.org/10.3390/resources7040060
Obeng AK, Premjet D, Premjet S. Fermentable Sugar Production from the Peels of Two Durian (Durio zibethinus Murr.) Cultivars by Phosphoric Acid Pretreatment. Resources. 2018; 7(4):60. https://doi.org/10.3390/resources7040060
Chicago/Turabian StyleObeng, Abraham Kusi, Duangporn Premjet, and Siripong Premjet. 2018. "Fermentable Sugar Production from the Peels of Two Durian (Durio zibethinus Murr.) Cultivars by Phosphoric Acid Pretreatment" Resources 7, no. 4: 60. https://doi.org/10.3390/resources7040060
APA StyleObeng, A. K., Premjet, D., & Premjet, S. (2018). Fermentable Sugar Production from the Peels of Two Durian (Durio zibethinus Murr.) Cultivars by Phosphoric Acid Pretreatment. Resources, 7(4), 60. https://doi.org/10.3390/resources7040060