Clean Energy Sources: Insights from Russia
Abstract
:1. Introduction
- Economic growth and creation of new jobs
- Science and technology development
- Environmental improvement
- Energy supply for isolated power systems
2. Materials and Methods
2.1. Research Design
- Data regarding the potential of implementing clean and renewable energy sources (solar, wind, hydro and nuclear) in the Krasnoyarsk Region (sources of information are described in further sections)
- Demographic and industrialization data collected from open sources (official statistics)
- Data regarding emissions (carbon dioxide and sulfur oxide) was collected from open sources (official statistics)
2.2. The energy Sector of Krasnoyarsk Region
2.3. Socioeconomic Data
2.4. Mapping of Solar and Wind Power Potential
2.5. Mapping of Hydropower Potential
- Currently functioning hydro power stations: (1) Krasnoyarskaya; (2) Boguchanskaya; (3) Kureiskaya; (4) Mainskaya; (5) Enashiminskaya; (6) Ust-Khantaiskaya; (7) Sayano–Shushenskaya;
- Potential hydro power stations: (1) Motyginskaya; (2) Evenkiyskaya (or Turukhanskaya); (3) Nizhne-Kureiskaya;
- Municipal entities with the potential for the development of micro hydro power stations: (1) Motyginskiy; (2) Kuraginskiy; (3) Boguchanskiy; (4) Nazarovskiy; (5) Bolʹshemurtinskiy; (6) Karatuzskiy; (7) Abanskiy; (8) Tiukhtetskiy; (9) Novoselovskiy; (10) Sayanskiy; (11) Bolʹsheuluĭskiy; (12) Sukhobuzimskiy.
2.6. Mapping of Nuclear Power Potential
3. Results
- X-axis—potential of a source (solar: average annual irradiance (kW/m2); wind: average annual wind speed (m/s); small-scale hydro potential (MW))
- Solar power has the highest potential to be implemented in the majority of thinly populated municipal entities of the Krasnoyarsk Region as a primary source of energy;
- Wind power has a potential to be implemented mostly as a supplemental source of energy in industrialized municipal entities;
- Nuclear power development may be considered in densely populated and industrialized municipal entities (in case if there would be no conflict with hydro);
- There are four municipal entities (Sukhobuzimskiy, Novoselovskiy, Uiarskiy and Tiukhtetskiy), where all three purely renewable (solar, wind and micro hydro) sources of energy may be implemented (upon the condition of no conflict among them);
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McKinsey. Global Energy Perspective 2019; McKinsey Solutions Sprl: New York, NY, USA, 2019. [Google Scholar]
- Clairand, J.-M.; Rodríguez-García, J.; Álvarez-Bel, C. Electric Vehicle Charging Strategy for Isolated Systems with High Penetration of Renewable Generation. Energies 2018, 11, 3188. [Google Scholar] [CrossRef]
- Labatt, S.; White, R. Carbon Finance: The Financial Implications of Climate Change; Wiley: Hoboken, NJ, USA, 2007; ISBN 0471794678. [Google Scholar]
- Geng, Z.; Conejo, A.J.; Chen, Q.; Xia, Q.; Kang, C. Electricity production scheduling under uncertainty: Max social welfare vs. min emission vs. max renewable production. Appl. Energy 2017, 193, 540–549. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Future Trajectories of Renewable Energy Consumption in the European Union. Resources 2018, 7, 10. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Ritala, P.; Huotari, P. The Circular Economy: Exploring the Introduction of the Concept Among S&P 500 Firms. J. Ind. Ecol. 2017, 21, 487–490. [Google Scholar]
- IRENA. Renewable Power Generation Costs in 2017; IRENA: Abu Dhabi, United Arab Emirates, 2018. [Google Scholar]
- Osório, G.J.; Shafie-Khah, M.; Lotfi, M.; Ferreira-Silva, B.J.M.; Catalão, J.P.S. Demand-Side management of smart distribution grids incorporating renewable energy sources. Energies 2019, 12, 143. [Google Scholar] [CrossRef]
- IRENA. Electricity Storage and Renewables: Costs and Markets to 2030; IRENA: Abu Dhabi, United Arab Emirates, 2017. [Google Scholar]
- Prajapati, R.N. Delineation of Run of River Hydropower Potential of Karnali Basin- Nepal Using GIS and HEC-HMS. Eur. J. Adv. Eng. Technol. 2015, 2, 50–54. [Google Scholar]
- Grigoras, G.; Scarlatache, F. An assessment of the renewable energy potential using a clustering based data mining method. Case study in Romania. Energy 2015, 81, 416–429. [Google Scholar] [CrossRef]
- Angelis-Dimakis, A.; Biberacher, M.; Dominguez, J.; Fiorese, G.; Gadocha, S.; Gnansounou, E.; Guariso, G.; Kartalidis, A.; Panichelli, L.; Pinedo, I.; et al. Methods and tools to evaluate the availability of renewable energy sources. Renew. Sustain. Energy Rev. 2011, 15, 1182–1200. [Google Scholar] [CrossRef]
- Mondal, M.A.H.; Denich, M. Assessment of renewable energy resources potential for electricity generation in Bangladesh. Renew. Sustain. Energy Rev. 2010, 14, 2401–2413. [Google Scholar] [CrossRef]
- Ozturk, M.; Bezir, N.C.; Ozek, N. Hydropower-water and renewable energy in Turkey: Sources and policy. Renew. Sustain. Energy Rev. 2009, 13, 605–615. [Google Scholar] [CrossRef]
- Nguyen, K.Q. Wind energy in Vietnam: Resource assessment, development status and future implications. Energy Policy 2007, 35, 1405–1413. [Google Scholar] [CrossRef]
- Šúri, M.; Huld, T.A.; Dunlop, E.D.; Ossenbrink, H.A. Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy 2007, 81, 1295–1305. [Google Scholar] [CrossRef]
- Yuksek, O.; Komurcu, M.I.; Yuksel, I.; Kaygusuz, K. The role of hydropower in meeting Turkey’s electric energy demand. Energy Policy 2006, 34, 3093–3103. [Google Scholar] [CrossRef]
- Kemal Ozturk, H.; Yilanci, A.; Atalay, O. Past, present and future status of electricity in Turkey and the share of energy sources. Renew. Sustain. Energy Rev. 2007, 11, 183–209. [Google Scholar] [CrossRef]
- Farooq, M.K.; Kumar, S. An assessment of renewable energy potential for electricity generation in Pakistan. Renew. Sustain. Energy Rev. 2013, 20, 240–254. [Google Scholar] [CrossRef]
- Hubert, T.; Vidalenc, E. Renewable electricity potentials in France: A long term Perspective. Energy Procedia 2012, 20, 247–257. [Google Scholar] [CrossRef]
- Verbruggen, A.; Fischedick, M.; Moomaw, W.; Weir, T.; Nadaï, A.; Nilsson, L.J.; Nyboer, J.; Sathaye, J. Renewable energy costs, potentials, barriers: Conceptual issues. Energy Policy 2010, 38, 850–861. [Google Scholar] [CrossRef]
- Fthenakis, V.; Mason, J.E.; Zweibel, K. The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US. Energy Policy 2009, 37, 387–399. [Google Scholar] [CrossRef]
- Hoogwijk, M.; Graus, W. Global Potential of Renewable Energy Sources: A literature Assessment. Background Report Prepared by Order of REN21; Ecofys: Utrecht, Netherlands, 2008. [Google Scholar]
- De Vries, B.J.M.; van Vuuren, D.P.; Hoogwijk, M.M. Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach. Energy Policy 2007, 35, 2590–2610. [Google Scholar] [CrossRef]
- Hoogwijk, M.M. On the Global and Regional Potential of Renewable Energy Sources; Proefschrift Universiteit Utrecht: Utrecht, Netherlands, 2004; ISBN 9039336407. [Google Scholar]
- Kucukali, S.; Baris, K. Assessment of small hydropower (SHP) development in Turkey: Laws, regulations and EU policy perspective. Energy Policy 2009, 37, 3872–3879. [Google Scholar] [CrossRef]
- Yue, C.D.; Wang, S.S. GIS-based evaluation of multifarious local renewable energy sources: A case study of the Chigu area of southwestern Taiwan. Energy Policy 2006, 34, 730–742. [Google Scholar] [CrossRef]
- Molodtsov, S. Current State and Prospects of Renewable Energy Technology in Russia. In Renewable Energies for Central Asia Countries: Economic, Environmental and Social Impacts; Springer: New York, NY, USA, 2006; pp. 123–129. [Google Scholar]
- Cherepovitsyn, A.; Tcvetkov, P. Overview of the prospects for developing a renewable energy in Russia. In Proceedings of the 2017 International Conference on Green Energy and Applications (ICGEA 2017), Singapore, 25–27 March 2017; pp. 113–117. [Google Scholar]
- Amerkanov, R.; Kirichenko, E.; Armaganyan, E.; Dvorniy, V. Problems of Renewable Energy Sources Application. Tech. Opponent 2018, 46, 46–53. [Google Scholar]
- Daus, Y.V.; Kharchenko, V.V.; Yudaev, I.V. Evaluation of solar radiation intensity for the territory of the Southern Federal District of Russia when designing microgrids based on renewable energy sources. Appl. Sol. Energy 2016, 52, 151–156. [Google Scholar] [CrossRef]
- Izadyar, N.; Ong, H.C.; Chong, W.T.; Leong, K.Y. Resource assessment of the renewable energy potential for a remote area: A review. Renew. Sustain. Energy Rev. 2016, 62, 908–923. [Google Scholar] [CrossRef]
- Stougie, L.; Tsalidis, G.; van der Kooi, H.J.; Korevaar, G. Environmental, economic and exergetic sustainability assessment of power generation from fossil and renewable energy sources. Renew. Energy 2018, 128, 520–528. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Greiner, A.; Grüne, L.; Semmler, W. Economic growth and the transition from non-renewable to renewable energy. Environ. Dev. Econ. 2014, 19, 417–439. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V. Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 2016, 60, 1634–1653. [Google Scholar] [CrossRef]
- Ermolenko, B.V.; Ermolenko, G.V.; Fetisova, Y.A.; Proskuryakova, L.N. Wind and solar PV technical potentials: Measurement methodology and assessments for Russia. Energy 2017, 137, 1001–1012. [Google Scholar] [CrossRef]
- Lombardi, P.; Sokolnikova, T.; Suslov, K.; Voropai, N.; Styczynski, Z.A. Isolated power system in Russia: A chance for renewable energies? Renew. Energy 2016, 90, 532–541. [Google Scholar] [CrossRef]
- Elistratov, V.; Kudryasheva, I. Methodology for parameters selection and evaluation the effectiveness of decentralized energy supply systems based on renewable energy sources. ARPN J. Eng. Appl. Sci. 2016, 11, 3509–3512. [Google Scholar]
- IREA. Renewable Energy Prospects for the Russian Federation; IRENA: Abu Dhabi, United Arab Emirates, 2017. [Google Scholar]
- IRENA. China 13th Renewable Energy Development Five Year Plan (2016–2020). Available online: https://www.iea.org/policiesandmeasures/pams/china/name-161254-en.php?s=dHlwZT1yZSZzdGF0dXM9T2s,&return=PG5hdiBpZD0iYnJlYWRjcnVtYiI-PGEgaHJlZj0iLyI-SG9tZTwvYT4gJnJhcXVvOyA8YSBocmVmPSIvcG9saWNpZXNhbmRtZWFzdXJlcy8iPlBvbGljaWVzIGFuZCBNZWFzdXJlczwvYT4gJnJhcXV (accessed on 28 August 2018).
- Brook, B.W.; Bradshaw, C.J.A. Key role for nuclear energy in global biodiversity conservation. Conserv. Biol. 2015, 29, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Dincer, I.; Acar, C. A review on clean energy solutions for better sustainability. Int. J. Energy Res. 2015, 39, 585–606. [Google Scholar] [CrossRef]
- Gasparatos, A.; Doll, C.N.H.; Esteban, M.; Ahmed, A.; Olang, T.A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 2017, 70, 161–184. [Google Scholar] [CrossRef]
- Heard, B.P.; Brook, B.W.; Wigley, T.M.L.; Bradshaw, C.J.A. Supplementary material: Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renew. Sustain. Energy Rev. 2017, 76, 1122–1133. [Google Scholar] [CrossRef]
- Hong, S.; Bradshaw, C.J.A.; Brook, B.W. Global zero-carbon energy pathways using viable mixes of nuclear and renewables. Appl. Energy 2015, 143, 451–459. [Google Scholar] [CrossRef]
- Santanglei, A.; Toivonen, T.; Pouzols, F.M.; Pogson, M.; Hastings, A.; Smith, P.; Moilanen, A. Global change synergies and trade-offs between renewable energy and biodiversity. GCB Bioenergy 2016, 8, 941–951. [Google Scholar] [CrossRef]
- Bilgili, M.; Ozbek, A.; Sahin, B.; Kahraman, A. An overview of renewable electric power capacity and progress in new technologies in the world. Renew. Sustain. Energy Rev. 2015, 49, 323–334. [Google Scholar] [CrossRef]
- Garcia-Diaz, B.L.; Olson, L.; Martinez-Rodriguez, M.; Fuentes, R.; Colon-Mercado, H.; Gray, J. High temperature electrochemical engineering and clean energy systems. J. S. C. Acad. Sci. 2016, 14, 4. [Google Scholar]
- Krasnoyarsk Region Housing and Public Utilities Investments to the Renewable Energy. Available online: http://gkh24.ru/pages/view/61 (accessed on 25 August 2018). (In Russian).
- Krasnoyarsk Region Official Web-site. Available online: http://www.krskstate.ru/about (accessed on 25 August 2018). (In Russian).
- Russian Ministry of Energy. Major Characteristics of Russian Power Sector. Available online: https://minenergo.gov.ru/node/532 (accessed on 25 August 2018). (In Russian)
- Analytical Center for the Government of the Russian Federation. Russian Energy 2015; Analytical Center for the Government of the Russian Federation: Moscow, Russia, 2015.
- Koptseva, N.; Sitnikova, A. Environmental Management in Central Siberia (Based on Analysis of the Krasnoyarsk Territory). IOP Conf. Ser. Earth Environ. Sci. 2018, 164, 012020. [Google Scholar] [CrossRef]
- Gorbacheva, N.V.; Sovacool, B.K. Pain without gain? Reviewing the risks and rewards of investing in Russian coal-fired electricity. Appl. Energy 2015, 154, 970–986. [Google Scholar] [CrossRef]
- Ministry of Natural Resources of Russian Federation. Report on the Environmental Condition and Control in Russian Federation in 2016; Ministry of Natural Resources of Russian Federation: Moscow, Russia, 2017.
- IEA. Russia 2014. Energy Policies beyond IEA Countries; IEA: Paris, France, 2014. [Google Scholar]
- Huang, K.; Fu, J.S.; Prikhodko, V.Y.; Storey, J.M.; Romanov, A.; Hodson, E.L.; Cresko, J.; Morozova, I.; Ignatieva, Y.; Cabaniss, J. Russian anthropogenic black carbon: Emission reconstruction and arctic black carbon simulation. J. Geophys. Res. 2015, 120, 306–333. [Google Scholar] [CrossRef]
- Klimatskaya, L. Chemical pollution of environment in the cities of Central Siberia: Risk for the health of the population. Med. Środowiskowa Environ. Med. 2015, 18, 12–17. [Google Scholar]
- The Institute of Natural Monopolies. Research Relevancy and Perspectives of Coal Generation Facilities’ Modernization. Available online: http://www.ipem.ru/research/power/power_presentations/172.html (accessed on 25 August 2018). (In Russian).
- President of Russia. Meeting on the Environmental Situation in the Krasnoyarsk Territory. Available online: http://en.kremlin.ru/events/president/news/56816 (accessed on 25 August 2018). (In Russian).
- Gazrom. Over 28,000 Kilometers of Gas Pipelines Built by Gazprom under Gasification Program Since 2005. Gazrom, 29 November 2017. [Google Scholar]
- Krasnoyarsk Region Official Web-Site. Krasnoyarsk Region Started the Development of Gasification Program for Housing and Utility Sector. Available online: http://www.krskstate.ru/press/news/0/news/88437 (accessed on 25 August 2018). (In Russian).
- Wigley, T.M.L. Coal to gas: The influence of methane leakage. Clim. Chang. 2011, 108, 601–608. [Google Scholar] [CrossRef]
- Hayhoe, K.; Kheshgi, H.S.; Jain, A.K.; Wuebbles, D.J. Substitution of natural gas for coal: Climatic effects of utility sector emissions. Clim. Chang. 2002, 54, 107–139. [Google Scholar] [CrossRef]
- Alvarez, R.A.; Pacala, S.W.; Winebrake, J.J.; Chameides, W.L.; Hamburg, S.P. Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. USA 2012, 109, 6435–6440. [Google Scholar] [CrossRef]
- Howarth, R.W. A bridge to nowhere: Methane emissions and the greenhouse gas footprint of natural gas. Energy Sci. Eng. 2014, 2, 47–60. [Google Scholar] [CrossRef]
- Zhang, X.; Myhrvold, N.P.; Caldeira, K. Key factors for assessing climate benefits of natural gas versus coal electricity generation. Environ. Res. Lett. 2014, 9, 114022. [Google Scholar] [CrossRef]
- Ohlan, R. The impact of population density, energy consumption, economic growth and trade openness on CO2 emissions in India. Nat. Hazards 2015, 79, 1409–1428. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Wu, W. Assessing the impact of population, income and technology on energy consumption and industrial pollutant emissions in China. Appl. Energy 2015, 155, 904–917. [Google Scholar] [CrossRef]
- Liddle, B. Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses. Popul. Environ. 2014, 35, 286–304. [Google Scholar] [CrossRef]
- Shahbaz, M.; Loganathan, N.; Sbia, R.; Afza, T. The effect of urbanization, affluence and trade openness on energy consumption: A time series analysis in Malaysia. Renew. Sustain. Energy Rev. 2015, 47, 683–693. [Google Scholar] [CrossRef]
- Saidi, K.; Hammami, S. The impact of CO2 emissions and economic growth on energy consumption in 58 countries. Energy Rep. 2015, 1, 62–70. [Google Scholar] [CrossRef]
- Krasnoyarsk Region Official Web-site. Municipal Entities of Krasnoyarsk Region. Available online: http://www.krskstate.ru/about/kray/mun (accessed on 25 August 2018). (In Russian).
- Krasstat. Krasnoyarsk Regional Statistical Annual Report 2018. Section 25.1 “Population Density”; Krasstat: Krasnoyarsk, Russia, 2018. [Google Scholar]
- Krasstat. Krasnoyarsk Regional Statistical Annual Report 2018. Section 25.14 “Volume of Shipped Goods of Own Production, Insource Performed Works and Services by Actual Types of Economic Activity”; Krasstat: Krasnoyarsk, Russia, 2018. [Google Scholar]
- Federal Service for Hydrometeorology and Environmental Monitoring. List of the Cities with the Highest Air Pollution Level; Federal Service for Hydrometeorology and Environmental Monitoring: Moscow, Russia, 2017.
- Krasstat. Krasnoyarskstat Database for Indicators of Municipal Entities of Krasnoyarks Region. Available online: http://www.krasstat.gks.ru/wps/wcm/connect/rosstat_ts/krasstat/ru/municipal_statistics /krsnMstat/ (accessed on 25 August 2018). (In Russian).
- World Energy Council. World Energy Resources Hydropower 2016; World Energy Council: London, UK, 2016. [Google Scholar]
- International Hydropower Association. Russia Statistics. Available online: https://www.hydropower.org/country-profiles/russia (accessed on 25 August 2018). (In Russian).
- Sidorenko, A. Priorities and Pathways in Services Reform—Part II; Findlay, C., Ed.; University of Adelaide: Adelaide, Australia, 2013. [Google Scholar]
- Government of the Russian Federation. Decree from June 9, 2017 #1209-r; Government of the Russian Federation: Moscow, Russia, 2017.
- LLC Geola. Motyginskaya Hydro Power Station on the River Angara Feasibility Study; LLC Geola: Krasnoyarsk, Russia, 2009. [Google Scholar]
- Anaya, J. Report of the Special Rapporteur on the Situation of Human Rights and Fundamental Freedoms of Indigenous People; UN Human Rights Council: Geneva, Switzerland, 2010. [Google Scholar]
- Rushydro Turuhanskaya Hydro Power Station. Available online: http://www.lhp.rushydro.ru/company/objectsmap/5744.html (accessed on 25 August 2018). (In Russian).
- Rushydro Nizhne-Kureiskaya Hydro Power Station. Available online: http://www.rushydro.ru/nkges/ (accessed on 25 August 2018). (In Russian).
- JSC «PA ECP» The Joint Stock Company “Production Association “Electrochemical Plant”. Available online: http://www.ecp.ru/eng/ (accessed on 25 August 2018). (In Russian).
- Federal Nuclear Organization Federal State Unitary Enterprise “Mining and Chemical Combine”. Available online: https://sibghk.ru (accessed on 25 August 2018). (In Russian).
- Vasileva, Z.; Likhacheva, T.; Globa, S. The Industrial Development Strategy of Krasnoyarsk Krai: Challenges and Actors of Development. J. Sib. Fed. Univ. Humanit. Soc. Sci. 2016, 11, 2582–2591. [Google Scholar] [CrossRef]
- Deshmukh, M.; Deshmukh, S. Modeling of hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2008, 12, 235–249. [Google Scholar] [CrossRef]
- Sovacool, B.K. How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res. Soc. Sci. 2016, 13, 202–215. [Google Scholar] [CrossRef]
- Sovacool, B.K. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States. Energy Policy 2009, 37, 4500–4513. [Google Scholar] [CrossRef]
- Russian Gazette. The draft law on quotas of emissions to the atmosphere has been submitted to the government. Available online: https://rg.ru/2019/02/22/zakonoproekt-o-kvotirovanii-vybrosov-v-atmosferu-vnesen-v-pravitelstvo.html (accessed on 25 August 2018). (In Russian).
- Jeong, J.H.; Ou, T.; Linderholm, H.W.; Kim, B.M.; Kim, S.J.; Kug, J.S.; Chen, D. Recent recovery of the Siberian High intensity. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Mas’ud, A.A.; Wirba, A.V.; Muhammad-Sukki, F.; Mas’ud, I.A.; Munir, A.B.; Yunus, N.M. An assessment of renewable energy readiness in Africa: Case study of Nigeria and Cameroon. Renew. Sustain. Energy Rev. 2015, 51, 775–784. [Google Scholar] [CrossRef]
- Abdullah, A.; Wagner, N.; Gielen, D.; Griffiths, S.; Reinisch, H.; McQueen, D.; Sgouridis, S.; Saygin, D. RE-mapping the UAE’s energy transition: An economy-wide assessment of renewable energy options and their policy implications. Renew. Sustain. Energy Rev. 2016, 55, 1180–1186. [Google Scholar]
- Tucho, G.T.; Weesie, P.D.M.; Nonhebel, S. Assessment of renewable energy resources potential for large scale and standalone applications in Ethiopia. Renew. Sustain. Energy Rev. 2014, 40, 422–431. [Google Scholar] [CrossRef]
- Anagreh, Y.; Bataineh, A. Renewable energy potential assessment in Jordan. Renew. Sustain. Energy Rev. 2011, 15, 2232–2239. [Google Scholar] [CrossRef]
- Anagreh, Y.; Bataineh, A.; Al-Odat, M. Assessment of renewable energy potential, at Aqaba in Jordan. Renew. Sustain. Energy Rev. 2010, 14, 1347–1351. [Google Scholar] [CrossRef]
- Al-Badi, A.H.; Malik, A.; Gastli, A. Assessment of renewable energy resources potential in Oman and identification of barrier to their significant utilization. Renew. Sustain. Energy Rev. 2009, 13, 2734–2739. [Google Scholar] [CrossRef]
- Jeong, J.S.; Ramírez-Gómez, Á. Optimizing the location of a biomass plant with a fuzzy-DEcision-MAking Trial and Evaluation Laboratory (F-DEMATEL) and multi-criteria spatial decision assessment for renewable energy management and long-term sustainability. J. Clean. Prod. 2018, 182, 509–520. [Google Scholar] [CrossRef]
- Padrón, I.; Avila, D.; Marichal, G.N.; Rodríguez, J.A. Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago. Renew. Sustain. Energy Rev. 2019, 101, 221–230. [Google Scholar] [CrossRef]
- Stambouli, A.B. Algerian renewable energy assessment: The challenge of sustainability. Energy Policy 2011, 39, 4507–4519. [Google Scholar] [CrossRef]
- Parker, N.; Williams, R.; Dominguez-Faus, R.; Scheitrum, D. Renewable natural gas in California: An assessment of the technical and economic potential. Energy Policy 2017, 11, 235–245. [Google Scholar] [CrossRef]
- Góralczyk, M. Life-cycle assessment in the renewable energy sector. Appl. Energy 2003, 75, 205–211. [Google Scholar] [CrossRef]
- Chakma, S.; Vaishya, R.C.; Yadav, A.K.; Pooja. Assessment of renewable energy potential in India: A review. In Proceedings of the 2011 International Conference and Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia (ICUE 2011), Pattaya City, Thailand, 28–30 September 2011. [Google Scholar]
- Winkler, H. Renewable energy policy in South Africa: Policy options for renewable electricity. Energy Policy 2005, 33, 27–38. [Google Scholar] [CrossRef]
- Elsner, P. Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource. Renew. Sustain. Energy Rev. 2019, 104, 394–407. [Google Scholar] [CrossRef]
- Adefarati, T.; Bansal, R.C. Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources. Appl. Energy 2017, 206, 911–933. [Google Scholar] [CrossRef]
- Orehounig, K.; Evins, R.; Dorer, V.; Carmeliet, J. Assessment of renewable energy integration for a village using the energy hub concept. Energy Procedia 2014, 57, 940–949. [Google Scholar] [CrossRef]
- Krupenev, D. Assessment of Power System Adequacy with Renewable Energy Sources and Energy Storage Systems. E3S Web Conf. 2018, 58, 01012. [Google Scholar] [CrossRef]
- Chaiamarit, K.; Nuchprayoon, S. Impact assessment of renewable generation on electricity demand characteristics. Renew. Sustain. Energy Rev. 2014, 39, 995–1004. [Google Scholar] [CrossRef]
- Shi, X.; Liu, X.; Yao, L. Assessment of instruments in facilitating investment in off-grid renewable energy projects. Energy Policy 2016, 95, 437–446. [Google Scholar] [CrossRef]
- Lyu, X.; Shi, A. Research on the renewable energy industry financing efficiency assessment and mode selection. Sustainability 2018, 10, 222. [Google Scholar] [CrossRef]
- Nasirov, S.; Silva, C.; Agostini, C.A. Assessment of barriers and opportunities for renewable energy development in Chile. Energy Sources Part B Econ. Plan. Policy 2016, 11, 150–156. [Google Scholar] [CrossRef]
- Sait, M.; Chigbu, U.; Hamiduddin, I.; de Vries, W. Renewable Energy as an Underutilised Resource in Cities: Germany’s ‘Energiewende’ and Lessons for Post-Brexit Cities in the United Kingdom. Resources 2018, 8, 7. [Google Scholar] [CrossRef]
- Shen, Y.C.; Lin, G.T.R.; Li, K.P.; Yuan, B.J.C. An assessment of exploiting renewable energy sources with concerns of policy and technology. Energy Policy 2010, 38, 4604–4616. [Google Scholar] [CrossRef]
- Nasirov, S.; Agostini, C.A.; Silva, C. An assessment of the implementation of renewable energy sources in the light of concerns over Chilean policy objectives. Energy Sources Part B Econ. Plan. Policy 2017, 12, 715–721. [Google Scholar] [CrossRef]
- Schwanitz, V.J.; Wierling, A.; Shah, P. Assessing the impact of renewable energy on regional sustainability—A comparative study of Sogn og Fjordane (Norway) and Okinawa (Japan). Sustainability 2017, 9, 1969. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, G.; Fan, Y.; Liu, L. Progress in energy complex system modelling and analysis. Int. J. Glob. Energy Issues 2006, 25, 109–128. [Google Scholar] [CrossRef]
- Pehnt, M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew. Energy 2006, 31, 55–71. [Google Scholar] [CrossRef]
Indicator | Value |
---|---|
General Data | |
Geographical coordinates | 64.2480° N, 95.1104° E Krasnoyarsk Region (lake Vivi) is a geographical center of Russia |
The most northerly point | Cape Cheluskin (77.43° N, 104.18° E) |
The most southerly point | Border of Tyva Republic—located in mountains, no locality bound (51.46° N, 92.4° E) |
Climate type | 3 climatic zones: arctic, subarctic, temperate Continental with extreme temperature fluctuations throughout the year |
Average annual rainfall (mm) | 465 |
Annual temperature | Average = + 1.2 °C Average min = – 16.0 °C (January) Average max = + 18.7 °C (July) |
Population | Overall population = 2.9 mm Population density = 1.21 people/km2 Urbanization = 77% |
Energy sector | |
Installed capacity (MW) | Сoal-fired power generation = 8089 MW Hydro power stations = 10,038 |
Municipal Entity | Population Density (people/km2) | Level of Industrialization (m RUR) | Municipal Entity | Population Density (people/km2) | Level of Industrialization (m RUR) |
---|---|---|---|---|---|
Achinskiy | 48.742 | 36522.5 | Abanskiy | 2.142 | 5.1 |
Minusinskiy | 30.464 | 6575.6 | Partizanskiy | 1.929 | 0 |
Kanskiy | 27.706 | 3759.3 | Kuraginskiy | 1.901 | 2362.7 |
Nazarovskiy | 17.340 | 15416.3 | Idrinskiy | 1.898 | 0.1 |
Sharypovskiy | 16.330 | 9564.3 | Balakhtinskiy | 1.870 | 176 |
Bogotolʹskiy | 10.251 | 3155.5 | Kazachinskiy | 1.741 | 7.4 |
Uiarskiy | 9.629 | 4422.5 | Karatuzskiy | 1.487 | 81.9 |
Berezovskiy | 9.353 | 1385.9 | Irbeiskiy | 1.447 | 8.8 |
Rybinskiy | 8.915 | 7113.6 | Sayanskiy | 1.371 | 34.7 |
Uzhurskiy | 7.495 | 1545 | Taseevskiy | 1.198 | 0 |
Emelʹianovskiy | 6.472 | 2065.9 | Pirovskiy | 1.128 | 0 |
Ilanskiy | 6.439 | 279.2 | Ermakovskiy | 1.117 | 0 |
Nizhneingashskiy | 4.914 | 1191.6 | Tiukhtetskiy | 0.881 | 0 |
Krasnoturanskiy | 4.103 | 215.8 | Biriliusskiy | 0.843 | 20922.1 |
Dzerzhinskiy | 3.744 | 55.5 | Boguchanskiy | 0.840 | 0 |
Sukhobuzimskiy | 3.573 | 1795.3 | Motyginskiy | 0.830 | 36019.7 |
Novoselovskiy | 3.416 | 54.8 | Kezhemskiy | 0.616 | 17612.2 |
Shushenskiy | 3.182 | 1346.3 | Eniseiskiy | 0.390 | 11814.2 |
Kozulʹskiy | 3.066 | 136.6 | Severoeniseiskiy | 0.259 | 20751.8 |
Bolʹsheuluĭskiy | 2.984 | 9109.3 | Turukhanskiy | 0.079 | 388835 |
Bolʹshemurtinskiy | 2.672 | 5317.8 | Taimyrskiy municipal region | 0.037 | 76734.7 |
Manskiy | 2.665 | 93.7 | Evenkiiskiy municipal region | 0.020 | 19544.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrikova, E.; Burda, Y.; Gavrikov, V.; Sharafutdinov, R.; Volkova, I.; Rubleva, M.; Polosukhina, D. Clean Energy Sources: Insights from Russia. Resources 2019, 8, 84. https://doi.org/10.3390/resources8020084
Gavrikova E, Burda Y, Gavrikov V, Sharafutdinov R, Volkova I, Rubleva M, Polosukhina D. Clean Energy Sources: Insights from Russia. Resources. 2019; 8(2):84. https://doi.org/10.3390/resources8020084
Chicago/Turabian StyleGavrikova, Elizaveta, Yegor Burda, Vladimir Gavrikov, Ruslan Sharafutdinov, Irina Volkova, Marina Rubleva, and Daria Polosukhina. 2019. "Clean Energy Sources: Insights from Russia" Resources 8, no. 2: 84. https://doi.org/10.3390/resources8020084
APA StyleGavrikova, E., Burda, Y., Gavrikov, V., Sharafutdinov, R., Volkova, I., Rubleva, M., & Polosukhina, D. (2019). Clean Energy Sources: Insights from Russia. Resources, 8(2), 84. https://doi.org/10.3390/resources8020084