Grazing Management, Forage Production and Soil Carbon Dynamics
Abstract
:1. Introduction
2. Methods
2.1. Episodic Herbivory Component of SNAPGRAZE Model
2.1.1. Grazing Model
2.1.2. Soil Carbon Dynamics
2.2. Literature Review and Analysis of Climate Association with Production
2.3. Soil and Vegetation Sampling
2.4. Statistical Analysis
3. Results
3.1. Associations of Climate and Seasonal Production
3.1.1. Grazing Management and Forage Production
EHM Component of SNAPGRAZE
3.2. Model Analysis
3.3. Soil Carbon Dynamics Model
3.4. Analysis of the Grazing Management Model
3.5. Soil Carbon and Different Grazing Schemes
3.6. Model Validation
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Hannah, L.; Midgley, G.F.; Lovejoy, T.E.; Bond, W.; Bush, M.; Lovett, J.C.; Scott, D.; Woodward, F.I. Conservation of Biodiversity in a Changing Climate. Conserv. Boil. 2002, 16, 264–268. [Google Scholar] [CrossRef] [Green Version]
- Hughes, T.P.; Baird, A.H.; Bellwood, D.R.; Card, M.; Connolly, S.R.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.; Jackson, J.B.C.; Kleypas, J. Climate change, human impacts and the resilence of coral reefs. Science 2003, 301, 929–933. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.; Hecky, R.E.; Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 2003, 301, 505–507. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Lehmann, J.; Ogle, S.M.; Reay, D.; Robertson, G.P.; Smith, P. Climate-Smart agriculture in soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Parton, W.J.; Persson, J. Modeling soil organic-Matter in inorganic-Amended and nitrogen-Fertilized long-Term plots. Soil Sci. Soc. Am. J. 1992, 56, 476–488. [Google Scholar] [CrossRef]
- Lal, R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 2010, 60, 708–721. [Google Scholar] [CrossRef]
- Lal, R.; Lorenz, K.; Huttl, R.F.; Schneider, B.U.; von Braun, J. (Eds.) Ecosystem Services and Carbon Sequestration in the Biosphere; Springer: Berlin, Germany, 2013. [Google Scholar]
- Conant, R.T.; Paustian, K.; Elliott, E.T. Grassland management and conversion into grassland: Effects on soil carbon. Ecol. Appl. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Georgiadis, N.J.; Ihwagi, F.; Olwero, J.G.N.; Romanach, S.S. Savanna herbivore dynamics in a livestock-Dominated landscape. II: Ecological, conservation, and management implications of predator restoration. Biol. Conserv. 2007, 137, 473–483. [Google Scholar] [CrossRef]
- Heitschmidt, R.K.; Short, R.E.; Grings, E.E. Ecosystems, sustainability, and animal agriculture. J. Anim. Sci. 1996, 74, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Milchunas, D.G.; Lauenroth, W.K.; Burke, I.C. Livestock grazing: Animal and plant biodiversity of shortgrass steppe and the relationship to ecosystem function. Oikos 1998, 83, 65–74. [Google Scholar] [CrossRef]
- Preston, T.R. Future stategies for livestock production in tropical third world countries. Ambio 1990, 19, 390–393. [Google Scholar]
- Ritchie, M.E. Plant compensation to grazing and soil carbon dynamics in a tropical grassland. PeerJ 2014, 2, e233. [Google Scholar] [CrossRef] [Green Version]
- Briske, D.D.; Derner, J.D.; Brown, J.R.; Fuhlendorf, S.D.; Teague, W.R.; Havstad, K.M.; Gillen, R.L.; Ash, A.J.; Willms, W.D. Rotational grazing on rangelands: Reconciliation of perception and experimental evidence. Rangel. Ecol. Manag. 2008, 61, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Teague, R.; Provenza, F.; Kreuter, U.; Steffens, T.; Barnes, M. Multi-Paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience? J. Environ. Manag. 2013, 128, 699–717. [Google Scholar] [CrossRef] [PubMed]
- Savory, A.; Butterfield, J. Holistic Management: A New Framework for Decision Making; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Hilbert, D.W.; Swift, D.M.; Detling, J.K.; Dyer, M.I. Relative growth rates and the grazing optimization hypothesis. Oecologia 1981, 51, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Loreau, M. From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis; Levin, S.A., Horn, H.S., Eds.; Princeton University Press: Princeton, NJ, USA, 2010; p. 297. [Google Scholar]
- Schwinning, S.; Parsons, A.J. The stability of grazing systems revisited: Spatial models and the role of heterogeneity. Funct. Ecol. 1999, 13, 737–747. [Google Scholar] [CrossRef]
- Mohtar, R.H.; Buckmaster, D.R.; Fales, S.L. A grazing simulation model: GRASIM; A: Model development. Trans. Am. Soc. Agric. Eng. 1997, 40, 1483–1493. [Google Scholar] [CrossRef]
- Mohtar, R.H.; Zhai, T.; Chen, X. A world wide web-Based grazing simulation model (GRASIM). Comput. Electron. Agric. 2000, 29, 243–250. [Google Scholar] [CrossRef]
- Mohtar, R.H.; Jabro, J.D.; Buckmaster, D.R. A grazing simulation model: GRASIM B: Field testing. Trans. Am. Soc. Agric. Eng. 1997, 40, 1495–1500. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Penner, J.F. Episodic herbivory, resource-Limited plant density dependence and stimulation of aboveground production. Ecol. Evol. 2020, in press. [Google Scholar]
- Christensen, B.T.; Lærke, P.E.; Jørgensen, U.; Kandel, T.P.; Thomsen, I.K. Storage of Miscanthus-Derived carbon in rhizomes, roots, and soil. Can. J. Soil Sci. 2016, 96, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Penner, J.F. Grazing Increases Grassland Primary Productivity by Reducing Resource Demand. Ph.D. Dissertation, Syracuse University, Syracuse, NY, USA, 2019. [Google Scholar]
- Camargo, I.D.; Tapia-Lopez, R.; Nunez-Farfan, J. Ecotypic variation in growth responses to simulated herbivory: Trade-Off between maximum relative growth rate and tolerance to defoliation in an annual plant. AoB PLANTS 2015, 7, plv015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, W.; Fischer, M.; van Kleunen, M. The maximum relative growth rate of common UK plant species is positively associated with their global invasiveness. Glob. Ecol. Biogeogr. 2011, 20, 299–306. [Google Scholar] [CrossRef]
- Grime, J.P.; Hunt, R. Relative growth-Rate: Its range and adaptive significance in a local flora. J. Ecol. 1975, 63, 393. [Google Scholar] [CrossRef] [Green Version]
- Clauss, M.; Steuer, P.; Müller, D.W.H.; Codron, D.; Hummel, J. Herbivory and body size: Allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS ONE 2013, 8, e68714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weckerly, F.W. Conspecific body weight, food intake, and rumination time affect food processing and forage behavior. J. Mammal. 2013, 94, 120–126. [Google Scholar] [CrossRef]
- Berry, D.P.; Coffey, M.; Pryce, J.; De Haas, Y.; Løvendahl, P.; Krattenmacher, N.; Crowley, J.; Wang, Z.; Spurlock, D.; Weigel, K.; et al. International genetic evaluations for feed intake in dairy cattle through the collation of data from multiple sources. J. Dairy Sci. 2014, 97, 3894–3905. [Google Scholar] [CrossRef] [Green Version]
- Belovsky, G.E. Generalist herbivore foraging and its role in competitive interactions. Am. Zool. 1986, 26, 51–69. [Google Scholar] [CrossRef] [Green Version]
- Belovsky, G.E. How Important Are Nutrient constraints in Optimal Foraging Models or Are Spatial/Temporal Factors More Important? Behavioural Mechanisms of Food Selection; Springer: Berlin/Heidelberg, Germany, 1990; pp. 255–280. [Google Scholar]
- Belovsky, G.E. Optimal foraging and community structure: The allometry of herbivore food selection and competition. Evol. Ecol. 1997, 11, 641–672. [Google Scholar] [CrossRef]
- Ruess, R.W.; Seagle, S.W. Landscape patterns in soil microbial processes in the Serengeti National Park, Tanzania. Ecology 1994, 75, 892–904. [Google Scholar] [CrossRef]
- McNaughton, S.J. Ecology of a grazing ecosystem-The Serengeti. Ecol. Monogr. 1985, 55, 259–294. [Google Scholar] [CrossRef]
- DAAC ORN Laboratory. Net Primary Productivity in Grasslands. Available online: https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=13#grassland_anchor2015 (accessed on 4 June 2015).
- Bai, W.; Wan, S.; Niu, S.; Liu, W.; Chen, Q.; Wang, Q.; Zhang, W.; Han, X.; Li, L. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling. Glob. Chang. Biol. 2010, 16, 1306–1316. [Google Scholar] [CrossRef]
- Byrne, K.M.; Lauenroth, W.K.; Adler, P.B. Contrasting Effects of Precipitation Manipulations on Production in Two Sites within the Central Grassland Region, USA. Ecosystems 2013, 16, 1039–1051. [Google Scholar] [CrossRef]
- Dai, L.; Guo, X.; Du, Y.; Ke, X.; Cao, Y.; Li, Y.; Cao, G.; Zhang, F. Thirteen-Year variation in biomass allocation under climate change in an alpine Kobresia meadow, northern Qinghai-Tibetan Plateau. Grass Forage Sci. 2019, 74, 476–485. [Google Scholar] [CrossRef]
- Dukes, J.S.; Chiariello, N.R.; Cleland, E.E.; Moore, L.A.; Shaw, M.R.; Thayer, S.; Tobeck, T.; Mooney, H.A.; Field, C.B. Responses of grassland production to single and multiple global environmental changes. PLoS Biol. 2005, 3, 1829–1837. [Google Scholar] [CrossRef] [Green Version]
- Hoeppner, S.S.; Dukes, J.S. Interactive responses of old-Field plant growth and composition to warming and precipitation. Glob. Chang. Biol. 2012, 18, 1754–1768. [Google Scholar] [CrossRef]
- Niu, B.; Zeng, C.; Zhang, X.; He, Y.; Shi, P.; Tian, Y.; Feng, Y.; Li, M.; Wang, Z.; Wang, X.; et al. High Below-Ground Productivity Allocation of Alpine Grasslands on the Northern Tibet. Plants 2019, 8, 535. [Google Scholar] [CrossRef] [Green Version]
- Snyman, H.A. Influence of fire on root distribution, seasonal root production and root/shoot ratios in grass species in a semi-Arid grassland of South Africa. South Afr. J. Bot. 2005, 71, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Liu, J.; Su, J.; Jing, G.; Zhao, J.; Cheng, J.; Jin, J. Effect of clipping on soil respiration components in temperate grassland of Loess Plateau. Eur. J. Soil Biol. 2016, 75, 157–167. [Google Scholar] [CrossRef]
- McNaughton, S.J.; Banyikwa, F.F.; McNaughton, M.M. Root biomass and productivity in a grazing ecosystem: The Serengeti. Ecology 1998, 79, 582–592. [Google Scholar] [CrossRef]
- Ritchey, E.L.; McGrath, J.M.; Gehring, D. Determining Soil Texture by Feel; University of Kentucky: Lexington, KY, USA, 2015; Publication No.: AGR-21. [Google Scholar]
- USDA. Soil Survey Manual. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054262 (accessed on 1 March 1993).
- Hoogsteen, J.J.; Lantinga, E.A.; Bakker, E.J.; Groot, J.C.J.; Tittonell, P.A. Estimating soil organic carbon through loss on ignition: Effects of ignition conditions and structural water loss. Eur. J. Soil Sci. 2015, 66, 320–328. [Google Scholar] [CrossRef]
- Poeplau, C.; Vos, C.; Don, A. Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. Soil 2017, 3, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Gillooly, J.F.; Brown, J.F.; West, G.B.; Savage, V.M.; Charnov, E.L. Effects of size and temperature on metabolic rate. Science 2001, 293, 2248–2251. [Google Scholar] [CrossRef] [Green Version]
- Robertson, F.A.; Myers, R.J.K.; Saffigna, P.A. Dynamics of carbon and nitrogen in a long-Term cropping system and permanent pasture system. Aust. J. Agric. Res. 1994, 45, 211–221. [Google Scholar] [CrossRef]
- Ye, L.; Lat, J.-C.; Masse, D.; Nacro, H.B.; Kissou, R.; Diallo, N.H.; Barot, S. Contrasted effects of annual and perennial grasses on soil chemical and biological characteristics of a grazed Sudanian savanna. Appl. Soil Ecol. 2017, 113, 155–165. [Google Scholar] [CrossRef]
- February, E.C.; Cook, G.D.; Richards, A.E. Root dynamics influence tree–Grass coexistence in an Australian savanna. Austral Ecol. 2013, 38, 66–75. [Google Scholar] [CrossRef]
- Peel, M.; Stalmans, M. The effect of Holistic Planned Grazing™ on African rangelands: A case study from Zimbabwe. Afr. J. Range Forage Sci. 2018, 35, 23–31. [Google Scholar] [CrossRef]
- Badgery, W.B.; Millar, G.D.; Broadfoot, K.; Michalk, D.L.; Cranney, P.; Mitchell, D.; Van De Ven, R. Increased production and cover in a variable native pasture following intensive grazing management. Anim. Prod. Sci. 2017, 57, 1812–1823. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, H.-J. A global assessment of Holistic Planned Grazing™ compared with season-Long, continuous grazing: Meta-analysis findings. Afr. J. Range Forage Sci. 2017, 34, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Ritten, J.P.; Frasier, W.M.; Bastian, C.T.; Gray, S.T. Optimal Rangeland Stocking Decisions Under Stochastic and Climate-Impacted Weather. Am. J. Agric. Econ. 2010, 92, 1242–1255. [Google Scholar] [CrossRef]
- Frank, D.A.; Depriest, T.; McLauchlan, K.; Risch, A.C. Topographic and ungulate regulation of soil C turnover in a temperate grassland ecosystem. Glob. Chang. Biol. 2011, 17, 495–504. [Google Scholar] [CrossRef]
- McNaughton, S.J.; Banyikwa, F.F.; McNaughton, M.M. Promotion of cycling of diet-Enhancing nutrients by African grazers. Science 1997, 278, 1798–1800. [Google Scholar] [CrossRef] [PubMed]
Parameters | Definition | Units | Determination |
---|---|---|---|
A | Total area of grazing system | m2 | Input |
ANPPmax | Annual aboveground production in absence of grazing | g m−2 | 12.04 − 25.18/(0.0083 * (MAT + 273.15)) + 0.72 * ln(MAP) |
ANPPest | Annual aboveground production under grazing | g m−2 | (SE − S0) + (SF − SE); PG = ANPPest |
BNPP | Annual belowground productivity under grazing | g m−2 | [0.602 * MAP − 0.00038 * MAP2 + 5.88 * MAT] * (PG/PU) * APC * (DEPTH/40) |
CG | Per animal daily consumption | g animal−1 day−1 | 2 * [5300+770 * ln(W))] or Input |
D | Period of stay | days | Input |
d | Stocking density | Animals ha−1 | (N/A) * 10−4 |
DDSOCy | Dung-derived soil carbon input in year y | gC m−2 year−1 | LIGCELL * 0.45 * 0.3 * (DCGnd + LO) |
DEPTH | Soil sampling depth | cm | Input (typically 30 cm) |
DMRESP | Daily microbial respiration | gC m−2 day−1 | −0.579 + 0.00044 * SOC for SOC > 4600 g m−2; OR exp(10.18) * SOCt1.298 for SOC < 4600 g m−2 |
E | Time prior to grazing episode | days | Input |
F | Days from end of grazing period of stay to end of the growing season, G − (E+D) | days | G − (E+D) |
g | Relative loss rate of biomass to grazing | g g−1 day−1 | d * CG * n * 10−4/SE |
G | Length of plant growing season | days | 22.99 * MAT − 0.94 * MAT2 + 0.073 * MAP |
LG | Biomass removed during grazing period of stay | g m−2 | D * d * CG * n * 10−4 |
LO | Biomass removed during the dormant season | g m−2 | (CG/2)(365−G)d x 10−4 |
LIGCELL | Mean proportion of plant as lignin and cellulose | % | Input |
MAP | Mean annual precipitation | mm | Input |
MAT | Mean annual temperature | oC | Input |
MRESPy | Microbial respiration rate in year y | gC m−2 year−1 | WETDAYS* (0.7 + 0.3 * SAND%/100) * DMRESP |
N | Number of animals in grazing system | Input | |
n | Number of pastures in grazing system | Input | |
PDSOCy | Plant-derived soil carbon input in year y | gC m−2 year−1 | 0.45 * [ LIGCELL * (SF − LO/2) − * (1 − FIRE) + (LIGCELL + 0.05) * BNPP] |
r | Maximum relative growth rate | g g−1 day−1 | Input |
S0 | Biomass at the onset of the growing season, produced from resource reserves | g m−2 | 0.1 * SK |
SE | Biomass at start of grazing episode | g m−2 | |
SF | Biomass at the end of the growing season | g m−2 | |
SG | Biomass at the end of the grazing episode | g m−2 | |
SK | Biomass in absence of grazing | g m−2 | ANPPmax/0.9 |
SAND% | Percent soil as sand | % | Input |
ΔSOCy | Change in soil carbon density in year y | g m−2 year−1 | PDSOCt + DDSOCt − MRESPt |
W | Mean mass of grazing animals | kg | Input |
WETDAYS | Days soil moisture > 10% for microbial activity | days | (0.00044 * RAIN − 0.025) * G |
Dependent Variable | ||||||
---|---|---|---|---|---|---|
ln(ANPP) | BNPP | G | ||||
Parameter | Coefficient | SE | Coefficient 1 | SE | Coefficient | SE |
Intercept | 12.04 | 3.53 | 0 | N/A | 0 | N/A |
MAT | 5.89 | 3.12 | 22.99 | 1.73 | ||
MAT2 | −0.94 | −0.1 | ||||
1/R(MAT+273.15) | −25.18 | 6.76 | ||||
MAP | 0.602 | 0.183 | 0.073 | 0.014 | ||
MAP2 | −0.00038 | 0.00022 | ||||
ln(MAP) | 0.718 | 0.145 | ||||
N | 44 | 36 | 38 | |||
R2adj | 0.733 | 0.835 | 0.944 |
Ranch | Note | Vegetation | MAT °C | MAP mm/year | SAND% |
---|---|---|---|---|---|
A | Calving, horses at 0.37 animals ha−1. | sage *** | 6.8 | 374 | 40 |
B | Horses at 0.24 ha−1, continuous since 1960. | perennials | 8.25 | 418 | 45 |
B | Seasonal (2-pasture rotation) until 2002 at regional stocking densities **, 8-pasture rotation for 15 years, 0.26 cattle ha−1. | perennials | 8.25 | 418 | 40 |
C | Seasonal (2-pasture rotation) grazing, 3-pasture rotation since 1960, regional stocking densities. | perennials | 8.25 | 450 | 45 |
D | Seasonal (2-pasture rotation) until 1980, 3-pasture rotation until 2010, 8-pasture rotation now. | perennials | 7.2 | 350 | 35 |
D | Seasonal at regional stocking densities until 2010, 4-pasture rotation since 2010, 0.21 cattle ha−1. | perennials | 8.25 | 390 | 35 |
E | Bull pasture, 0.2 ha−1 since 1960 | perennials | 8.25 | 390 | 30 |
E | Continuous until 1970, seasonal in the period 1970–1990. At regional stocking densities, 4-pasture rotation from 1990 to present at 0.22 cattle ha−1. | perennials | 7.8 | 440 | 30 |
F | Seasonal at regional stocking densities until 1980, 8-pasture rotation in the period 1980–1990,15-pasture rotation at 0.3 cattle ha−1 | perennials | 7.8 | 445 | 15 |
G | Seasonal grazing since 1950, regional stocking densities. | sage | 6.8 | 374 | 40 |
H | Seasonal grazing 3-pasture rotation since 1950, regional stocking densities. | sage | 7.2 | 440 | 35 |
I | Continuous until 1970, seasonal in the period 1970–1990 at regional stocking densities, 4-pasture rotation in the period 1990–2000, 16-pasture rotation from 2005 to present at 0.3 animals ha−1. | perennials | 8.3 | 425 | 15 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritchie, M.E. Grazing Management, Forage Production and Soil Carbon Dynamics. Resources 2020, 9, 49. https://doi.org/10.3390/resources9040049
Ritchie ME. Grazing Management, Forage Production and Soil Carbon Dynamics. Resources. 2020; 9(4):49. https://doi.org/10.3390/resources9040049
Chicago/Turabian StyleRitchie, Mark E. 2020. "Grazing Management, Forage Production and Soil Carbon Dynamics" Resources 9, no. 4: 49. https://doi.org/10.3390/resources9040049
APA StyleRitchie, M. E. (2020). Grazing Management, Forage Production and Soil Carbon Dynamics. Resources, 9(4), 49. https://doi.org/10.3390/resources9040049