Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal
2.2. Scope
2.2.1. System Description
- harvest of vineyard pruning residues (step A);
- transfer to storage area inside the vineyard district operated by tractor pulling a trailer (average distance 5 km) (step B);
- option (a) pelletization with mobile pellet machine (step C1); option (b) transport to the pellet plant and pelletization (step C2);
- pellet distribution to the consumer—only for PS1 (average distance 100 km) (step D), for PS2 it is assumed that the pellet production and heat generation are carried out in the same location;
- heat production in a 150 kW boiler (screw conveyor pellet boiler) (step E).
- PS1: steps A, B, C1, D, E;
- PS2: steps A, B, C2, E.
- in C1 a mobile pellet machine is transported for 15 km to the storage area and employed for pellet production. The mobile pellet machine is diesel fueled and is constituted by a mill, a loader and a pellet machine. A detailed description is reported in a specific paper [24];
- in C2 vineyard pruning residues are transported for 15 km from the storage area to a pellet plant.
2.2.2. System Boundaries and Inventory
2.3. Description of the Mobile Pellet Production System
2.4. Boiler Description
2.5. Pellet Characteristics
2.6. Impact Assessment
3. Results and Discussion
Analysis of the Produced Pellets
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LCA | Life Cycle Assessment |
LCI | Life Cycle Inventory |
LCIA | Life Cycle Impact Assessment |
FU | Functional Unit |
LPG | Liquefied Petroleum Gas |
PS1 | Production System 1, composed of steps A, B, C1, D, E |
PS2 | Production System 2, composed of steps A, B, C2, E |
PS1avoided | PS1 with avoided product approach |
PS2avoided | PS2 with avoided product approach |
AS1 | Alternative System 1, boiler system powered by methane |
AS2 | Alternative System 2, boiler system powered by wood pellet |
CC | Climate Change |
OD | Ozone Depletion |
TA | Terrestrial Acidification |
FE | Freshwater Eutrophication |
ME | Marine Eutrophication |
HT | Human Toxicity |
POF | Photochemical Oxidant Formation |
PMF | Particulate Matter Formation |
TET | Terrestrial Eco-Toxicity |
FET | Freshwater Eco-Toxicity |
MET | Marine Eco-Toxicity |
IR | Ionising Radiation |
ALO | Agricultural Land Occupation |
ULO | Urban Land Occupation |
NLT | Natural Land Transformation |
WD | Water Depletion |
MD | Mineral Resource Depletion |
FD | Fossil fuel Depletion |
References
- European Union. DIRECTIVE 2009/28/EC (Renewable Energy Directive) on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0028 (accessed on 15 July 2020).
- Statuto, D.; Frederiksen, P.; Picuno, P. Valorization of Agricultural By-Products within the “Energyscapes”: Renewable Energy as Driving Force in Modeling Rural Landscape. Nat. Resour Res. 2019, 28, 111–124. [Google Scholar] [CrossRef]
- Duca, D.; Toscano, G.; Pizzi, A.; Rossini, G.; Fabrizi, S.; Lucesoli, G.; Servili, A.; Mancini, V.; Romanazzi, G.; Mengarelli, C. Evaluation of the characteristics of vineyard pruning residues for energy applications: Effect of different copper-based treatments. J. Agric. Eng. 2016, 47, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Pizzi, A.; Foppa Pedretti, E.; Duca, D.; Rossini, G.; Mengarelli, C.; Ilari, A.; Mancini, M.; Toscano, G. Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects. Renew. Energy 2018, 121, 513–520. [Google Scholar] [CrossRef]
- European Union—Directorate General for Research and Innovation. Innovating for Sustainable Growth: A Bioeconomy for Europe. 2012. Available online: https://op.europa.eu/en/publication-detail/-/publication/1f0d8515-8dc0-4435-ba53-9570e47dbd51 (accessed on 15 July 2020).
- Zawiślak, K.; Sobczak, P.; Kraszkiewicz, A.; Niedziółka, I.; Parafiniuk, S.; Kuna-Broniowska, I.; Tanas, W.; Zukiewicz-Sobczak, W.; Obidzinski, S. The use of lignocellulosic waste in the production of pellets for energy purposes. Renew. Energy 2020, 145, 997–1003. [Google Scholar] [CrossRef]
- Kumari, D.; Singh, R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sustain. Energy Rev. 2018, 90, 877–891. [Google Scholar] [CrossRef]
- Fowler, P.; Krajačić, G.; Lončar, D.; Duić, N. Modeling the energy potential of biomass—H2RES. Int. J. Hydrogen Energy 2009, 34, 7027–7040. [Google Scholar] [CrossRef]
- García, R.; Gil, M.V.; Rubiera, F.; Pevida, C. Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel 2019, 251, 739–753. [Google Scholar] [CrossRef]
- Tojo, S.; Hirasawa, T.; Qian, E.W. Pretreatment and Saccharification of Lignocellulosic Biomass. Res. Approaches Sustain. Biomass Syst. 2014, 7, 181–204. [Google Scholar] [CrossRef]
- García-Condado, S.; López-Lozano, R.; Panarello, L.; Cerrani, I.; Nisini, L.; Zucchini, A.; Van der Velde, M.; Baruth, B. Assessing lignocellulosic biomass production from crop residues in the European Union: Modelling, analysis of the current scenario and drivers of interannual variability. GCB Bioenergy 2019, 11, 809–831. [Google Scholar] [CrossRef] [Green Version]
- Bourguignon, D.; Vandenbussche, T. European Parliamentary Research Service: Advanced Biofuels: Technologies and EU Policy. Available online: https://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_BRI(2017)603972 (accessed on 15 July 2020).
- UNI EN ISO 17225-2:2014. Biocombustibili Solidi—Specifiche e Classificazione del Combustibile—Parte 2: Definizione Delle Classi di Pellet di Legno; UNI, the Italian Organization for Standardization: Milan, Italy, 2014; Available online: http://store.uni.com/catalogo/uni-en-iso-17225-2-2014 (accessed on 15 July 2020).
- Thrän, D.; Peetz, D.; Schaubach, K. Global wood pellet industry and trade study 2017. IEA Bioenergy Task 40. 2017. Available online: https://www.ieabioenergy.com/publications/global-wood-pellet-industry-and-trade-study-2017/ (accessed on 15 July 2020).
- Toscano, G.; Duca, D.; Amato, A.; Pizzi, A. Emission from realistic utilization of wood pellet stove. Energy 2014, 68, 644–650. [Google Scholar] [CrossRef]
- Obernberger, I.; Thek, G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Arshadi, M.; Gref, R.; Geladi, P.; Dahlqvist, S.A.; Lestander, T. The influence of raw material characteristics on the industrial pelletizing process and pellet quality. Fuel Process. Technol. 2008, 89, 1442–1447. [Google Scholar] [CrossRef]
- Ståhl, M.; Berghel, J.; Frodeson, S.; Granström, K.; Renström, R. Effects on Pellet Properties and Energy Use When Starch Is Added in the Wood-Fuel Pelletizing Process. Energy Fuels 2012, 26, 1937–1945. [Google Scholar] [CrossRef]
- Bisaglia, C.; Brambilla, M.; Cutini, M.; Bortolotti, A.; Rota, G.; Minuti, G.; Sargiani, R. Reusing pruning residues for thermal energy production: A mobile app to match biomass availability with the heating energy balance of agro-industrial buildings. Sustainability 2018, 10, 4218. [Google Scholar] [CrossRef] [Green Version]
- Algieri, A.; Andiloro, S.; Tamburino, V.; Zema, D.A. The potential of agricultural residues for energy production in Calabria (Southern Italy). Renew. Sustain. Energy Rev. 2019, 104, 1–14. [Google Scholar] [CrossRef]
- Colonna, N. Biomass to Energy Options to Avoid Open Burning Emissions: An Italian Successful Case Study. 2019. Available online: https://www.researchgate.net/publication/336799693_Biomass_to_Energy_options_to_avoid_open_burning_emissions_an_Italian_successful_case_study (accessed on 15 July 2020).
- ISO 14040-2006. Environmental Management—Life Cycle Assessment—Principles and Framework. 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 15 July 2020).
- ISO 14044-2006. Environmental Management—Life Cycle Assessment—Requirements and Guidelines. 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 15 July 2020).
- Toscano, G.; Alfano, V.; Scarfone, A.; Pari, L. Pelleting Vineyard Pruning at Low Cost with a Mobile Technology. Energies 2018, 11, 2477. [Google Scholar] [CrossRef] [Green Version]
- Fantozzi, F.; Buratti, C. Life cycle assessment of biomass chains: Wood pellet from short rotation coppice using data measured on a real plant. Biomass Bioenergy 2010, 34, 1796–1804. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Mean | SD | CV % | Method |
---|---|---|---|---|---|
M | % ar | 8.36 | 2.61 | 31.18 | EN ISO 18134-2 |
NCV | J/g ar | 15,637.16 | 800.37 | 5.12 | EN ISO 18125 |
A | % db | 3.84 | 1.87 | 48.76 | EN ISO 18122 |
GCV | J/g db | 18,500.37 | 1205.60 | 6.52 | EN ISO 18125 |
NCV | J/g db | 17,307.75 | 1224.88 | 7.08 | EN ISO 18125 |
C | % db | 47.428 | 0.30 | 0.63 | EN ISO 16948 |
H | % db | 5.554 | 0.21 | 3.84 | EN ISO 16948 |
N | % db | 0.635 | 0.41 | 63.83 | EN ISO 16948 |
Cl | % db | 0.013 | 0.01 | 69.04 | EN ISO 16994 |
S | % db | 0.049 | 0.05 | 94.63 | EN ISO 16994 |
Ar | mg/kg db | 0.045 | - | - | EN ISO 16968 |
Ca | mg/kg db | 0.234 | 0.08 | 34.34 | EN ISO 16968 |
Cr | mg/kg db | 1.048 | 0.84 | 80.25 | EN ISO 16968 |
Cu | mg/kg db | 24.050 | 9.61 | 39.95 | EN ISO 16968 |
Hg | mg/kg db | 0.031 | 0.02 | 77.52 | EN ISO 16968 |
Mn | mg/kg db | 42.717 | 18.01 | 42.16 | EN ISO 16968 |
Ni | mg/kg db | 1.730 | 0.56 | 32.32 | EN ISO 16968 |
Pb | mg/kg db | 1.549 | 0.18 | 11.71 | EN ISO 16968 |
Zi | mg/kg db | 28.104 | 2.65 | 9.44 | EN ISO 16968 |
Impact Subcategories (Midpoint) | Unit 1 | Impact Categories Endpoint |
---|---|---|
Carcinogens | DALY | Damage to human health |
Respiratory organics | DALY | |
Respiratory inorganics | DALY | |
Climate change | DALY | |
Radiation | DALY | |
Ozone layer | DALY | |
Ecotoxicity | PAF m2 year | Damage to ecosystem quality |
Acidification/Eutrophication | PDF m2 year | |
Land use | PDF m2 year | |
Minerals | MJ surplus | Damage to resources |
Fossil fuels | MJ surplus |
Impact Category | Unit |
---|---|
Climate change | kg CO2 eq |
Ozone depletion | kg CFC-11 eq |
Terrestrial acidification | kg SO2 eq |
Freshwater eutrophication | kg P eq |
Marine eutrophication | kg N eq |
Human toxicity | kg 1,4-DB eq |
Photochemical oxidant formation | kg NMVOC eq |
Particulate matter formation | kg PM10 eq |
Terrestrial ecotoxicity | kg 1,4-DB eq |
Freshwater ecotoxicity | kg 1,4-DB eq |
Marine ecotoxicity | kg 1,4-DB eq |
Ionizing radiation | kBq U235 eq |
Agricultural land occupation | m2a |
Urban land occupation | m2a |
Natural land transformation | m2 |
Water depletion | m3 |
Metal depletion | kg Fe eq |
Fossil depletion | kg oil eq |
Impact Category | Unit | Total | Emissions | Boiler | Wood Ash Mixture | Pellet | Electricity | Transport |
---|---|---|---|---|---|---|---|---|
PS1 | ||||||||
Total | mPt | 4.25 | 1.78 | 1.09 × 10−1 | 1.61 | 4.48 × 10−1 | 1.99 × 10−1 | 9.79 × 10−2 |
Human Health | mPt | 2.98 | 1.63 | 6.33 × 10−2 | 1.02 | 1.63 × 10−1 | 6.95 × 10−2 | 3.31 × 10−2 |
Ecosystem Quality | mPt | 7.90 × 10−1 | 1.52 × 10−1 | 1.27 × 10−2 | 5.86 × 10−1 | 2.04 × 10−2 | 9.59 × 10−3 | 9.19 × 10−3 |
Resources | mPt | 4.74 × 10−1 | 3.28 × 10−2 | 1.45 × 10−3 | 2.64 × 10−1 | 1.20 × 10−1 | 5.56 × 10−2 | |
PS2 | ||||||||
Total | mPt | 4.07 | 1.78 | 1.09 × 10−1 | 1.56 | 4.23 × 10−1 | 1.99 × 10−1 | |
Human Health | mPt | 2.91 | 1.63 | 6.33 × 10−2 | 9.91 × 10−1 | 1.54 × 10−1 | 6.97 × 10−2 | |
Ecosystem Quality | mPt | 7.61 × 10−1 | 1.52 × 10−1 | 1.27 × 10−2 | 5.67 × 10−1 | 1.92 × 10−2 | 9.61 × 10−3 | |
Resources | mPt | 4.04 × 10−1 | 3.28 × 10−2 | 1.40 × 10−3 | 2.50 × 10−1 | 1.20 × 10−1 |
PS2 Baseline | PS2 Avoided Product | Impact Saving | PS1 Baseline | PS1 Avoided Product | Impact Saving | |
---|---|---|---|---|---|---|
Total (mPt) | 4.07 | 2.38 | 41.6% | 4.25 | 2.55 | 40.0% |
Human Health | 2.91 | 1.76 | 39.6% | 2.98 | 1.82 | 38.9% |
Ecosystem Quality | 0.76 | 0.30 | 60.0% | 0.79 | 0.33 | 58.2% |
Resources | 0.40 | 0.32 | 18.9% | 0.47 | 0.40 | 14.9% |
Damage Category | Unit | PS2 | PS1 with Reduced Transport Distance |
---|---|---|---|
Total | mPt | 4.07 | 4.16 |
Human Health | mPt | 2.91 | 2.95 |
Ecosystem Quality | mPt | 0.76 | 0.78 |
Resources | mPt | 0.40 | 0.42 |
Impact Category | Unit | Total | Emissions | Boiler | Wood Ash | Pellet | Electricity | Transport |
---|---|---|---|---|---|---|---|---|
CC | kg CO2 eq | 1.22 × 10−2 | 8.19 × 10−4 | 1.53 × 10−3 | 3.05 × 10−5 | 5.59 × 10−3 | 3.08 × 10−3 | 1.14 × 10−3 |
OD | kg CFC-11 eq | 1.17 × 10−9 | 0.00 | 4.93 × 10−11 | 2.26 × 10−12 | 6.56 × 10−10 | 3.80 × 10−10 | 7.91 × 10−11 |
TA | kg SO2 eq | 1.23 × 10−4 | 7.67 × 10−5 | 6.77 × 10−6 | 2.18 × 10−7 | 2.32 × 10−5 | 1.16 × 10−5 | 4.58 × 10−6 |
FE | kg P eq | 1.39 × 10−5 | 0.00 | 4.27 × 10−7 | 1.14 × 10−5 | 1.36 × 10−6 | 5.99 × 10−7 | 9.22 × 10−8 |
ME | kg N eq | 6.86 × 10−6 | 4.97 × 10−6 | 2.79 × 10−7 | 7.83 × 10−9 | 9.08 × 10−7 | 4.41 × 10−7 | 2.51 × 10−7 |
HT | kg 1,4-DB eq | 2.36 × 10−2 | 1.64 × 10−3 | 6.91 × 10−4 | 1.88 × 10−2 | 1.67 × 10−3 | 6.55 × 10−4 | 1.41 × 10−4 |
POF | kg NMVOC | 1.67 × 10−4 | 1.27 × 10−4 | 6.40 × 10−6 | 2.27 × 10−7 | 1.88 × 10−5 | 7.26 × 10−6 | 7.18 × 10−6 |
PMF | kg PM10 eq | 1.18 × 10−4 | 1.00 × 10−4 | 3.25 × 10−6 | 8.28 × 10−8 | 8.76 × 10−6 | 3.76 × 10−6 | 2.18 × 10−6 |
TET | kg 1,4-DB eq | 8.03 × 10−6 | 2.35 × 10−6 | 9.21 × 10−8 | 4.32 × 10−6 | 7.04 × 10−7 | 4.45 × 10−7 | 1.14 × 10−7 |
FET | kg 1,4-DB eq | 2.35 × 10−4 | 2.36 × 10−7 | 1.64 × 10−5 | 1.43 × 10−4 | 5.38 × 10−5 | 1.56 × 10−5 | 6.07 × 10−6 |
MET | kg 1,4-DB eq | 2.41 × 10−4 | 1.81 × 10−5 | 1.71 × 10−5 | 1.31 × 10−4 | 5.31 × 10−5 | 1.56 × 10−5 | 6.76 × 10−6 |
IR | kBq U235 eq | 1.52 × 10−3 | 0.00 | 8.98 × 10−5 | 3.25 × 10−6 | 8.43 × 10−4 | 4.95 × 10−4 | 9.22 × 10−5 |
ALO | m2a | 2.68 × 10−4 | 0.00 | 2.83 × 10−5 | 1.91 × 10−6 | 1.66 × 10−4 | 5.35 × 10−5 | 1.87 × 10−5 |
ULO | m2a | 2.24 × 10−4 | 0.00 | 7.45 × 10−5 | 5.01 × 10−6 | 6.27 × 10−5 | 1.01 × 10−5 | 7.21 × 10−5 |
NLT | m2 | 3.49 × 10−6 | 0.00 | 1.25 × 10−6 | −4.83 × 10−8 | 1.43 × 10−6 | 5.23 × 10−7 | 3.41 × 10−7 |
WD | m3 | 4.40 × 10−2 | 0.00 | 3.18 × 10−3 | 3.11 × 10−5 | 2.43 × 10−2 | 1.58 × 10−2 | 6.49 × 10−4 |
MD | kg Fe eq | 1.22 × 10−3 | 0.00 | 4.31 × 10−4 | 1.79 × 10−6 | 6.04 × 10−4 | 1.26 × 10−4 | 6.10 × 10−5 |
FD | kg oil eq | 3.70 × 10−3 | 0.00 | 2.76 × 10−4 | 1.07 × 10−5 | 2.07 × 10−3 | 9.49 × 10−4 | 3.97 × 10−4 |
Impact Category | Unit | Total | Emissions | Boiler | Wood Ash | Pellet | Electricity |
---|---|---|---|---|---|---|---|
CC | kg CO2 eq | 5.53 × 10−3 | 8.19 × 10−4 | 1.53 × 10−3 | 2.95 × 10−5 | 5.76 × 10−5 | 3.09 × 10−3 |
OD | kg CFC-11 eq | 4.34 × 10−10 | 0.00 | 4.93 × 10−11 | 2.19 × 10−12 | 1.85 × 10−12 | 3.81 × 10−10 |
TA | kg SO2 eq | 9.56 × 10−5 | 7.67 × 10−5 | 6.77 × 10−6 | 2.11 × 10−7 | 2.55 × 10−7 | 1.17 × 10−5 |
FE | kg P eq | 1.21 × 10−5 | 0.00 | 4.27 × 10−7 | 1.11 × 10−5 | 1.60 × 10−8 | 6.00 × 10−7 |
ME | kg N eq | 5.71 × 10−6 | 4.97 × 10−6 | 2.79 × 10−7 | 7.59 × 10−9 | 1.05 × 10−8 | 4.42 × 10−7 |
HT | kg 1,4-DB eq | 2.12 × 10−2 | 1.64 × 10−3 | 6.91 × 10−4 | 1.82 × 10−2 | 2.60 × 10−5 | 6.57 × 10−4 |
POF | kg NMVOC | 1.41 × 10−4 | 1.27 × 10−4 | 6.40 × 10−6 | 2.20 × 10−7 | 2.41 × 10−7 | 7.28 × 10−6 |
PMF | kg PM10 eq | 1.07 × 10−4 | 1.00 × 10−4 | 3.25 × 10−6 | 8.02 × 10−8 | 1.22 × 10−7 | 3.77 × 10−6 |
TET | kg 1,4-DB eq | 7.07 × 10−6 | 2.35 × 10−6 | 9.21 × 10−8 | 4.18 × 10−6 | 3.46 × 10−9 | 4.46 × 10−7 |
FET | kg 1,4-DB eq | 1.72 × 10−4 | 2.36 × 10−7 | 1.64 × 10−5 | 1.39 × 10−4 | 6.18 × 10−7 | 1.56 × 10−5 |
MET | kg 1,4-DB eq | 1.79 × 10−4 | 1.81 × 10−5 | 1.71 × 10−5 | 1.27 × 10−4 | 6.42 × 10−7 | 1.57 × 10−5 |
IR | kBq U235 eq | 5.93 × 10−4 | 0.00 | 8.98 × 10−5 | 3.15 × 10−6 | 3.37 × 10−6 | 4.97 × 10−4 |
ALO | m2a | 8.49 × 10−5 | 0.00 | 2.83 × 10−5 | 1.85 × 10−6 | 1.06 × 10−6 | 5.37 × 10−5 |
ULO | m2a | 9.24 × 10−5 | 0.00 | 7.45 × 10−5 | 4.86 × 10−6 | 2.80 × 10−6 | 1.02 × 10−5 |
NLT | m2 | 1.78 × 10−6 | 0.00 | 1.25 × 10−6 | −4.68 × 10−8 | 4.69 × 10−8 | 5.25 × 10−7 |
WD | m3 | 1.92 × 10−2 | 0.00 | 3.18 × 10−3 | 3.01 × 10−5 | 1.19 × 10−4 | 1.59 × 10−2 |
MD | kg Fe eq | 5.75 × 10−4 | 0.00 | 4.31 × 10−4 | 1.73 × 10−6 | 1.62 × 10−5 | 1.26 × 10−4 |
FD | kg oil eq | 1.25 × 10−3 | 0.00 | 2.76 × 10−4 | 1.03 × 10−5 | 1.04 × 10−5 | 9.52 × 10−4 |
Damage Category | Unit | PS1 | AS1 (Ecoinvent 3, Heat Production, Natural Gas, at Industrial Furnace > 100 kW) | AS2 (Ecoinvent 3, Heat Production, Wood Pellet, at Furnace 50 kW) | Fantozzi et al., 2010 [25] Wood Pellet from Short Rotation Coppice |
---|---|---|---|---|---|
Total | mPt | 4.25 | 4.27 | 5.02 | 3.19 |
Human Health | mPt | 2.98 | 0.74 | 1.86 | 1.44 |
Ecosystem Quality | mPt | 0.79 | 0.02 | 2.59 | 0.78 |
Resources | mPt | 0.47 | 3.51 | 0.57 | 0.97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilari, A.; Toscano, G.; Foppa Pedretti, E.; Fabrizi, S.; Duca, D. Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues. Resources 2020, 9, 94. https://doi.org/10.3390/resources9080094
Ilari A, Toscano G, Foppa Pedretti E, Fabrizi S, Duca D. Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues. Resources. 2020; 9(8):94. https://doi.org/10.3390/resources9080094
Chicago/Turabian StyleIlari, Alessio, Giuseppe Toscano, Ester Foppa Pedretti, Sara Fabrizi, and Daniele Duca. 2020. "Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues" Resources 9, no. 8: 94. https://doi.org/10.3390/resources9080094
APA StyleIlari, A., Toscano, G., Foppa Pedretti, E., Fabrizi, S., & Duca, D. (2020). Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues. Resources, 9(8), 94. https://doi.org/10.3390/resources9080094