Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Decision Model
2.2. The Scoring Method
2.3. Sensitivity Analysis
- Scenario 1—the decision is made on the assumption that all criteria have the same influence on the subject of the analysis,
- Scenario 2—the decision is made based on only one group of criteria that has the greatest impact on the subject of the analysis,
- Scenario 3—the decision is made on the basis of three groups of criteria with the greatest impact on the subject of the analysis,
- Scenario 4—the decision is made on the basis of criteria not included in Scenario 2.
3. Results and Discussion
3.1. Initial Assessment of the Decision Options
3.2. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nachshon, U.; Netzer, L.; Livshitz, Y. Land cover properties and rain water harvesting in urban environments. Sustain. Cities Soc. 2016, 27, 398–406. [Google Scholar] [CrossRef]
- Wang, H.; Mei, C.; Liu, J.H.; Shao, W.W. A new strategy for integrated urban water management in China: Sponge city. Sci. China Technol. Sci. 2018, 61, 317–329. [Google Scholar] [CrossRef]
- Boryczko, K.; Bartoszek, L.; Koszelnik, P.; Rak, J.R. A new concept for risk analysis relating to the degradation of water reservoirs. Environ. Sci. Pollut. Res. 2018, 25, 25591–25599. [Google Scholar] [CrossRef] [Green Version]
- Pochwat, K.; Kida, M.; Ziembowicz, S.; Koszelnik, P. Odours in sewerage—A description of emissions and of technical abatement measures. Environments 2019, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Safari, M.J.S.; Mohammadi, M.; Ab Ghani, A. Experimental Studies of Self-Cleansing Drainage System Design: A Review. J. Pipeline Syst. Eng. 2018, 9, 04018017. [Google Scholar] [CrossRef]
- Amos, C.C.; Rahman, A.; Karim, F.; Gathenya, J.M. A scoping review of roof harvested rainwater usage in urban agriculture: Australia and Kenya in focus. J. Clean. Prod. 2018, 202, 174–190. [Google Scholar] [CrossRef]
- Todeschini, S.; Papiri, S.; Ciaponi, C. Performance of stormwater detention tanks for urban drainage systems in northern Italy. J. Environ. Manag. 2012, 101, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Hua, W.; Xiong, L.; He, Z. Novel design of volume of detention tanks assisted by a multi-source pollution overflow model towards pollution control in urban drainage basins. Environ. Sci. Pollut. Res. 2020, 27, 12781–12791. [Google Scholar] [CrossRef]
- Zeleňáková, M.; Purcz, P.; Ondrejka Harbuľáková, V.; Oravcová, A. Determination of pollutant concentrations in the Krasny Brod River profile based on the Buckingham theorem. Desalin. Water Treat. 2016, 57, 2693–2701. [Google Scholar] [CrossRef]
- Venkataramanan, V.; Lopez, D.; McCuskey, D.J.; Kiefus, D.; McDonald, R.I.; Miller, W.M.; Packman, A.I.; Young, S.L. Knowledge, attitudes, intentions, and behavior related to green infrastructure for flood management: A systematic literature review. Sci. Total Environ. 2020, 720, 137606. [Google Scholar] [CrossRef]
- Koutroulis, A.G.; Papadimitriou, L.V.; Grillakis, M.G.; Tsanis, I.K.; Wyser, K.; Betts, R.A. Freshwater vulnerability under high end climate change. A pan-European assessment. Sci. Total Environ. 2018, 613, 271–286. [Google Scholar] [CrossRef]
- Stec, A.; Zeleňáková, M. An Analysis of the Effectiveness of Two Rainwater Harvesting Systems Located in Central Eastern Europe. Water 2019, 11, 458. [Google Scholar] [CrossRef] [Green Version]
- Schmack, M.; Anda, M.; Dallas, S.; Fornarelli, R. Urban water trading–hybrid water systems and niche opportunities in the urban water market–a literature review. Environ. Technol. Rev. 2019, 8, 65–81. [Google Scholar] [CrossRef]
- Baek, S.; Ligaray, M.; Pachepsky, Y.; Chun, J.A.; Yoon, K.S.; Park, Y.; Cho, K.H. Assessment of a green roof practice using the coupled SWMM and HYDRUS models. J. Environ. Manag. 2020, 261, 109920. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Deng, L.; Pan, S.Y.; Chiang, P.C.; Sable, S.S.; Shah, K.J. Integration of green and gray infrastructures for sponge city: Water and energy nexus. Water-Energy Nexus 2020, 3, 29–40. [Google Scholar] [CrossRef]
- Pochwat, K. The use of artificial neural networks for analyzing the sensitivity of a retention tank. E3S Web Conf. 2018, 45, 00066. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.J.; Ni, G.H. Effect of storm network simplification on flooding prediction with varying rainfall conditions. IOP Conf. Ser. Earth Environ. Sci. 2019, 344, 012093. [Google Scholar] [CrossRef]
- Zhuang, W. Eco-environmental impact of inter-basin water transfer projects: A review. Environ. Sci. Pollut. Res. 2016, 23, 12867–12879. [Google Scholar] [CrossRef]
- Amos, C.C.; Rahman, A.; Gathenya, J.M. Economic analysis of rainwater harvesting systems comparing developing and developed countries: A case study of Australia and Kenya. J. Clean. Prod. 2018, 172, 196–207. [Google Scholar] [CrossRef]
- Aceves, M.C.; Fuamba, M. Methodology for Selecting Best Management Practices Integrating Multiple Stakeholders and Criteria. Part 2: Case Study. Water 2016, 8, 56. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Ardeshir, A.; Rad, I.Z.; Ghodsypour, S.H. Urban stormwater construction method selection using a hybrid multi-criteria approach. Automat. Constr. 2015, 58, 118–128. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Ye, Q.; Zhang, W.; Meng, F.; Zhang, S. Multi-objective optimization integrated with life cycle assessment for rainwater harvesting systems. J. Hydrol. 2018, 558, 659–666. [Google Scholar] [CrossRef]
- Jia, H.; Lu, Y.; Yu, S.L.; Chen, Y. Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village. Sep. Purif. Technol. 2012, 84, 112–119. [Google Scholar] [CrossRef]
- Gogate, N.G.; Kalbar, P.P.; Raval, P.M. Assessment of stormwater management options in urban contexts using Multiple Attribute Decision-Making. J. Clean. Prod. 2012, 142, 2046–2059. [Google Scholar] [CrossRef]
- Kordana, S.; Słyś, D. An analysis of important issues impacting the development of stormwater management systems in Poland. Sci. Total Environ. 2020. [Google Scholar] [CrossRef] [PubMed]
- Mazurkiewicz, K.; Skotnicki, M. A determination of the synthetic hyetograph parameters for flow capacity assessment concerning stormwater systems. E3S Web Conf. 2018, 45, 00053. [Google Scholar] [CrossRef] [Green Version]
- Kordana, S.; Słyś, D. Decision Criteria for the Development of Stormwater Management Systems in Poland. Resources 2020, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Liow, C.V.; Mah, D.Y.S.; Malek, M.A. Flow characteristics of stormpav green pavement system. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 1288–1292. [Google Scholar]
- Starzec, M.; Dziopak, J.; Słyś, D. An Analysis of Stormwater Management Variants in Urban Catchments. Resources 2020, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Hrudka, J.; Cervenanska, M.; Rusnak, D.; Stanko, S. Analysis of surface runoff and effectiveness of sewerage network in the urban area. In Proceedings of the International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 2 July 2018; Volume 18, pp. 39–45. [Google Scholar] [CrossRef]
- Gómez, Y.D.; Teixeira, L.G. Residential rainwater harvesting: Effects of incentive policies and water consumption over economic feasibility. Resour. Conserv. Recy. 2017, 127, 56–67. [Google Scholar] [CrossRef]
- Wanjiru, E.; Xia, X. Sustainable energy-water management for residential houses with optimal integrated grey and rain water recycling. J. Clean. Prod. 2018, 170, 1151–1166. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Fang, X.; Chen, G.; Gong, Y.; Wang, J.; Li, J. Evaluating curb inlet efficiency for urban drainage and road bioretention facilities. Water 2019, 11, 851. [Google Scholar] [CrossRef] [Green Version]
- Starzec, M. A critical evaluation of the methods for the determination of required volumes for detention tank. E3S Web Conf. 2018, 45, 00088. [Google Scholar] [CrossRef] [Green Version]
- Słyś, D.; Stec, A. Centralized or Decentralized Rainwater Harvesting Systems: A Case Study. Resources 2020, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Beach, L.R. Broadening the Definition of Decision Making: The Role of Prechoice Screening of Options. Psychol. Sci. 1993, 4, 215–220. [Google Scholar] [CrossRef]
- Stoner, J.F.; Freeman, R.E.; Gilbert, D.R. Management, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Sikora, W. Badania Operacyjne (Operational Research), 1st ed.; PWE S.A.: Warsaw, Poland, 2008. [Google Scholar]
- Díaz-Martín, D.; Gómez-Navarro, T.; Melón, M.G. Modelling decision making in the management of national parks. In Proceedings of the International Symposium of the Analytic Hierarchy Process, Washington, DC, USA, 29 June–2 July 2014. [Google Scholar] [CrossRef]
- Pomerol, J.C.; Barba-Romero, S. Multicriterion Decision in Management: Principles and Practices, 1st ed.; Springer Science + Business Media, LCC: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Suedel, B.C.; Kim, J.; Banks, C.J. Comparison of the Direct Scoring Method and Multi-Criteria Decision Analysis for Dredged Material Management Decision Making; DOER Technical Notes Collection (ERDC TN-DOER-R13); U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2009. [Google Scholar]
- Yoe, C. Trade-off Analysis Planning and Procedures Guidebook; Document No. IWR 02-R-2; U.S. Army Institute of Water Resources: Alexandria, VA, USA, 2002. [Google Scholar]
- Turunen, V.; Sorvari, J.; Mikola, A. A decision support tool for selecting the optimal sewage sludge treatment. Chemosphere 2018, 193, 521–529. [Google Scholar] [CrossRef]
- Nowak, M. Wspomaganie Decyzji w Planowaniu Projektów (Decision Support in Project Planning), 1st ed.; Difin SA: Warszawa, Poland, 2014. [Google Scholar]
- Elena, B.; Gennadyevna, G.I. Land Plot Selection Rationale for the Location of Linear Facilities. Land 2019, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Forman, E.; Peniwati, K. Aggregating individual judgments and priorities with the Analytic Hierarchy Process. Eur. J. Oper. Res. 1998, 108, 165–169. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Muthukumaran, S.; Ng, A.W.M.; Perera, B.J.C. Multi Criteria Decision Making in Selecting Stormwater Management Green Infrastructure for Industrial Areas Part 2: A Case Study with TOPSIS. Water Resour. Manag. 2018, 32, 4297–4312. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Rodriguez-Hernandez, J.; Andrés-Valeri, V.C.; Ballester-Muñoz, F. A fuzzy stochastic multi-criteria model for the selection of urban pervious pavements. Experts Syst. Appl. 2014, 41, 6807–6817. [Google Scholar] [CrossRef]
- Chen, Y.R.; Yeh, C.H.; Yu, B. Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Nat. Hazards 2011, 59, 1261–1276. [Google Scholar] [CrossRef] [Green Version]
- Kaplowitz, M.D.; Lupi, F. Stakeholder preferences for best management practices for non-point source pollution and stormwater control. Landsc. Urban. Plan. 2012, 104, 364–372. [Google Scholar] [CrossRef]
- Martin, C.; Ruperd, Y.; Legret, M. Urban stormwater drainage management: The development of a multicriteria decision aid approach for best management practices. Eur. J. Oper. Res. 2007, 181, 338–349. [Google Scholar] [CrossRef]
- Zdeb, M.; Zamorska, J.; Papciak, D.; Słyś, D. The quality of rainwater collected from roofs and the possibility of its economic use. Resources 2020, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Ziembowicz, S.; Kida, M.; Koszelnik, P. The impact of selected parameters on the formation of hydrogen peroxide by sonochemical process. Sep. Purif. Technol. 2018, 204, 149–153. [Google Scholar] [CrossRef]
- Ngamalieu-Nengoue, U.A.; Martínez-Solano, F.J.; Iglesias-Rey, P.L.; Mora-Meliá, D. Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water 2019, 11, 935. [Google Scholar] [CrossRef] [Green Version]
- Song, J.Y.; Chung, E.S. A Multi-Criteria Decision Analysis System for Prioritizing Sites and Types of Low Impact Development Practices: Case of Korea. Water 2017, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- De Jalón, S.G.; Chiabai, A.; Mc Tague, A.; Artaza, N.; de Ayala, A.; Quiroga, S.; Kruize, H.; Suárez, C.; Bell, R.; Taylor, T. Providing Access to Urban Green Spaces: A Participatory Benefit-Cost Analysis in Spain. Int. J. Environ. Res. Public Health 2020, 17, 2818. [Google Scholar] [CrossRef] [Green Version]
Option | Average Global Assessment (vi) | Position in Ranking | Median of Global Assessments | Position in Ranking |
---|---|---|---|---|
O1 | 3.879 | 5 | 3.964 | 4 |
O2 | 4.254 | 3 | 4.194 | 3 |
O3 | 4.070 | 4 | 3.946 | 5 |
O4 | 4.525 | 1 | 4.522 | 2 |
O5 | 4.503 | 2 | 4.593 | 1 |
Group of Decision Criteria | Total Weight of Criteria |
---|---|
Political criteria (CP) | 0.156 |
Economic criteria (CEc) | 0.184 |
Social criteria (CS) | 0.153 |
Technological criteria (CT) | 0.172 |
Legal criteria (CL) | 0.161 |
Environmental criteria (CEn) | 0.174 |
Option | Average Global Assessment (vi) | Position in Ranking | Median of Global Assessments | Position in Ranking |
---|---|---|---|---|
O1 | 3.737 | 5 | 3.827 | 5 |
O2 | 4.213 | 3 | 4.240 | 3 |
O3 | 4.011 | 4 | 3.949 | 4 |
O4 | 4.429 | 1 | 4.483 | 2 |
O5 | 4.397 | 2 | 4.543 | 1 |
Option | Average Global Assessment (vi) | Position in Ranking | Median of Global Assessments | Position in Ranking |
---|---|---|---|---|
Scenario 1 | ||||
O1 | 3.940 | 5 | 3.967 | 5 |
O2 | 4.248 | 3 | 4.217 | 3 |
O3 | 4.079 | 4 | 4.067 | 4 |
O4 | 4.517 | 2 | 4.483 | 2 |
O5 | 4.527 | 1 | 4.617 | 1 |
Scenario 2 | ||||
O1 | 4.131 | 3 | 4.296 | 1 |
O2 | 3.954 | 5 | 3.792 | 5 |
O3 | 4.122 | 4 | 4.094 | 3 |
O4 | 4.177 | 2 | 4.114 | 2 |
O5 | 4.303 | 1 | 4.003 | 4 |
Scenario 3 | ||||
O1 | 3.647 | 5 | 3.668 | 5 |
O2 | 4.400 | 2 | 4.372 | 2 |
O3 | 4.218 | 4 | 4.143 | 4 |
O4 | 4.632 | 1 | 4.743 | 1 |
O5 | 4.343 | 3 | 4.277 | 3 |
Scenario 4 | ||||
O1 | 3.823 | 5 | 3.872 | 5 |
O2 | 4.338 | 3 | 4.189 | 3 |
O3 | 4.056 | 4 | 3.970 | 4 |
O4 | 4.612 | 1 | 4.501 | 2 |
O5 | 4.556 | 2 | 4.608 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kordana-Obuch, S.; Starzec, M. Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates. Resources 2020, 9, 110. https://doi.org/10.3390/resources9090110
Kordana-Obuch S, Starzec M. Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates. Resources. 2020; 9(9):110. https://doi.org/10.3390/resources9090110
Chicago/Turabian StyleKordana-Obuch, Sabina, and Mariusz Starzec. 2020. "Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates" Resources 9, no. 9: 110. https://doi.org/10.3390/resources9090110
APA StyleKordana-Obuch, S., & Starzec, M. (2020). Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates. Resources, 9(9), 110. https://doi.org/10.3390/resources9090110