Clinical Application of the Food Compass Score: Positive Association to Mediterranean Diet Score, Health Star Rating System and an Early Eating Pattern in University Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometry
2.2. Nutrition Assessment
2.3. Statistical Analysis
3. Results
3.1. Basic Characteristic of the Subjects
3.2. Food Group Intake of the Subjects
3.3. Evaluation of Participant Diets Based on FCS, HSR, and MedDietScore
3.4. Relation of FCS, HSR, and MedDietScore with Age, Sex, and BMI
3.5. Correlation Coefficients between Food Groups and FCS, HSR, and MedDietScore
3.6. Comparative Classification of Volunteers in Tertiles for FCS, HSR, and MedDietScore
3.7. Identification of Meal Patterns and Association of Meal Patterns to FCS, HSR, and MedDietScore
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muzzioli, L.; Penzavecchia, C.; Donini, L.M.; Pinto, A. Are Front-of-Pack Labels a Health Policy Tool? Nutrients 2022, 14, 771. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Nutrient Profiling: Report of a Technical Meeting. In Proceedings of the WHO/IASO Technical Meeting, London, UK, 4–6 October 2010. [Google Scholar]
- Julia, C.; Fézeu, L.K.; Ducrot, P.; Méjean, C.; Péneau, S.; Touvier, M.; Hercberg, S.; Kesse-Guyot, E. The Nutrient Profile of Foods Consumed Using the British Food Standards Agency Nutrient Profiling System Is Associated with Metabolic Syndrome in the SU.VI.MAX Cohort. J. Nutr. 2015, 145, 2355–2361. [Google Scholar] [CrossRef] [PubMed]
- Andrianasolo, R.M.; Julia, C.; Varraso, R.; Egnell, M.; Touvier, M.; Kesse-Guyot, E.; Hercberg, S.; Galan, P. Association between an individual dietary index based on the British Food Standard Agency Nutrient Profiling System and asthma symptoms. Br. J. Nutr. 2019, 122, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Deschasaux, M.; Huybrechts, I.; Murphy, N.; Julia, C.; Hercberg, S.; Srour, B.; Kesse-Guyot, E.; Latino-Martel, P.; Biessy, C.; Casagrande, C.; et al. Nutritional quality of food as represented by the FSAm-NPS nutrient profiling system underlying the Nutri-Score label and cancer risk in Europe: Results from the EPIC prospective cohort study. PLoS Med. 2018, 15, e1002651. [Google Scholar] [CrossRef] [Green Version]
- Egnell, M.; Seconda, L.; Neal, B.; Mhurchu, C.N.; Rayner, M.; Jones, A.; Touvier, M.; Kesse-Guyot, E.; Hercberg, S.; Julia, C. Prospective associations of the original Food Standards Agency nutrient profiling system and three variants with weight gain, overweight and obesity risk: Results from the French NutriNet-Santé cohort. Br. J. Nutr. 2021, 125, 902–914. [Google Scholar] [CrossRef]
- Adriouch, S.; Julia, C.; Kesse-Guyot, E.; Méjean, C.; Ducrot, P.; Péneau, S.; Donnenfeld, M.; Deschasaux, M.; Menai, M.; Hercberg, S.; et al. Prospective association between a dietary quality index based on a nutrient profiling system and cardiovascular disease risk. Eur. J. Prev. Cardiol. 2016, 23, 1669–1676. [Google Scholar] [CrossRef]
- Adriouch, S.; Julia, C.; Kesse-Guyot, E.; Ducrot, P.; Péneau, S.; Méjean, C.; Assmann, K.E.; Deschasaux, M.; Hercberg, S.; Touvier, M.; et al. Association between a dietary quality index based on the food standard agency nutrient profiling system and cardiovascular disease risk among French adults. Int. J. Cardiol. 2017, 234, 22–27. [Google Scholar] [CrossRef]
- Andreeva, V.A.; Egnell, M.; Galan, P.; Feron, G.; Hercberg, S.; Julia, C. Association of the Dietary Index Underpinning the Nutri-Score Label with Oral Health: Preliminary Evidence from a Large, Population-Based Sample. Nutrients 2019, 11, 1998. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Donoso, C.; Martínez-González, M.Á.; Perez-Cornago, A.; Sayon-Orea, C.; Martínez, J.A.; Bes-Rastrollo, M. Association between the nutrient profile system underpinning the Nutri-Score front-of-pack nutrition label and mortality in the SUN project: A prospective cohort study. Clin. Nutr. 2021, 40, 1085–1094. [Google Scholar] [CrossRef]
- Murakami, K. Nutritional quality of meals and snacks assessed by the Food Standards Agency nutrient profiling system in relation to overall diet quality, body mass index, and waist circumference in British adults. Nutr. J. 2017, 16, 57. [Google Scholar] [CrossRef] [Green Version]
- Kissock, K.R.; Vieux, F.; Mathias, K.C.; Drewnowski, A.; Seal, C.J.; Masset, G.; Smith, J.; Mejborn, H.; McKeown, N.M.; Beck, E.J. Aligning nutrient profiling with dietary guidelines: Modifying the Nutri-Score algorithm to include whole grains. Eur. J. Nutr. 2022, 61, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Health Star Rating System Five Year Review Report (mp Consulting). 2019. Available online: http://www.healthstarrating.gov.au/internet/healthstarrating/publishing.nsf/Content/D1562AA78A574853CA2581BD00828751/$File/Health-Star-Rating-System-Five-Year-Review-Draft-Report.pdf (accessed on 25 May 2022).
- Mozaffarian, D.; El-Abbadi, N.H.; O’Hearn, M.; Erndt-Marino, J.; Masters, W.A.; Jacques, P.; Shi, P.; Blumberg, J.B.; Micha, R. Food Compass is a nutrient profiling system using expanded characteristics for assessing healthfulness of foods. Nat. Food 2021, 2, 809–818. [Google Scholar] [CrossRef]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet in Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar] [CrossRef]
- Papadimitriou, A.; Foscolou, A.; Itsiopoulos, C.; Thodis, A.; Kouris-Blazos, A.; Brazionis, L.; Sidossis, A.C.; Polychronopoulos, E.; Kokkinos, P.; Panagiotakos, D.; et al. Adherence to the Mediterranean Diet and Successful aging in Greeks living in Greece and abroad: The epidemiological Mediterranean Islands Study (MEDIS). Nutr. Health 2022, 5, 02601060211072363. [Google Scholar] [CrossRef] [PubMed]
- Kouvari, M.; Tsiampalis, T.; Chrysohoou, C.; Georgousopoulou, E.; Notara, V.; Souliotis, K.; Psaltopoulou, T.; Yannakoulia, M.; Pitsavos, C.; Panagiotakos, D.B. A Mediterranean diet microsimulation modeling in relation to cardiovascular disease burden: The ATTICA and GREECS epidemiological studies. Eur. J. Clin. Nutr. 2022, 76, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Kouvari, M.; Boutari, C.; Chrysohoou, C.; Fragkopoulou, E.; Antonopoulou, S.; Tousoulis, D.; Pitsavos, C.; Panagiotakos, D.B.; Mantzoros, C.S. Mediterranean diet is inversely associated with steatosis and fibrosis and decreases ten-year diabetes and cardiovascular risk in NAFLD subjects: Results from the ATTICA prospective cohort study. Clin. Nutr. 2021, 40, 3314–3324. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Report of a WHO Consultation on Obesity. Obesity, Preventing and Managing the Global Epidemic; WHO: Genva, Switzerland, 1998. [Google Scholar]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef]
- Julia, C.; Touvier, M.; Méjean, C.; Ducrot, P.; Péneau, S.; Hercberg, S.; Kesse-Guyot, E. Development and Validation of an Individual Dietary Index Based on the British Food Standard Agency Nutrient Profiling System in a French Context. J. Nutr. 2014, 144, 2009–2017. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture (USDA), Agricultural Research Service. FoodData Central; U.S. Department of Agriculture (USDA), Agricultural Research Service: Washington, DC, USA, 2021. Available online: https://fdc.nal.usda.gov (accessed on 25 May 2022).
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. 1), 5–41. [Google Scholar]
- Tooze, J.A.; Krebs-Smith, S.M.; Troiano, R.; Subar, A.F. The accuracy of the Goldberg method for classifying misreporters of energy intake on a food frequency questionnaire and 24-h recalls: Comparison with doubly labeled water. Eur. J. Clin. Nutr. 2012, 66, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Ruxton, C.H.S.; Myers, M. Fruit Juices: Are They Helpful or Harmful? An Evidence Review. Nutrients 2021, 13, 1815. [Google Scholar] [CrossRef] [PubMed]
- Hirahatake, K.M.; Bruno, R.S.; Bolling, B.W.; Blesso, C.; Alexander, L.M.; Adams, S.H. Dairy Foods and Dairy Fats: New Perspectives on Pathways Implicated in Cardiometabolic Health. Adv. Nutr. 2019, 11, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, S.; Semidalas, C.E.; Koussissis, S.; Demopoulos, C.A. Platelet-Activating Factor (PAF) Antagonists in Foods: A Study of Lipids with PAF or Anti-PAF-like Activity in Cow’s Milk and Yogurt. J. Agric. Food Chem. 1996, 44, 3047–3051. [Google Scholar] [CrossRef]
- El Hajj, J.S.; Julien, S.G. Factors Associated with Adherence to the Mediterranean Diet and Dietary Habits among University Students in Lebanon. J. Nutr. Metab. 2021, 2021, 6688462. [Google Scholar] [CrossRef]
- Bennasar-Veny, M.; Yañez, A.M.; Pericas, J.; Ballester, L.; Fernandez-Dominguez, J.C.; Tauler, P.; Aguilo, A. Cluster Analysis of Health-Related Lifestyles in University Students. Int. J. Environ. Res. Public Health 2020, 17, 1776. [Google Scholar] [CrossRef] [Green Version]
- Kovalskys, I.; Fisberg, M.; Previdelli, A.N.; Pereira, J.L.; Zimberg, I.Z.; Guajardo, V.; Fisberg, R.; Ferrari, G.; Gómez, G.; Rigotti, A.; et al. Breakfast in Latin America: Evaluation of Nutrient and Food Group Intake Toward a Nutrient-Based Recommendation. J. Acad. Nutr. Diet. 2021, 122, 1099–1113.e3. [Google Scholar] [CrossRef]
- Barr, S.I.; DiFrancesco, L.; Fulgoni, V.L. Breakfast consumption is positively associated with nutrient adequacy in Canadian children and adolescents. Br. J. Nutr. 2014, 112, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, A.; Amanquah, D.; Gavin-Smith, B. Perspective: How to Develop Nutrient Profiling Models Intended for Global Use: A Manual. Adv. Nutr. 2021, 12, 609–620. [Google Scholar] [CrossRef]
Total | Valid % | Men | Valid % | Women | Valid % | p | |
---|---|---|---|---|---|---|---|
269 | 77 | ||||||
Age (years) | 19.61 ± 3.15 | 19.35 ± 1.97 | 19.68 ± 3.41 | 0.2 | |||
Participants | 346 (n) | ||||||
Year of enrollment | |||||||
1st | 153 (n) | 44.2 | 39 | 50.6 | 114 | 42.3 | 0.2 |
2nd | 56 (n) | 16.2 | 23 | 29.8 | 33 | 12.2 | <0.001 |
3rd | 63 (n) | 18.2 | 10 | 12.9 | 53 | 19.7 | 0.2 |
4th | 72 (n) | 20.8 | 4 | 5.19 | 68 | 25.2 | <0.001 |
missing | 2 (n) | 0.6 | 1 | 1 | |||
Living area (before enrollment) | |||||||
<50,000 habitats | 79 (n) | 28.6 | 16 | 36.7 | 63 | 29.2 | 0.2 |
>50,000 habitats | 197 (n) | 71.4 | 44 | 73.3 | 153 | 70.58 | 0.3 |
missing | 70 (n) | 20.2 | 17 | 53 | |||
Department | |||||||
Nursing | 120 (n) | 34.7 | 22 | 28.5 | 98 | 36.4 | 0.2 |
Philology | 88 (n) | 25.4 | 19 | 24.6 | 52 | 19.3 | 0.3 |
History, Archaeology and Cultural Resources Management | 71 (n) | 20.5 | 17 | 22.0 | 71 | 26.3 | 0.4 |
Sports Organization and Management | 15 (n) | (4.3 | 3 | 3.8 | 12 | 4.4 | 0.8 |
Other | 52 (n) | 15 | 16 | 20.7 | 36 | 13.3 | 0.1 |
ΒΜΙ (kg/m2) | 22.0 (19.9–24.4) | 21.6 (19.7–23.8) | 23.7 (21.4–25.9) | <0.05 | |||
Normal weight | 238 (n) | 69 | 49 (n) | 64.5 | 189 (n) | 70.3 | 0.3 |
Overweight | 58 (n) | 16.8 | 23 (n) | 30.3 | 35 (n) | 13 | <0.001 |
Obese | 10 (n) | 2.9 | 1 (n) | 1.3 | 9 (n) | 3.3 | 0.3 |
Morbid obese | 2 (n) | 0.6 | 0 (n) | 0 | 2 (n) | 0.7 | 0.4 |
Missing | 1 (n) | 1 (n) |
Portions per Day or Week | Median | Interquartile Range |
---|---|---|
Full-fat dairy (milk, yogurt, and cheese) (per day) | 0.50 | 0.10–1.12 |
Low-fat dairy (milk, yogurt, and cheese) (per day) | 0.75 | 0.24–1.45 |
Total dairy (per day) | 1.46 | 0.90–2.21 |
Fruits (per day) | 0.96 | 0.42–1.91 |
Vegetables (per day) | 2.44 | 1.41–3.94 |
Legumes (per week) | 2.31 | 1.14–3.81 |
Fish and sea foods (per week) | 0.51 | 1.04–2.03 |
Red meat (per week) | 6.90 | 4.10–11.30 |
Poultry (per week) | 1.16 | 0.58–1.99 |
Whole-wheat grains and products (per day) | 0.08 | 0.31–0.86 |
Refined grains and products (per day) | 1.22 | 2.03–3.08 |
Eggs (per day) | 0.58 | 1.16–2.19 |
Nuts (per day) | 0.02 | 0.04–0.16 |
Sweets (per day) | 1.78 | 0.9–3.13 |
Olive oil (per day) | 1 | 0.5–1 |
Fats other than olive oil (per day) | 0.24 | 0.06–0.66 |
Fast foods (per day) | 0.08 | 0.03–0.16 |
Juices (per day) | 0.6 | 0.26–1.08 |
Sodas (per day) | 0.18 | 0.05–0.51 |
Alcoholic drinks (per day) | 0.19 | 0.04–0.56 |
Energy/BMR | 1.56 | 1.09–2.19 |
Underreporting (%) | 24.9 | |
MedDietScore | 30.0 | 27.0–33.0 |
FCS | 47.6 | 41.0–54.4 |
HSR | 3.12 | 2.79–3.34 |
(a) | FCS | HSR | MedDietScore | |
---|---|---|---|---|
FCS | rho (p) | - | 0.794 (p < 0.001) | 0.434 (p < 0.001) |
HSR | rho (p) | 0.794 (p < 0.001) | - | 0.466 (p < 0.001) |
MedDietScore | rho (p) | 0.434 (p < 0.001) | 0.466 (p < 0.001) | |
Juices | rho (p) | ns | ns | 0.131 (p = 0.015) |
Sodas | rho (p) | −0.477 (p < 0.001) | −0.427 (p < 0.001) | −0.224 (p < 0.001) |
Alcoholic drinks | rho (p) | −0.232 (p < 0.001) | −0.295 (p < 0.001) | ns |
Low-fat dairy | rho (p) | 0.128 (p = 0.01) | 0.215 (p < 0.001) | 0.267 (p < 0.001) |
High-fat dairy | rho (p) | −0.115 (p = 0.03) | −0.233 (p < 0.001) | −0.333 (p < 0.001) |
Vegetables | rho (p) | 0.401 (p < 0.001) | 0.355 (p < 0.001) | 0.465 (p < 0.001) |
Legumes | rho (p) | 0.359 (p < 0.001) | 0.357 (p < 0.001) | 0.526 (p < 0.001) |
Eggs | rho (p) | ns | ns | 0.137 (p = 0.01) |
Red meat | rho (p) | −0.367 (p < 0.001) | −0.322 (p < 0.001) | −0.142 (p = 0.008) |
Poultry | rho (p) | −0.106 (p = 0.05) | ns | ns |
Fish–seafoods | rho (p) | 0.140 (p = 0.009) | 0.124 (p = 0.02) | 0.433 (p < 0.001) |
Refined grains | rho (p) | −0.328 (p < 0.001) | ns | 0.165 (p = 0.002) |
Whole grains | rho (p) | 0.299 (p < 0.001) | 0.266 (p < 0.001) | 0.582 (p < 0.001) |
Fruits | rho (p) | 0.434 (p < 0.001) | 0.389 (p < 0.001) | 0.489 (p < 0.001) |
Sweets | rho (p) | −0.553 (p < 0.001) | −0.586 (p < 0.001) | ns |
Fats other than olive oil | rho (p) | −0.314 (p < 0.001) | −0.378 (p < 0.001) | ns |
Olive oil | rho (p) | 0.165 (p = 0.002) | ns | 0.141 (p = 0.009) |
Tea | rho (p) | 0.225 (p < 0.001) | 0.197 (p < 0.001) | 0.361 (p < 0.001) |
Coffee | rho (p) | ns | ns | ns |
Nuts | rho (p) | ns | ns | 0.130 (p = 0.01) |
Fast foods | rho (p) | −0.432 (p < 0.001) | −0.420 (p < 0.001) | −0.166 (p = 0.002) |
(b)Ranked variables of scores/food groups | FCS | HSR | MedDietScore | |
FCS | rho (p) | - | 0.761 (p < 0.001) | ns |
HSR | rho (p) | 0.761 (p < 0.001) | - | ns |
MedDietScore | rho (p) | ns | ns | - |
Juices | rho (p) | 0.121 (p = 0.02) | ns | ns |
Sodas | rho (p) | −0.392 (p < 0.001) | −0.322 (p < 0.001) | −0.247 (p < 0.001) |
Alcoholic drinks | rho (p) | −0.161 (p = 0.003) | −0.248 (p < 0.001) | ns |
Low-fat dairy | rho (p) | ns | 0.155 (p = 0.004) | 0.236 (p < 0.001) |
High-fat dairy | rho (p) | 0.116 (p = 0.03) | ns | −0.380 (p < 0.001) |
Vegetables | rho (p) | 0.243 (p < 0.001) | 0.218 (p < 0.001) | 0.408 (p < 0.001) |
Legumes | rho (p) | 0.140 (p = 0.01) | 0.156 (p = 0.004) | 0.488 (p < 0.001) |
Eggs | rho (p) | ns | ns | 0.129 (p = 0.01) |
Red meat | rho (p) | −0.281 (p < 0.001) | −0.237 (p < 0.001) | −0.194 (p < 0.001) |
Poultry | rho (p) | ns | ns | ns |
Fish–seafoods | rho (p) | ns | ns | 0.398 (p < 0.001) |
Refined grains | rho (p) | −0.369 (p < 0.001) | ns | 0.106 (p = 0.05) |
Whole grains | rho (p) | ns | ns | 0.560 (p < 0.001) |
Fruits | rho (p) | 0.284 (p < 0.001) | 0.250 (p < 0.001) | 0.442 (p < 0.001) |
Sweets | rho (p) | −0.492 (p < 0.001) | −0.505 (p < 0.001) | −0.185 (p < 0.001) |
Fats other than olive oil | rho (p) | −0.256 (p < 0.001) | −0.335 (p < 0.001) | ns |
Olive oil | rho (p) | 0.144 (p = 0.008) | ns | ns |
Tea | rho (p) | ns | ns | 0.340 (p < 0.001) |
Coffee | rho (p) | −0.144 (p < 0.001) | −0.191 (p < 0.001) | ns |
Nuts | rho (p) | ns | ns | 0.119 (p = 0.02) |
Fast foods | rho (p) | −0.352 (p < 0.001) | −0.321 (p < 0.001) | −0.202 (p < 0.001) |
Q1 | Q2 | Q3 | Total | |
---|---|---|---|---|
Participants classified in the same tertile with all indices (n, %) | 55 (15%) | 18 (5.2%) | 52 (15%) | 125 (35.2%) |
Participants classified in the same tertile with FCS and HSR (n, %) | 86 (24.9 %) | 62 (17.9%) | 85 (24.6%) | 233 (67.4%) |
Participants classified in the same tertile with FCS and MedDietScore (n, %) | 66 (19.1%) | 33 (9.5%) | 62 (17.9%) | 161 (46.5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Detopoulou, P.; Syka, D.; Koumi, K.; Dedes, V.; Tzirogiannis, K.; Panoutsopoulos, G.I. Clinical Application of the Food Compass Score: Positive Association to Mediterranean Diet Score, Health Star Rating System and an Early Eating Pattern in University Students. Diseases 2022, 10, 43. https://doi.org/10.3390/diseases10030043
Detopoulou P, Syka D, Koumi K, Dedes V, Tzirogiannis K, Panoutsopoulos GI. Clinical Application of the Food Compass Score: Positive Association to Mediterranean Diet Score, Health Star Rating System and an Early Eating Pattern in University Students. Diseases. 2022; 10(3):43. https://doi.org/10.3390/diseases10030043
Chicago/Turabian StyleDetopoulou, Paraskevi, Dimitra Syka, Konstantina Koumi, Vasileios Dedes, Konstantinos Tzirogiannis, and Georgios I. Panoutsopoulos. 2022. "Clinical Application of the Food Compass Score: Positive Association to Mediterranean Diet Score, Health Star Rating System and an Early Eating Pattern in University Students" Diseases 10, no. 3: 43. https://doi.org/10.3390/diseases10030043
APA StyleDetopoulou, P., Syka, D., Koumi, K., Dedes, V., Tzirogiannis, K., & Panoutsopoulos, G. I. (2022). Clinical Application of the Food Compass Score: Positive Association to Mediterranean Diet Score, Health Star Rating System and an Early Eating Pattern in University Students. Diseases, 10(3), 43. https://doi.org/10.3390/diseases10030043