Tixagevimab/Cilgavimab as Pre-Exposure Prophylaxis against COVID-19 for Multiple Myeloma Patients: A Prospective Study in the Omicron Era
Abstract
:1. Introduction
2. Materials and Methods
- Stage 1: Sβ2M < 3.5 mg/L; serum albumin ≥ 3.5 g/dL
- Stage 2: Sβ2M < 3.5 mg/L; serum albumin < 3.5 g/dL; or β2M 3.5 to 5.5 mg/L, irrespective of serum albumin
- Stage 3: Sβ2M > 5.5 mg/L
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buske, C.; Dreyling, M.; Alvarez-Larrán, A.; Apperley, J.; Arcaini, L.; Besson, C.; Bullinger, L.; Corradini, P.; Giovanni Della Porta, M.; Dimopoulos, M.; et al. Managing hematological cancer patients during the COVID-19 pandemic: An ESMO-EHA Interdisciplinary Expert Consensus. ESMO Open 2022, 7, 100403. [Google Scholar] [CrossRef] [PubMed]
- Langerbeins, P.; Hallek, M. COVID-19 in patients with hematologic malignancy. Blood 2022, 140, 236–252. [Google Scholar] [CrossRef]
- Wang, X.A.; Binder, A.F.; Gergis, U.; Wilde, L. COVID-19 in Patients with Hematologic Malignancies: A Single Center Retrospective Study. Front. Oncol. 2021, 11, 740320. [Google Scholar] [CrossRef] [PubMed]
- Seebacher, N.A. The antibody response of haematological malignancies to COVID-19 infection and vaccination. Br. J. Cancer 2022, 126, 691–692. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhao, Y.; Xu, C.; Wang, X.; Zhang, X.; Mao, B. Immunomodulatory drugs and the risk of serious infection in multiple myeloma: Systematic review and meta-analysis of randomized and observational studies. Ann. Hematol. 2018, 97, 925–944. [Google Scholar] [CrossRef]
- Basler, M.; Lauer, C.; Beck, U.; Groettrup, M. The proteasome inhibitor bortezomib enhances the susceptibility to viral infection. J. Immunol. 2009, 183, 6145–6150. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lopez, J.; Hernandez-Ibarburu, G.; Alonso, R.; Sanchez-Pina, J.M.; Zamanillo, I.; Lopez-Munoz, N.; Iñiguez, R.; Cuellar, C.; Calbacho, M.; Paciello, M.L.; et al. Impact of COVID-19 in patients with multiple myeloma based on a global data network. Blood Cancer J. 2021, 11, 198. [Google Scholar] [CrossRef] [PubMed]
- Pagano, L.; Salmanton-Garcia, J.; Marchesi, F.; Busca, A.; Corradini, P.; Hoenigl, M.; Klimko, N.; Koehler, P.; Pagliuca, A.; Passamonti, F.; et al. COVID-19 infection in adult patients with hematological malignancies: A European Hematology Association Survey (EPICOVIDEHA). J. Hematol. Oncol. 2021, 14, 168. [Google Scholar] [CrossRef] [PubMed]
- Spiliopoulou, V.; Ntanasis-Stathopoulos, I.; Malandrakis, P.; Gavriatopoulou, M.; Theodorakakou, F.; Fotiou, D.; Migkou, M.; Roussou, M.; Eleutherakis-Papaiakovou, E.; Kastritis, E.; et al. Use of Oral Antivirals Ritonavir-Nirmatrelvir and Molnupiravir in Patients with Multiple Myeloma Is Associated with Low Rates of Severe COVID-19: A Single-Center, Prospective Study. Viruses 2023, 15, 704. [Google Scholar] [CrossRef] [PubMed]
- Filippatos, C.; Ntanasis-Stathopoulos, I.; Sekeri, K.; Ntanasis-Stathopoulos, A.; Gavriatopoulou, M.; Psaltopoulou, T.; Dounias, G.; Sergentanis, T.N.; Terpos, E. Convalescent Plasma Therapy for COVID-19: A Systematic Review and Meta-Analysis on Randomized Controlled Trials. Viruses 2023, 15, 765. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Musto, P.; Engelhardt, M.; Delforge, M.; Cook, G.; Gay, F.; van de Donk, N.W.C.J.; Ntanasis-Stathopoulos, I.; Vangsted, A.J.; Driessen, C.; et al. Management of patients with multiple myeloma and COVID-19 in the post pandemic era: A consensus paper from the European Myeloma Network (EMN). Leukemia 2023, 37, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Loo, Y.-M.; McTamney, P.M.; Arends, R.H.; Abram, M.E.; Aksyuk, A.A.; Diallo, S.; Flores, D.J.; Kelly, E.J.; Ren, K.; Roque, R.; et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Sci. Transl. Med. 2022, 14, eabl8124. [Google Scholar] [CrossRef]
- Zost, S.J.; Gilchuk, P.; Case, J.B.; Binshtein, E.; Chen, R.E.; Nkolola, J.P.; Schafer, A.; Reidy, J.X.; Trivette, A.; Nargi, R.S.; et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 2022, 584, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Zost, S.J.; Gilchuk, P.; Chen, R.E.; Case, J.B.; Reidy, J.X.; Trivette, A.; Nargi, R.S.; Sutton, R.E.; Suryadevara, N.; Chen, E.C.; et al. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat. Med. 2020, 26, 1422–1427. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zost, S.J.; Greaney, A.J.; Starr, T.N.; Dingens, A.S.; Chen, E.C.; Chen, R.E.; Case, J.B.; Sutton, R.E.; Gilchuk, P.; et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat. Microbiol. 2021, 6, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- ACTIV-3–Therapeutics for Inpatients with COVID-19 (TICO) Study Group. Tixagevimab-cilgavimab for treatment of patients hospitalised with COVID-19: A randomised, double-blind, phase 3 trial. Lancet Respir. Med. 2022, 10, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Tegally, H.; Moir, M.; Everatt, J.; Giovanetti, M.; Scheepers, C.; Wilkinson, E.; Subramoney, K.; Majatini, Z.; Moyo, S.; Amoako, D.G.; et al. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat. Med. 2022, 28, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yisimayi, A.; Jian, F.; Song, W.; Xiao, T.; Wang, L.; Du, S.; Wang, J.; Li, Q.; Chen, X.; et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022, 608, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Yuan, Y.; Seegobin, S.; Ellery, A.; Levinson, D.J.; et al. PROVENT Study Group. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of COVID-19. N. Engl. J. Med. 2022, 386, 2188–2200. [Google Scholar] [CrossRef] [PubMed]
- Alhumaid, S.; Al Mutair, A.; Alali, J.; Al Dossary, N.; Albattat, S.H.; Al HajjiMohammed, S.M.; Almuaiweed, F.S.; AlZaid, M.R.; Alomran, M.J.; Alqurini, Z.S.; et al. Efficacy and Safety of Tixagevimab/Cilgavimab to Prevent COVID-19 (Pre-Exposure Prophylaxis): A Systematic Review and Meta-Analysis. Diseases 2022, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Kertes, J.; David, S.S.B.; Engel-Zohar, N.; Rosen, K.; Hemo, B.; Kantor, A.; Adler, L.; Stein, N.S.; Reuveni, M.M.; Shahar, A. Association Between AZD7442 (Tixagevimab-Cilgavimab) Administration and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection, Hospitalization, and Mortality. Clin. Infect. Dis. 2023, 76, e126–e132. [Google Scholar] [CrossRef]
- Montgomery, H.; Hobbs, F.D.R.; Padilla, F.; Arbetter, D.; Templeton, A.; Seegobin, S.; Kim, K.; Campos, J.A.S.; Arends, R.H.; Brodek, B.H.; et al. TACKLE study group. Efficacy and safety of intramuscular administration of tixagevimab-cilgavimab for early outpatient treatment of COVID-19 (TACKLE): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2022, 10, 985–996. [Google Scholar] [CrossRef]
- Baron, F.; Storb, R. The immune system as a foundation for immunologic therapy and hematologic malignancies: A historical perspective. Best Pr. Res. Clin. Haematol. 2006, 19, 637–653. [Google Scholar] [CrossRef]
- Vicki, A. Morrison, Immunosuppression Associated with Novel Chemotherapy Agents and Monoclonal Antibodies. Clin. Infect. Dis. 2014, 59, S360–S364. [Google Scholar] [CrossRef]
- Roberts, M.B.; Fishman, J.A. Immunosuppressive Agents and Infectious Risk in Transplantation: Managing the “Net State of Immunosuppression”. Clin. Infect. Dis. 2021, 73, e1302–e1317. [Google Scholar] [CrossRef]
- Jain, A.; Sturmlechner, I.; Weyand, C.M.; Goronzy, J.J. Heterogeneity of memory T cells in aging. Front. Immunol. 2023, 14, 1250916. [Google Scholar] [CrossRef] [PubMed]
- Akinosoglou, K.; Rigopoulos, E.-A.; Kaiafa, G.; Daios, S.; Karlafti, E.; Ztriva, E.; Polychronopoulos, G.; Gogos, C.; Savopoulos, C. Tixagevimab/Cilgavimab in SARS-CoV-2 Prophylaxis and Therapy: A Comprehensive Review of Clinical Experience. Viruses 2023, 15, 118. [Google Scholar] [CrossRef] [PubMed]
- Najjar-Debbiny, R.; Gronich, N.; Weber, G.; Stein, N.; Saliba, W. Effectiveness of Evusheld in Immunocompromised Patients: Propensity Score–Matched Analysis. Clin. Infect. Dis. 2023, 76, 1067–1073. [Google Scholar] [CrossRef]
- Al-Obaidi, M.M.; Gungor, A.B.; Kurtin, S.E.; Mathias, A.E.; Tanriover, B.; Zangeneh, T.T. The Prevention of COVID-19 in High-Risk Patients Using Tixagevimab-Cilgavimab (Evusheld): Real-World Experience at a Large Academic Center. Am. J. Med. 2023, 136, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Jondreville, L.; D’Aveni, M.; Labussière-Wallet, H.; Le Bourgeois, A.; Villate, A.; Berceanu, A.; Bezsera, S.-M.; Theibaut, A.; Boissard-Simonet, M.; Legrand, M.; et al. Pre-exposure prophylaxis with tixagevimab/cilgavimab (AZD7442) prevents severe SARS-CoV-2 infection in recipients of allogeneic hematopoietic stem cell transplantation during the Omicron wave: A multicentric retrospective study of SFGM-TC. J. Hematol. Oncol. 2022, 15, 169. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Y.; Flahault, A.; Chavarot, N.; Melenotte, C.; Cheminant, M.; Deschamps, P.; Carlier, N.; Lafont, E.; Thomas, M.; Flamarion, E.; et al. Pre-exposure prophylaxis with tixagevimab and cilgavimab (Evusheld) for COVID-19 among 1112 severely immunocompromised patients. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2022, 28, 1654.e1–1654.e4. [Google Scholar] [CrossRef]
- Kotton, C.N. Belt and Suspenders: Vaccines and Tixagevimab/Cilgavimab for Prevention of COVID-19 in Immunocompromised Patients. Ann. Intern. Med. 2022, 175, 892–894. [Google Scholar] [CrossRef]
- Stuver, R.; Shah, G.L.; Korde, N.S.; Roeker, L.E.; Mato, A.R.; Batlevi, C.L.; Chung, D.J.; Doddi, S.; Falchi, L.; Gyurkocza, B.; et al. Activity of AZD7442 (tixagevimab-cilgavimab) against Omicron SARS-CoV-2 in patients with hematologic malignancies. Cancer Cell. 2022, 40, 590–591. [Google Scholar] [CrossRef] [PubMed]
- Korompoki, E.; Gavriatopoulou, M.; Fotiou, D.; Ntanasis-Stathopoulos, I.; Dimopoulos, M.A.; Terpos, E. Late-onset hematological complications post COVID-19: An emerging medical problem for the hematologist. Am. J. Hematol. 2022, 97, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Engelhardt, M.; Cook, G.; Gay, F.; Mateos, M.-V.; Ntanasis-Stathopoulos, I.; van de Donk, N.W.C.J.; Avet-Loiseau, H.; Hajek, R.; Vangsted, A.J.; et al. Management of patients with multiple myeloma in the era of COVID-19 pandemic: A consensus paper from the European Myeloma Network (EMN). Leukemia 2020, 34, 2000–2011. [Google Scholar] [CrossRef]
- Raje, N.S.; Anaissie, E.; Kumar, S.K.; Lonial, S.; Martin, T.; Gertz, M.A.; Krishnan, A.; Hari, P.; Ludwig, H.; O’Donnell, E.; et al. Consensus guidelines and recommendations for infection prevention in multiple myeloma: A report from the International Myeloma Working Group. Lancet Haematol. 2022, 9, e143–e161. [Google Scholar] [CrossRef]
- Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Korompoki, E.; Terpos, E.; Dimopoulos, M.A. SARS-CoV-2 Vaccines in Patients with Multiple Myeloma. HemaSphere 2021, 5, e547. [Google Scholar] [CrossRef]
- Terpos, E.; Trougakos, I.P.; Gavriatopoulou, M.; Papassotiriou, I.; Skilrou, A.D.; Ntanasis-Stathopoulos, I.; Papanagnou, E.-D.; Fotiou, D.; Kastritis, E.; Dimopoulos, M.A. Low neutralizing antibody responses against SARS-CoV-2 in older patients with myeloma after the first BNT162b2 vaccine dose. Blood 2021, 137, 3674–3676. [Google Scholar] [CrossRef]
- Ntanasis-Stathopoulos, I.; Karalis, V.; Gavriatopoulou, M.; Malandrakis, P.; Sklirou, A.D.; Eleutherakis-Papaiakovou, E.; Migkou, M.; Roussou, M.; Fotiou, D.; Alexopoulos, H.; et al. Second Booster BNT162b2 Restores SARS-CoV-2 Humoral Response in Patients with Multiple Myeloma, Excluding Those Under Anti-BCMA Therapy. HemaSphere 2022, 6, e764. [Google Scholar] [CrossRef]
- Terpos, E.; Rajkumar, S.V.; Leung, N. Neutralizing Antibody Testing in Patients with Multiple Myeloma Following COVID-19 Vaccination. JAMA Oncol. 2022, 8, 201–202. [Google Scholar] [CrossRef]
- Rosati, M.; Terpos, E.; Bear, J.; Burns, R.; Devasundaram, S.; Ntanasis-Stathopoulos, I.; Gavriatopoulou, M.; Kastritis, E.; Dimopoulos, M.-A.; Pavlakis, G.N.; et al. Low Spike Antibody Levels and Impaired BA.4/5 Neutralization in Patients with Multiple Myeloma or Waldenstrom’s Macroglobulinemia after BNT162b2 Booster Vaccination. Cancers 2022, 14, 5816. [Google Scholar] [CrossRef]
- Gavriatopoulou, M.; Terpos, E.; Malandrakis, P.; Ntanasis-Stathopoulos, I.; Briasoulis, A.; Gumeni, S.; Fotiou, D.; Papanagnou, E.-D.; Migkou, M.; Theodorakakou, F.; et al. Myeloma patients with COVID-19 have superior antibody responses compared to patients fully vaccinated with the BNT162b2 vaccine. Br. J. Haematol. 2022, 196, 356–359. [Google Scholar] [CrossRef]
- Terpos, E.; Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Briasoulis, A.; Gumeni, S.; Malandrakis, P.; Papanagnou, E.-D.; Migkou, M.; Kanellias, N.; Kastritis, E.; et al. Booster BNT162b2 optimizes SARS-CoV-2 humoral response in patients with myeloma: The negative effect of anti-BCMA therapy. Blood 2022, 139, 1409–1412. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Prada, M.; Pérez-Martín, J.J.; Cienfuegos-González, P. Safety and immunogenicity of cilgavimab-tixagevimab for COVID-19 pre-exposure prophylaxis in immunocompromised patients. Med. Clínica Engl. Ed. 2023, 160, 458–459. [Google Scholar] [CrossRef]
- Duminuco, A.; Romano, A.; Leotta, D.; La Spina, E.; Cambria, D.; Bulla, A.; Del Fabro, V.; Tibullo, D.; Giallongo, C.; Palumbo, G.A.; et al. Clinical outcome of SARS-CoV-2 infections occurring in multiple myeloma patients after vaccination and prophylaxis with tixagevimab/cilgavimab. Front. Oncol. 2023, 13, 1157610. [Google Scholar] [CrossRef]
- James, A.; Katelynn Granger, D.; Roubal, K.; Smith, D.; Kelly, J.; Gaffney, M.; McGann, A.; Cendagorta, A.; Thurlapati, A.; Herbst, L.; et al. Efficacy of tixagevimab-cilgavimab in preventing SARS-CoV-2 for patients with B-cell malignancies. Blood 2023, 141, 200–203. [Google Scholar] [CrossRef]
- Marchesi, F.; Salmanton-García, J.; Buquicchio, C.; Itri, F.; Besson, C.; Davila-Valls, J.; Martin-Perez, S.; Fianchi, L.; Rahimli, L.; Tarantini, G.; et al. Passive pre-exposure immunization by tixagevimab/cilgavimab in patients with hematological malignancy and COVID-19: Matched-paired analysis in the EPICOVIDEHA registry. J. Hematol. Oncol. 2023, 16, 32. [Google Scholar] [CrossRef]
- Ocon, A.; Ocon, K.; Battaglia, J.; Low, S.; Neupane, N.; Saeed, H.; Jamshed, S.; Mustafa, S. Real-World Effectiveness of Tixagevimab and Cilgavimab (Evusheld) in Patients with Hematological Malignancies. J. Hematol. 2022, 11, 210–215. [Google Scholar] [CrossRef]
- Leyfman, Y.; Emmanuel, N.; Menon, G.P.; Joshi, M.; Wilkerson, W.B.; Cappelli, J.; Erick, T.K.; Park, C.H.; Sharma, P. Cancer and COVID-19: Unravelling the immunological interplay with a review of promising therapies against severe SARS-CoV-2 for cancer patients. J. Hematol. Oncol. 2023, 16, 39. [Google Scholar] [CrossRef]
- Haraguchi, M.; Yamamoto, H.; Watanabe, O.; Sakoh, T.; Ishida, K.; Ogura, S.; Katoh-Morishima, M.; Taya, Y.; Nishida, A.; Kaji, D.; et al. Incidence of breakthrough COVID-19 in patients with hematological disorders who received pre-exposure prophylaxis with tixagevimab-cilgavimab: A retrospective study in Japan. Bone Marrow Transpl. 2023, 58, 1051–1053. [Google Scholar] [CrossRef] [PubMed]
- Jakimovski, D.; Eckert, S.P.; Mirmosayyeb, O.; Thapa, S.; Pennington, P.; Hojnacki, D.; Weinstock-Guttman, B. Tixagevimab and Cilgavimab (Evusheld™) Prophylaxis Prevents Breakthrough COVID-19 Infections in Immunosuppressed Population: 6-Month Prospective Study. Vaccines 2023, 11, 350. [Google Scholar] [CrossRef] [PubMed]
- Otiniano, A.; van de Wyngaert, Z.; Brissot, E.; Dulery, R.; Gozlan, J.; Daguenel, A.; Abi Aad, Y.; Ricard, L.; Stocker, N.; Banet, A.; et al. Tixagevimab/cilgavimab for Omicron SARS-CoV-2 infection in patients with haematologic diseases. Bone Marrow Transpl. 2023, 58, 340–342. [Google Scholar] [CrossRef]
- Ollila, T.A.; Masel, R.H.; Reagan, J.L.; Lu, S.; Rogers, R.D.; Paiva, K.J.; Taher, R.; Burguera-Couce, E.; Zayac, A.S.; Yakirevich, I.; et al. Seroconversion and outcomes after initial and booster COVID-19 vaccination in adults with hematologic malignancies. Cancer 2022, 128, 3319–3329. [Google Scholar] [CrossRef]
- Chang, A.; Koff, J.L.; Lai, L.; Orellana-Noia, V.M.; Surati, M.; Leal, A.M.K.; Ellis, M.L.; Wali, B.; Moreno, A.; Linderman, S.L.; et al. Low neutralizing activity of AZD7442 against current SARS-CoV-2 Omicron variants in patients with B-cell malignancies. Blood Adv. 2023, 7, 2459–2462. [Google Scholar] [CrossRef] [PubMed]
- Zerbit, J.; Detroit, M.; Meyer, A.; Decroocq, J.; Deau-Fischer, B.; Deschamps, P.; Birsen, R.; Mondesir, J.; Franchi, P.; Miekoutima, E.; et al. Patients with Hematological Malignancies Treated with T-Cell or B-Cell Immunotherapy Remain at High Risk of Severe Forms of COVID-19 in the Omicron Era. Viruses 2022, 14, 2377. [Google Scholar] [CrossRef]
- Thomas, M.; Masson, M.; Bitoun, S.; Hamroun, S.; Seror, R.; Dupuy, H.; Lazaro, E.; Richez, C.; Allanore, Y.; Avouac, J. Prophylaxis with tixagevimab/cilgavimab is associated with lower COVID-19 incidence and severity in patients with autoimmune diseases. Rheumatology 2023, kead449. [Google Scholar] [CrossRef]
- Sciascia, S.; Rilat, M.L.A.; Fenoglio, R.; Foddai, S.G.; Radin, M.; Cecchi, I.; Cinnirella, G.; Crosasso, P.; Guidetti, M.G.; Barinotti, A.; et al. Safety and efficacy of pre-exposure prophylaxis with tixagevimab/cilgavimab (Evusheld) in patients with glomerular diseases who received rituximab. Clin. Kidney J. 2023, 16, 1465–1468. [Google Scholar] [CrossRef]
- Bruel, T.; Hadjadj, J.; Maes, P.; Planas, D.; Seve, A.; Staropoli, I.; Guivel-Benhassine, F.; Porrot, F.; Bolland, W.-H.; Nguyen, Y.; et al. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nat. Med. 2022, 28, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Casadevall, A. A Critical Analysis of the Use of Cilgavimab plus Tixagevimab Monoclonal Antibody Cocktail (Evusheld™) for COVID-19 Prophylaxis and Treatment. Viruses 2022, 14, 1999. [Google Scholar] [CrossRef]
- Mahase, E. COVID-19: Evusheld is unlikely to prevent infection with current or future variants, NICE concludes. BMJ 2023, 380, 387. [Google Scholar] [CrossRef]
- Bruel, T.; Stéfic, K.; Nguyen, Y.; Toniutti, D.; Staropoli, I.; Porrot, F.; Guivel-Benhassine, F.; Bolland, W.H.; Planas, D.; Hadjadj, J.; et al. Longitudinal analysis of serum neutralization of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 in patients receiving monoclonal antibodies. Cell Rep. Med. 2022, 3, 100850. [Google Scholar] [CrossRef]
- Chen, B.; Haste, N.; Binkin, N.; Law, N.; Horton, L.E.; Yam, N.; Chen, V.; Abelas, S. Real world effectiveness of tixagevimab/cilgavimab (Evusheld) in the Omicron era. PLoS ONE 2023, 18, e0275356. [Google Scholar] [CrossRef]
- Yang, J.; Won, G.; Baek, J.Y.; Lee, Y.H.; Kim, H.; Huh, K.; Cho, S.Y.; Kang, C.I.; Chung, D.R.; Peck, K.R.; et al. Neutralizing activity against Omicron BA.5 after tixagevimab/cilgavimab administration comparable to those after Omicron BA.1/BA.2 breakthrough infections. Front. Immunol. 2023, 14, 1139980. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Song, W.; Wang, L.; Liu, P.; Yue, C.; Jian, F.; Yu, Y.; Yisimayi, A.; Wang, P.; Wang, Y.; et al. Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75. Cell Host Microbe 2022, 30, 1527–1539.e5. [Google Scholar] [CrossRef]
- Zhang, J.; Cong, Y.; Duan, L.; Zhang, J.Z.H. Combined Antibodies Evusheld against the SARS-CoV-2 Omicron Variants BA.1.1 and BA.5: Immune Escape Mechanism from Molecular Simulation. J. Chem. Inf. Model. 2023, 63, 5297–5308. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. FDA Announces Evusheld is Not Currently Authorized for Emergency Use in the U.S. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-announces-evusheld-not-currently-authorized-emergency-use-us (accessed on 18 June 2023).
- Gbinigie, O.; Ogburn, E.; Allen, J.; Dorward, J.; Dobson, M.; Madden, T.-A.; Yu, L.-M.; Lowe, D.M.; Rahman, N.; Petrou, S.; et al. Platform adaptive trial of novel antivirals for early treatment of COVID-19 In the community (PANORAMIC): Protocol for a randomised, controlled, open-label, adaptive platform trial of community novel antiviral treatment of COVID-19 in people at increased risk of more severe disease. BMJ Open 2023, 13, e069176. [Google Scholar] [CrossRef] [PubMed]
Variables | Measurements |
---|---|
Age—years (median, IQR) | 64 (58–69) |
Age group—no. (%) | |
<50 | 8 (7.2%) |
≥50 | 103 (92.8%) |
≥60 | 75 (67.6%) |
≥70 | 24 (21.6%) |
Female sex—no. (%) | 53 (47.7%) |
BMI—kg/m2 (median, IQR) | 26.1 (23.0–27.9) |
PSS group—no. (%) | |
PS 0 | 54 (48.6%) |
PS 1 | 46 (41.4%) |
PS 2 | 9 (8.2%) |
PS 3 | 1 (0.9%) |
PS 4 | 1 (0.9%) |
ISS group—no. (%) | |
ISS 1 | 44 (39.6%) |
ISS2 | 51 (46.0%) |
ISS3 | 16 (14.4%) |
Line-of-treatment group—no. (%) | |
1st line | 73 (65.8%) |
2nd line | 26 (23.4%) |
3rd/4th/5th line | 12 (10.8%) |
MM-treatment-type group—no. (%) | |
Anti-BCMA agents | 30 (27%) |
Anti-CD38 | 33 (30%) |
Other | 48 (43%) |
Autologous stem cell transplant—no. (%) | 44 (40%) |
Prior history of COVID-19—no. (%) | 14 (12.6%) |
Vaccine doses against COVID-19—no. (%) | |
3 | 65 (58.6%) |
4 | 46 (41.4%) |
Result | Measurement |
---|---|
NAbs pre Evusheld—% (median, IQR) Sample size—no. (%) | 92.6% (71.3–96.0) |
NAbs post Evusheld—(% median, IQR) Samples—no. (%) | 97.3% (95.5–97.8) |
COVID-19-positive post Evusheld—no. (%) Timeline—days (median, IQR) | 9 (8.1%) 31 (8–55) |
NAbs 3 months post Evusheld—% (median, IQR) Sample size—no. (%) | 95.4% (93.7–97.9) 33 (30%) |
NAbs 6 months post Evusheld—(% median, IQR) Sample size—no. (%) | 95.1% (94.9–95.7) 4 (3.6%) |
NAbs pre second Evusheld dose—% (median, IQR) Sample size—no. (%) | 95.1% (94.8–95.9) 23 (20.7%) |
NAbs post second Evusheld dose—% (median, IQR) Sample size—no. (%) | 95.1% (94.9–96.0) 23 (20.7%) |
Infusion-related reactions—no. (%) | 0 (0%) |
Major adverse events—no. (%) | 0 (0%) |
Pain at the injection site—no. (%) | 33 (30%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntanasis-Stathopoulos, I.; Filippatos, C.; Gavriatopoulou, M.; Malandrakis, P.; Eleutherakis-Papaiakovou, E.; Spiliopoulou, V.; Syrigou, R.-E.; Theodorakakou, F.; Fotiou, D.; Migkou, M.; et al. Tixagevimab/Cilgavimab as Pre-Exposure Prophylaxis against COVID-19 for Multiple Myeloma Patients: A Prospective Study in the Omicron Era. Diseases 2023, 11, 123. https://doi.org/10.3390/diseases11030123
Ntanasis-Stathopoulos I, Filippatos C, Gavriatopoulou M, Malandrakis P, Eleutherakis-Papaiakovou E, Spiliopoulou V, Syrigou R-E, Theodorakakou F, Fotiou D, Migkou M, et al. Tixagevimab/Cilgavimab as Pre-Exposure Prophylaxis against COVID-19 for Multiple Myeloma Patients: A Prospective Study in the Omicron Era. Diseases. 2023; 11(3):123. https://doi.org/10.3390/diseases11030123
Chicago/Turabian StyleNtanasis-Stathopoulos, Ioannis, Charalampos Filippatos, Maria Gavriatopoulou, Panagiotis Malandrakis, Evangelos Eleutherakis-Papaiakovou, Vassiliki Spiliopoulou, Rodanthi-Eleni Syrigou, Foteini Theodorakakou, Despina Fotiou, Magdalini Migkou, and et al. 2023. "Tixagevimab/Cilgavimab as Pre-Exposure Prophylaxis against COVID-19 for Multiple Myeloma Patients: A Prospective Study in the Omicron Era" Diseases 11, no. 3: 123. https://doi.org/10.3390/diseases11030123
APA StyleNtanasis-Stathopoulos, I., Filippatos, C., Gavriatopoulou, M., Malandrakis, P., Eleutherakis-Papaiakovou, E., Spiliopoulou, V., Syrigou, R.-E., Theodorakakou, F., Fotiou, D., Migkou, M., Roussou, M., Kastritis, E., Dimopoulos, M. A., & Terpos, E. (2023). Tixagevimab/Cilgavimab as Pre-Exposure Prophylaxis against COVID-19 for Multiple Myeloma Patients: A Prospective Study in the Omicron Era. Diseases, 11(3), 123. https://doi.org/10.3390/diseases11030123