Serum Pro-Inflammatory Cytokines and Leptin as Potential Biomarkers for Treatment Response and Toxicity in Locally Advanced Squamous Cell Carcinoma of the Head and Neck
Abstract
:1. Introduction
2. Patients and Methods
2.1. Treatment Plan
2.1.1. First Phase of Treatment: Induction Chemotherapy
2.1.2. Second Phase of Treatment: Radiotherapy and Concomitant Chemotherapy
2.1.3. Quality of Life Evaluation
2.1.4. Evaluation of the Levels of Serum Pro-Inflammatory Cytokines and Leptin
2.2. Statistical Analysis
3. Results
3.1. Response to Treatment
3.2. Body Mass Index before and after Treatment
3.3. Treatment Toxicity
3.4. Quality of Life Evaluation
3.5. Effects of Treatment on Serum Pro-Inflammatory Cytokines and Leptin Levels
3.6. Survival Outcomes in HNSCC Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Felice, F.; Belgioia, L.; Alterio, D.; Bonomo, P.; Maddalo, M.; Paiar, F.; Denaro, N.; Corvò, R.; Merlotti, A.; Bossi, P.; et al. Survival and toxicity of weekly cisplatin chemoradiotherapy versus three-weekly cisplatin chemoradiotherapy for head and neck cancer: A systematic review and meta-analysis endorsed by the Italian Association of Radiotherapy and Clinical Oncology (AIRO). Crit. Rev. Oncol. 2021, 162, 103345. [Google Scholar] [CrossRef]
- Lacas, B.; Carmel, A.; Landais, C.; Wong, S.J.; Licitra, L.; Tobias, J.S.; Burtness, B.; Ghi, M.G.; Cohen, E.E.; Grau, C.; et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC Group. Radiother. Oncol. 2021, 156, 281–293. [Google Scholar] [CrossRef]
- Petit, C.; Lacas, B.; Pignon, J.-P.; Le, Q.T.; Grégoire, V.; Grau, C.; Hackshaw, A.; Zackrisson, B.; Parmar, M.K.B.; Lee, J.-W.; et al. Chemotherapy and radiotherapy in locally advanced head and neck cancer: An individual patient data network meta-analysis. Lancet Oncol. 2021, 22, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, P.; Aupérin, A.; Pignon, J.-P. Are Individual patient data meta-analyses still needed today in oncology? A discussion focused on Head and Neck oncology. Acta Oncol. 2019, 58, 1333–1336. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.-H.M.; Sun, W.; Long, G.-X. Concurrent cisplatin or cetuximab with radiotherapy in patients with locally advanced head and neck squamous cell carcinoma: A meta-analysis. Medicine 2020, 99, e21785. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.E.; Karrison, T.G.; Kocherginsky, M.; Mueller, J.; Egan, R.; Huang, C.H.; Brockstein, B.E.; Agulnik, M.B.; Mittal, B.B.; Yunus, F.; et al. Phase III randomized trial of induction chemotherapy in patients with N2 or N3 locally advanced head and neck cancer. J. Clin. Oncol. 2014, 32, 2735–2743. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Kiyota, N.; Vaish, R.; Sharma, A.; Tahara, M.; Noronha, V.; Prabhash, K.; D’Cruz, A. Weekly versus 3-weekly cisplatin along with radiotherapy for locoregionally advanced non-nasopharyngeal head and neck cancers: Is the equipoise in literature addressed yet? Head Neck 2023, 45, 1594–1603. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.; Glazer, T.A.; Kimple, R.J.; Bruce, J.Y. Advances in organ preservation for laryngeal cancer. Curr. Treat. Options Oncol. 2022, 23, 594–608. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Wang, P.; Zou, Y.; Zha, Z.; Huang, H.; Guan, M.; Wu, Y.; Liu, G. IL-1β Promotes Stemness of Tumor Cells by Activating Smad/ID1 Signaling Pathway. Int. J. Med. Sci. 2020, 17, 1257–1268. [Google Scholar] [CrossRef]
- Astradsson, T.; Sellberg, F.; Berglund, D.; Ehrsson, Y.T.; Laurell, G.F.E. Systemic inflammatory reaction in patients with head and neck cancer—An explorative study. Front. Oncol. 2019, 9, 1177. [Google Scholar] [CrossRef]
- Kondoh, N.; Mizuno-Kamiya, M. The role of immune modulatory cytokines in the tumor microenvironments of head and neck squamous cell carcinomas. Cancers 2022, 14, 2884. [Google Scholar] [CrossRef]
- Liao, W.; Lin, J.-X.; Leonard, W.J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013, 38, 13–25. [Google Scholar] [CrossRef]
- Mullard, A. Restoring IL-2 to its cancer immunotherapy glory. Nat. Rev. Drug Discov. 2021, 20, 163–165. [Google Scholar] [CrossRef]
- Li, M.; Jin, S.; Zhang, Z.; Ma, H.; Yang, X. Interleukin-6 facilitates tumor progression by inducing ferroptosis resistance in head and neck squamous cell carcinoma. Cancer Lett. 2021, 527, 28–40. [Google Scholar] [CrossRef]
- Radharani, N.N.V.; Yadav, A.S.; Nimma, R.; Kumar, T.V.S.; Bulbule, A.; Chanukuppa, V.; Kumar, D.; Patnaik, S.; Rapole, S.; Kundu, G.C. Tumor-associated macrophage derived IL-6 enriches cancer stem cell population and promotes breast tumor progression via Stat-3 pathway. Cancer Cell Int. 2022, 22, 122. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Zhang, Y.; Bai, L.; Cui, J. Natural killer cell therapy targeting cancer stem cells: Old wine in a new bottle. Cancer Lett. 2023, 570, 216328. [Google Scholar] [CrossRef] [PubMed]
- Elmusrati, A.; Wang, J.; Wang, C.-Y. Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma. Int. J. Oral Sci. 2021, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.M.Y.; Krinsky, A.L.; Woolaver, R.A.; Wang, X.; Chen, Z.; Wang, J.H. Tumor immune microenvironment in head and neck cancers. Mol. Carcinog. 2020, 59, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Sahu, A.K.; Srivastava, A.; Chowdhury, R.; Mukherjee, S. Exploring the extensive crosstalk between the antagonistic cytokines- TGF-β and TNF-α in regulating cancer pathogenesis. Cytokine 2020, 138, 155348. [Google Scholar] [CrossRef] [PubMed]
- Zalpoor, H.; Aziziyan, F.; Liaghat, M.; Bakhtiyari, M.; Akbari, A.; Nabi-Afjadi, M.; Forghaniesfidvajani, R.; Rezaei, N. The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. Cell Commun. Signal. 2022, 20, 186. [Google Scholar] [CrossRef] [PubMed]
- Modzelewska, P.; Chludzińska, S.; Lewko, J.; Reszeć, J. The influence of leptin on the process of carcinogenesis. Contemp. Oncol./Współczesna Onkol. 2019, 23, 63–68. [Google Scholar] [CrossRef]
- Olea-Flores, M.; Juárez-Cruz, J.C.; Zuñiga-Eulogio, M.D.; Acosta, E.; García-Rodríguez, E.; Zacapala-Gomez, A.E.; Mendoza-Catalán, M.A.; Ortiz-Ortiz, J.; Ortuño-Pineda, C.; Navarro-Tito, N. New actors driving the epithelial–mesenchymal transition in cancer: The role of leptin. Biomolecules 2020, 10, 1676. [Google Scholar] [CrossRef]
- Caruso, A.; Gelsomino, L.; Panza, S.; Accattatis, F.M.; Naimo, G.D.; Barone, I.; Giordano, C.; Catalano, S.; Andò, S. Leptin: A Heavyweight Player in Obesity-Related Cancers. Biomolecules 2023, 13, 1084. [Google Scholar] [CrossRef]
- Barone, I.; Giordano, C.; Bonofiglio, D.; Ando, S.; Catalano, S. The weight of obesity in breast cancer progression and metastasis: Clinical and molecular perspectives. Semin. Cancer Biol. 2020, 60, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Sok, M.; Zavrl, M.; Greif, B.; Srpčič, M. Objective assessment of WHO/ECOG performance status. Support. Care Cancer 2019, 27, 3793–3798. [Google Scholar] [CrossRef] [PubMed]
- Aykan, N.F.; Özatlı, T. Objective response rate assessment in oncology: Current situation and future expectations. World J. Clin. Oncol. 2020, 11, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Fayers, P.; Bottomley, A.; on behalf of the EORTC Quality of Life Group and of the Quality of Life Unit. Quality of life research within the EORTC—The EORTC QLQ-C30. Eur. J. Cancer 2002, 38, 125–133. [Google Scholar] [CrossRef]
- Gupta, T.; Kannan, S.; Ghosh-Laskar, S.; Agarwal, J. Systematic review and meta-analysis of conventionally fractionated concurrent chemoradiotherapy versus altered fractionation radiotherapy alone in the definitive management of locoregionally advanced head and neck squamous cell carcinoma. Clin. Oncol. 2016, 28, 50–61. [Google Scholar] [CrossRef]
- Tang, L.-L.; Guo, R.; Zhang, N.; Deng, B.; Chen, L.; Cheng, Z.-B.; Huang, J.; Hu, W.-H.; Huang, S.H.; Luo, W.-J.; et al. Effect of radiotherapy alone vs. radiotherapy with concurrent chemoradiotherapy on survival without disease relapse in patients with low-risk nasopharyngeal carcinoma. JAMA 2022, 328, 728–736. [Google Scholar] [CrossRef]
- Lu, X.J.D.; Jackson, E.; Chew, J.; Nguyen, S.; Wu, J.; Poh, C.F.; Prisman, E. Combined chemoradiotherapy showed improved outcome with early-stage HPV-positive oropharyngeal cancers. BMC Cancer 2022, 22, 513. [Google Scholar] [CrossRef] [PubMed]
- Bernier, J.; Cooper, J.S.; Pajak, T.F.; Van Glabbeke, M.; Bourhis, J.; Forastiere, A.; Ozsahin, E.M.; Jacobs, J.R.; Jassem, J.; Ang, K.-K.; et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck J. Sci. Spec. Head Neck 2005, 27, 843–850. [Google Scholar] [CrossRef]
- Ravasco, P.; Monteiro-Grillo, I.; Vidal, P.M.; Camilo, M.E. Impact of nutrition on outcome: A prospective randomized controlled trial in patients with head and neck cancer undergoing radiotherapy. Head Neck J. Sci. Spec. Head Neck 2005, 27, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; An, Z.; Lin, D.; Jin, W. Targeting cancer cachexia: Molecular mechanisms and clinical study. Medcomm 2022, 3, e164. [Google Scholar] [CrossRef]
- Pignon, J.-P.; le Maître, A.; Maillard, E.; Bourhis, J.; MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 93 randomised trials and 17,346 patients. Radiother. Oncol. 2009, 92, 4–14. [Google Scholar] [CrossRef]
- Anderson, G.; Ebadi, M.; Vo, K.; Novak, J.; Govindarajan, A.; Amini, A. An updated review on head and neck cancer treatment with radiation therapy. Cancers 2021, 13, 4912. [Google Scholar] [CrossRef]
- Haddad, R.; Posner, M.; Hitt, R.; Cohen, E.; Schulten, J.; Lefebvre, J.-L.; Vermorken, J. Induction chemotherapy in locally advanced squamous cell carcinoma of the head and neck: Role, controversy, and future directions. Ann. Oncol. 2018, 29, 1130–1140. [Google Scholar] [CrossRef]
- Geoffrois, L.; Martin, L.; De Raucourt, D.; Sun, X.S.; Tao, Y.; Maingon, P.; Buffet, J.; Pointreau, Y.; Sire, C.; Tuchais, C.; et al. Induction Chemotherapy Followed by Cetuximab Radiotherapy Is Not Superior to Concurrent Chemoradiotherapy for Head and Neck Carcinomas: Results of the GORTEC 2007-02 Phase III Randomized Trial. J. Clin. Oncol. 2018, 36, 3077–3083. [Google Scholar] [CrossRef]
- Lorch, J.H.; Goloubeva, O.; Haddad, R.I.; Cullen, K.; Sarlis, N.; Tishler, R.; Tan, M.; Fasciano, J.; Sammartino, D.E.; Posner, M.R.; et al. Induction chemotherapy with cisplatin and fluorouracil alone or in combination with docetaxel before chemoradiotherapy for locally advanced head and neck cancer: Results of the TAX 324 randomized phase III trial. J. Clin. Oncol. 2014, 32, 693–700. [Google Scholar]
- Haddad, R.; O’Neill, A.; Rabinowits, G.; Tishler, R.; Khuri, F.; Adkins, D.; Clark, J.; Sarlis, N.; Lorch, J.; Beitler, J.J.; et al. Induction chemotherapy followed by concurrent chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): A randomised phase 3 trial. Lancet Oncol. 2013, 14, 257–264. [Google Scholar] [CrossRef] [PubMed]
- García-Cabo, P.; López, F.; Sánchez-Canteli, M.; Fernández-Vañes, L.; Álvarez-Marcos, C.; Llorente, J.L.; de la Rúa, M.; Blay, P.; Rodrigo, J.P. Matched-pair analysis of survival in the patients with advanced laryngeal and hypopharyngeal squamous cell carcinoma treated with induction chemotherapy plus chemo-radiation or total laryngectomy. Cancers 2021, 13, 1735. [Google Scholar] [CrossRef]
- Caruntu, A.; Scheau, C.; Codrici, E.; Popescu, I.D.; Calenic, B.; Caruntu, C.; Tanase, C. The assessment of serum cytokines in oral squamous cell carcinoma patients: An observational prospective controlled study. J. Clin. Med. 2022, 11, 5398. [Google Scholar] [CrossRef] [PubMed]
- Reers, S.; Pfannerstill, A.C.; Rades, D.; Maushagen, R.; Andratschke, M.; Pries, R.; Wollenberg, B. Cytokine changes in response to radio-/chemotherapeutic treatment in head and neck cancer. Anticancer. Res. 2013, 33, 2481–2489. [Google Scholar] [PubMed]
- Paval, D.R.; Patton, R.; McDonald, J.; Skipworth, R.J.; Gallagher, I.J.; Laird, B.J.; the Caledonian Cachexia Collaborative. A systematic review examining the relationship between cytokines and cachexia in incurable cancer. J. Cachexia Sarcopenia Muscle 2022, 13, 824–838. [Google Scholar] [CrossRef] [PubMed]
- Muthanandam, S.; Muthu, J. Understanding cachexia in head and neck cancer. Asia-Pac. J. Oncol. Nurs. 2021, 8, 527–538. [Google Scholar] [CrossRef]
Number | % | |||
---|---|---|---|---|
Gender | ||||
Males | 39 | 75 | ||
Females | 13 | 25 | ||
ANOVA Table between males and females in LSCC and Controls | ||||
Sum of Squares | d.f. | Variance | F | p |
0.6037 | 3 | 0.2012 | 2.9553 | 0.0362 |
Age | ||||
Mean (Median) | 54.2 ± 16.24 (50.4) | |||
Range | 35–62 | |||
Evaluable for response to induction chemotherapy | 50 | |||
Evaluable for response to induction chemotherapy + concomitant chemoradiotherapy | 44 | |||
Evaluable for response at completion of all therapy | 44 | |||
Evaluable for toxicity | 52 | |||
Site | ||||
Oral cavity | 4 | 7.7 | ||
Oropharynx | 22 | 42.3 | ||
Hypopharynx | 16 | 30.7 | ||
Larynx | 10 | 19.3 | ||
Tumor grade | ||||
Well differentiated | 12 | 23.1 | ||
Moderately differentiated | 22 | 42.3 | ||
Poorly differentiated | 18 | 34.6 | ||
ECOG performance status | ||||
0 | 42 | 80.8 | ||
1 | 10 | 19.2 | ||
Clinical stage | ||||
Stage III | 4 | 7.6 | ||
T2N1 | 0 | 0 | ||
T3N0 | 2 | 3.8 | ||
T3N1 | 2 | 3.8 | ||
Stage IV | 48 | 92.4 | ||
T1N2 | 2 | 3.8 | ||
T2N2 | 6 | 11.6 | ||
T3N2 | 6 | 11.6 | ||
T3N3 | 4 | 7.7 | ||
T4N0 | 8 | 15.4 | ||
T4N1 | 4 | 7.7 | ||
T4N2 | 14 | 26.9 | ||
T4N3 | 4 | 7.7 | ||
Percentage weight loss | ||||
None | 30 | 57.7 | ||
0–5 | 10 | 19.2 | ||
5–10 | 4 | 7.7 | ||
>10 | 8 | 15.4 |
Clinical Response after Three Cycles of Induction Chemotherapy (50 Evaluable Patients) | ||
No. | % | |
Complete response (CR) | 8 | 16 |
Partial response (PR) | 18 | 36 |
Stable disease (SD) | 18 | 36 |
Progressive disease (PD) | 6 | 12 |
Clinical response after three cycles of induction chemotherapy and concomitant chemoradiotherapy (44 evaluable patients) | ||
CR | 26 | 59.1 |
PR > 70% | 7 | 15.9 |
SD | 6 | 13.6 |
PD | 5 | 11.4 |
Clinical response after three cycles of induction chemotherapy, concomitant chemoradiotherapy, and surgery | ||
Stopped treatment at protocol completion because of CR | 26 | 59.1 |
Refused conservative surgery (PR) | 2/7 | 4.5 |
Not amenable to radical surgery (SD) | 2/6 | 4.5 |
Died after concomitant chemoradiotherapy (SD) | 2 | 4.5 |
PD shifted to other treatment protocols | 3 | 6.8 |
Toxicity | Highest National Cancer Institute (NCI) Toxicity Grade | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Grade 0 | Grade I | Grade II | Grade III | Grade IV | ||||||
No. | % | No. | % | No. | % | No. | % | No. | % | |
Hemoglobin | 12 | 23.1 | 20 | 38.5 | 10 | 19.2 | 10 | 19.2 | 0 | 0.0 |
Granulocytes | 6 | 11.5 | 18 | 34.7 | 10 | 19.2 | 8 | 15.4 | 10 | 19.2 |
Platelets | 16 | 30.8 | 2 | 3.8 | 14 | 26.8 | 8 | 15.4 | 10 | 19.2 |
Creatinine | 40 | 76.9 | 4 | 7.7 | 4 | 7.7 | 4 | 7.7 | 0 | 0.0 |
Nausea/vomiting | 40 | 76.9 | 2 | 3.8 | 6 | 11.6 | 4 | 7.7 | 0 | 0.0 |
Diarrhea | 36 | 69.3 | 2 | 3.8 | 2 | 3.8 | 8 | 15.4 | 4 | 7.7 |
Mucositis | 14 | 26.8 | 8 | 15.4 | 8 | 15.4 | 16 | 30.8 | 6 | 11.5 |
Neurotoxicity | 52 | 100 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Toxicity | Highest NCI Toxicity Grade | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Grade 0 | Grade I | Grade II | Grade III | Grade IV | ||||||
No. | % | No. | % | No. | % | No. | % | No. | % | |
Hemoglobin | 2 | 8.3 | 8 | 33.3 | 4 | 16.7 | 4 | 16.7 | 6 | 25 |
Granulocytes | 2 | 8.3 | 4 | 16.7 | 6 | 25 | 6 | 25 | 6 | 25 |
Platelets | 0 | 0.0 | 8 | 33.3 | 6 | 25 | 4 | 16.7 | 6 | 25 |
Creatinine | 24 | 100 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Nausea/vomiting | 18 | 75 | 2 | 8.3 | 2 | 8.3 | 2 | 8.3 | 0 | 0.0 |
Diarrhea | 24 | 100 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Mucositis | 3 | 12.5 | 3 | 12.5 | 2 | 8.4 | 8 | 33.3 | 8 | 33.3 |
Neurotoxicity | 24 | 100 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Cytokines | Controls (n = 50) | Patients before Treatment (n = 52) | Student’s t-Test | df | p-Value |
---|---|---|---|---|---|
IL-1β (pg/mL) | 3.6 ± 1.2 | 12.4 ± 4.3 | 8.9829 | 98 | <0.0001 |
IL-2 (pg/mL) | 2.31 ± 1.1 | 14.9 ± 4.1 | 13.4930 | 98 | <0.0001 |
IL-6 (pg/mL) | 2.8 ± 1.5 | 37 ± 14.9 | 10.2008 | 98 | <0.0001 |
TNF α (pg/mL) | 2.1 ± 1.7 | 28 ± 12.9 | 8.9109 | 98 | <0.0001 |
Leptin (pg/mL) | 3.1 ± 1.6 | 19 ± 16.1 | 3.8366 | 98 | <0.0001 |
Parameters (Mean ± SD) | Complete or Partial Response (n = 33) | |||
---|---|---|---|---|
Before Treatment Mean ± SD | After Treatment Mean ± SD | t-Test | p | |
IL-1β (pg/mL) | 44.3 ± 31 | 17.3 ± 3.4 | 3.8719 | 0.0004 |
IL-2 (pg/mL) | 29.3 ± 11.7 | 61.7 ± 37.7 | 3.671 | 0.0007 |
IL-6 (pg/mL) | 32 ± 9 | 14.8 ± 5.7 | 3.23 | 0.018 |
TNF-α (pg/mL) | 43.7 ± 14.7 | 23.2 ± 8.5 | 5.399 | <0.0001 |
Leptin (pg/mL) | 10.7 ± 6.5 | 16 ± 8.6 | 2.1987 | 0.0341 |
Parameters (mean ± SD) | Stable disease (n = 6) | |||
Before treatment Mean ± SD | After treatment Mean ± SD | t-test | p | |
IL-1β (pg/mL) | 42.5 ± 2.1 | 25 ± 4.2 | 13.94 | <0.0001 |
IL-2 (pg/mL) | 53.5 ± 40.3 | 41.5 ± 4.9 | 0.5912 | 0.57 |
IL-6 (pg/mL) | 51.5 ± 14.4 | 32 ± 8.5 | 2.857 | 0.017 |
TNF-α (pg/mL) | 47.5 ± 10.6 | 35.5 ± 7.8 | 1.824 | 0.118 |
Leptin (pg/mL) | 2.3 ± 2 | 5.6 ± 2.2 | 2.64 | 0.014 |
Parameters (mean ± SD) | Progressive disease (n = 5) | |||
Before treatment Mean ± SD | After treatment Mean ± SD | t-test | p | |
IL-1β (pg/mL) | 28.7 ± 16.2 | 34.3 ± 9.6 | 3.293 | 0.0081 |
IL-2 (pg/mL) | 31.3 ± 19.1 | 23.7 ± 5.5 | 0.937 | 0.3710 |
IL-6 (pg/mL) | 19 ± 3.6 | 22.5 ± 4.6 | 1.467 | 0.173 |
TNF-α (pg/mL) | 28.3 ± 11.2 | 34.7 ± 9.1 | 1.086 | 0.303 |
Leptin (pg/mL) | 6.5 ± 4.2 | 6.1 ± 4.5 | 0.199 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrehaili, A.A.; Gharib, A.F.; Bakhuraysah, M.M.; Alharthi, A.; Alsalmi, O.; Alsaeedi, F.A.; Alhakami, R.A.; Alasmari, K.A.; Mohammed, N.; Elsawy, W.H. Serum Pro-Inflammatory Cytokines and Leptin as Potential Biomarkers for Treatment Response and Toxicity in Locally Advanced Squamous Cell Carcinoma of the Head and Neck. Diseases 2024, 12, 55. https://doi.org/10.3390/diseases12030055
Alrehaili AA, Gharib AF, Bakhuraysah MM, Alharthi A, Alsalmi O, Alsaeedi FA, Alhakami RA, Alasmari KA, Mohammed N, Elsawy WH. Serum Pro-Inflammatory Cytokines and Leptin as Potential Biomarkers for Treatment Response and Toxicity in Locally Advanced Squamous Cell Carcinoma of the Head and Neck. Diseases. 2024; 12(3):55. https://doi.org/10.3390/diseases12030055
Chicago/Turabian StyleAlrehaili, Amani A., Amal F. Gharib, Maha M. Bakhuraysah, Afaf Alharthi, Ohud Alsalmi, Fouzeyyah Ali Alsaeedi, Reem Ali Alhakami, Kamilah Ali Alasmari, Nuha Mohammed, and Wael H. Elsawy. 2024. "Serum Pro-Inflammatory Cytokines and Leptin as Potential Biomarkers for Treatment Response and Toxicity in Locally Advanced Squamous Cell Carcinoma of the Head and Neck" Diseases 12, no. 3: 55. https://doi.org/10.3390/diseases12030055
APA StyleAlrehaili, A. A., Gharib, A. F., Bakhuraysah, M. M., Alharthi, A., Alsalmi, O., Alsaeedi, F. A., Alhakami, R. A., Alasmari, K. A., Mohammed, N., & Elsawy, W. H. (2024). Serum Pro-Inflammatory Cytokines and Leptin as Potential Biomarkers for Treatment Response and Toxicity in Locally Advanced Squamous Cell Carcinoma of the Head and Neck. Diseases, 12(3), 55. https://doi.org/10.3390/diseases12030055