Bile Acids and Bilirubin Role in Oxidative Stress and Inflammation in Cardiovascular Diseases
Abstract
:1. Introduction
2. Literature Search and Screening
2.1. Search and Screening Strategy (Methods)
- -
- The paper discusses BAs and bilirubin synthesis and metabolism, physicochemical properties and their receptors and signaling pathways;
- -
- The paper includes findings from human and animal studies (if relevant) with the support of preclinical data related to the role of BAs and bilirubin in CVDs.
2.2. Search and Screening Results
3. Bile Acids: Biochemistry and Physiology
4. Bilirubin: Biochemistry and Physiology
5. Bile Acids and Bilirubin in Oxidative Stress and Inflammation Related to Cardiovascular Disease
5.1. Bile Acids
5.2. Bilirubin
6. Cardiovascular Diseases Associated with BAs/Bilirubin Deregulation: A Clinical Point of View
Sample Size (N.) | Clinical Condition | Study Design | Marker | Outcomes | Main Results | Ref. |
---|---|---|---|---|---|---|
777 | Acute ischemic stroke | Retrospective study | Bile acids | Stroke severity, in-hospital complication incidence, 3-month all-cause mortality | Bile acid levels were inversely associated with the 3-month mortality but not significantly associated with stroke severity or incidence of complications. | Huang et al. [81] |
112 | Moderate to severe Chronic Kidney Disease | Cohort analysis | Deoxycholic acid | Coronary artery calcification | Higher serum deoxycholic acid concentrations were independently associated with greater baseline coronary artery calcification. | Jovanovich et al. [82] |
40 (Children) | Biliary atresia | Cohort analysis | Bile acids | Echocardiografic parameters | Bile acid concentrations >152 µmol/L were associated with an ∼8-fold increased odds of detecting abnormalities in left atrial and left ventricular geometry. | Virk et al. [83] |
30 (Women) | Primary biliary cholangitis | Cohort analysis | Disease per se | Lower extremity arterial disease | Prevalence of lower extremity arterial disease in both NAFLD and control women (83.3% vs. 53.3% and 50%) and is associated with inflammatory markers and alterations in the gut-liver axis. | Ponziani et al. [85] |
1370 | Various liver diseases | Meta-analysis | Disease per se | LDL-cholesterol | Ursodeoxycholic acid therapy might be associated with significant total cholesterol lowering particularly in patients with primary biliary cirrhosis. | Simental-Mendia et al. [86] |
44,230 (on a total population of 1,192,515) | Gilbert’s syndrome | Cross-sectional study | Disease per se | Atherosclerotic cardiovascular disease | Individuals with Gilbert’s syndrome consistently exhibited protective effect as they aged, and its magnitude increased with age. | Kartoun et al. [90] |
463,060 participants in the UK Biobank (Replication in 429,209 subjects from the FinnGen) | Gilbert’s syndrome/Hyperbilirubinemia | Cohort study including observational, genetic, and Mendelian randomization analyses | Bilirubin; Disease per se | Cardiovascular diseases | Higher bilirubin concentrations (but not Gilbert genotype) had strong inverse associations with myocardial infarction, and cholesterol measures. However, genetic data suggest that bilirubin has no likely causal role in protection from cardiovascular disease. | Hamilton et al. [91] |
368,567 participants | General population | Meta-analysis | Bilirubin | Cardiovascular diseases | There was a U-shaped dose-response relationship between bilirubin and cardiovascular disease, especially for men. The lowest risk of cardiovascular events was observed in participants with a bilirubin of 17–20 µmol/L in serum and/or plasma. | Zuo et al. [92] |
316,375 subjects | General population | Meta-analysis | Bilirubin | Myocardial infarction | Higher bilirubin levels within a physiological range reduced the incidence of long-term first myocardial infarction, with a cut-off value of 12.60 μmol/L. | Yao et al. [93] |
34,976 patients with CAD and 29,229 non-CAD individuals from general populations | General population | Meta-analysis | Bilirubin | Coronary artery disease (CAD) | Pooled serum total bilirubin levels were higher in myocardial infarction patients than in non-myocardial infarction CAD ones. Higher bilirubin levels were associated with greater odds of adverse outcomes in myocardial infarction patients, but lower odds in non- myocardial infarction CAD patients. Compared to non-severe cases, bilirubin levels were higher in patients with severe myocardial infarction, but lower in severe non- myocardial infarction CAD patients. Total bilirubin levels correlated positively with myocardial infarction severity, but negatively with non- myocardial infarction CAD severity. | Li et al. [94] |
196 premenopausal women | General population | Cross-sectional study | Bilirubin | New-onset hypertension | In perimenopause, bilirubin was inversely associated with diastolic blood pressure and new-onset hypertension, diagnosed using 24 h ambulatory blood pressure monitoring. | He et al. [95] |
4290 participants | General population | A Population-Based Cross-Sectional Study | Bilirubin | Femoral and Carotid Atherosclerosis | Increased serum bilirubin levels are inversely associated with the prevalence of carotid or femoral atherosclerosis. LDL and cholesterol may mediate these associations. | Su et al. [99] |
100 | Obese patients and healthy controls | Cross-sectional | Bilirubin | Cardiometabolic risk factors | Among cardio-metabolic risk factors, HDL-C and neutrophil-to-lymphocyte ratio are the most closely associated variables with bilirubin levels in obese adults. | El-Eshmawy et al. [98] |
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diab, A.; Dastmalchi, L.N.; Gulati, M.; Michos, E.D. A Heart-Healthy Diet for Cardiovascular Disease Prevention: Where Are We Now? Vasc. Health Risk Manag. 2023, 19, 237–253. [Google Scholar] [CrossRef]
- Leopold, J.A.; Loscalzo, J. Emerging Role of Precision Medicine in Cardiovascular Disease. Circ. Res. 2018, 122, 1302–1315. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Menichelli, D.; Pastori, D.; Violi, F. Oxidative Stress and Cardiovascular Disease: New Insights. Kardiol. Pol. 2018, 76, 713–722. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Panigrahy, D.; Gilligan, M.M.; Serhan, C.N.; Kashfi, K. Resolution of Inflammation: An Organizing Principle in Biology and Medicine. Pharmacol. Ther. 2021, 227, 107879. [Google Scholar] [CrossRef]
- Caliceti, C.; Rizzo, P.; Cicero, A.F.G. Potential Benefits of Berberine in the Management of Perimenopausal Syndrome. Oxid. Med. Cell Longev. 2015, 2015, 723093. [Google Scholar] [CrossRef]
- Vasavan, T.; Ferraro, E.; Ibrahim, E.; Dixon, P.; Gorelik, J.; Williamson, C. Heart and Bile Acids—Clinical Consequences of Altered Bile Acid Metabolism. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2018, 1864, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Coxito, P.M.; Sardão, V.A.; Palmeira, C.M.; Oliveira, P.J. Bile Acids Are Toxic for Isolated Cardiac Mitochondria: A Possible Cause for Hepatic-Derived Cardiomyopathies? Cardiovasc. Toxicol. 2005, 5, 063–074. [Google Scholar] [CrossRef]
- Ziberna, L.; Martelanc, M.; Franko, M.; Passamonti, S. Bilirubin Is an Endogenous Antioxidant in Human Vascular Endothelial Cells. Sci. Rep. 2016, 6, 29240. [Google Scholar] [CrossRef]
- Bulmer, A.C.; Bakrania, B.; Du Toit, E.F.; Boon, A.-C.; Clark, P.J.; Powell, L.W.; Wagner, K.-H.; Headrick, J.P. Bilirubin Acts as a Multipotent Guardian of Cardiovascular Integrity: More than Just a Radical Idea. Am. J. Physiol.-Heart Circ. Physiol. 2018, 315, H429–H447. [Google Scholar] [CrossRef]
- ASReview LAB Developers. ASReview LAB—A Tool for AI-Assisted Systematic Reviews Zenodo v1.5. 2024. Available online: https://zenodo.org/records/10464713 (accessed on 1 April 2024).
- van de Schoot, R.; de Bruin, J.; Schram, R.; Zahedi, P.; de Boer, J.; Weijdema, F.; Kramer, B.; Huijts, M.; Hoogerwerf, M.; Ferdinands, G.; et al. An Open Source Machine Learning Framework for Efficient and Transparent Systematic Reviews. Nat. Mach. Intell. 2021, 3, 125–133. [Google Scholar] [CrossRef]
- Perillo, M.; Silla, A.; Punzo, A.; Caliceti, C.; Kriete, A.; Sell, C.; Lorenzini, A. Peto’s Paradox: Nature Has Used Multiple Strategies to Keep Cancer at Bay While Evolving Long Lifespans and Large Body Masses. A Systematic Mini-Review. Biomed. J. 2023, 47, 100654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Ma, W.-Q.; Fu, M.-J.; Li, J.; Hu, C.-H.; Chen, Y.; Zhou, M.-M.; Gao, Z.-J.; He, Y.-L. Overview of Bile Acid Signaling in the Cardiovascular System. World J. Clin. Cases 2021, 9, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Rimal, B.; Jiang, C.; Chiang, J.Y.L.; Patterson, A.D. Bile Acid Metabolism and Signaling, the Microbiota, and Metabolic Disease. Pharmacol. Ther. 2022, 237, 108238. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y.L. Bile Acid Metabolism and Signaling. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2013; pp. 1191–1212. [Google Scholar]
- Chen, I.; Cassaro, S. Physiology, Bile Acids; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Schneider, K.M.; Albers, S.; Trautwein, C. Role of Bile Acids in the Gut-Liver Axis. J. Hepatol. 2018, 68, 1083–1085. [Google Scholar] [CrossRef]
- Hofmann, A.F. Bile Acids: The Good, the Bad, and the Ugly. Physiology 1999, 14, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Monte, M.J.; Marin, J.J.; Antelo, A.; Vazquez-Tato, J. Bile Acids: Chemistry, Physiology, and Pathophysiology. World J. Gastroenterol. 2009, 15, 804. [Google Scholar] [CrossRef] [PubMed]
- Ticho, A.L.; Malhotra, P.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Intestinal Absorption of Bile Acids in Health and Disease. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2019; pp. 21–56. [Google Scholar]
- Russell, D.W. The Enzymes, Regulation, and Genetics of Bile Acid Synthesis. Annu. Rev. Biochem. 2003, 72, 137–174. [Google Scholar] [CrossRef]
- Pavlidis, P.; Powell, N.; Vincent, R.P.; Ehrlich, D.; Bjarnason, I.; Hayee, B. Systematic Review: Bile Acids and Intestinal Inflammation-luminal Aggressors or Regulators of Mucosal Defence? Aliment. Pharmacol. Ther. 2015, 42, 802–817. [Google Scholar] [CrossRef]
- Bourgin, M.; Kriaa, A.; Mkaouar, H.; Mariaule, V.; Jablaoui, A.; Maguin, E.; Rhimi, M. Bile Salt Hydrolases: At the Crossroads of Microbiota and Human Health. Microorganisms 2021, 9, 1122. [Google Scholar] [CrossRef]
- Jia, W.; Xie, G.; Jia, W. Bile Acid–Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Voiosu, A.; Wiese, S.; Voiosu, T.; Bendtsen, F.; Møller, S. Bile Acids and Cardiovascular Function in Cirrhosis. Liver Int. 2017, 37, 1420–1430. [Google Scholar] [CrossRef]
- Chen, M.; Liu, C.; Wan, Y.; Yang, L.; Jiang, S.; Qian, D.; Duan, J. Enterohepatic Circulation of Bile Acids and Their Emerging Roles on Glucolipid Metabolism. Steroids 2021, 165, 108757. [Google Scholar] [CrossRef] [PubMed]
- Caliceti, C.; Punzo, A.; Silla, A.; Simoni, P.; Roda, G.; Hrelia, S. New Insights into Bile Acids Related Signaling Pathways in the Onset of Colorectal Cancer. Nutrients 2022, 14, 2964. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, J.; Hollister, K.; Sowers, L.C.; Forman, B.M. Endogenous Bile Acids Are Ligands for the Nuclear Receptor FXR/BAR. Mol. Cell 1999, 3, 543–553. [Google Scholar] [CrossRef]
- Maruyama, T.; Miyamoto, Y.; Nakamura, T.; Tamai, Y.; Okada, H.; Sugiyama, E.; Nakamura, T.; Itadani, H.; Tanaka, K. Identification of Membrane-Type Receptor for Bile Acids (M-BAR). Biochem. Biophys. Res. Commun. 2002, 298, 714–719. [Google Scholar] [CrossRef]
- Dutta, M.; Lim, J.J.; Cui, J.Y. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab. Dispos. 2022, 50, 478–491. [Google Scholar] [CrossRef]
- Honkakoski, P. Searching for Constitutive Androstane Receptor Modulators. Drug Metab. Dispos. 2022, 50, 1002–1009. [Google Scholar] [CrossRef]
- Makishima, M.; Lu, T.T.; Xie, W.; Whitfield, G.K.; Domoto, H.; Evans, R.M.; Haussler, M.R.; Mangelsdorf, D.J. Vitamin D Receptor As an Intestinal Bile Acid Sensor. Science 2002, 296, 1313–1316. [Google Scholar] [CrossRef]
- Nagahashi, M.; Yuza, K.; Hirose, Y.; Nakajima, M.; Ramanathan, R.; Hait, N.C.; Hylemon, P.B.; Zhou, H.; Takabe, K.; Wakai, T. The Roles of Bile Acids and Sphingosine-1-Phosphate Signaling in the Hepatobiliary Diseases. J. Lipid Res. 2016, 57, 1636–1643. [Google Scholar] [CrossRef]
- Fiorucci, S.; Distrutti, E.; Carino, A.; Zampella, A.; Biagioli, M. Bile Acids and Their Receptors in Metabolic Disorders. Prog. Lipid Res. 2021, 82, 101094. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; Wang, Y.; Qi, Y.; Yang, W.; Li, Y. Farnesoid X Receptor Agonists as Therapeutic Target for Cardiometabolic Diseases. Front. Pharmacol. 2020, 11, 1247. [Google Scholar] [CrossRef] [PubMed]
- van Nierop, F.S.; Scheltema, M.J.; Eggink, H.M.; Pols, T.W.; Sonne, D.P.; Knop, F.K.; Soeters, M.R. Clinical Relevance of the Bile Acid Receptor TGR5 in Metabolism. Lancet Diabetes Endocrinol. 2017, 5, 224–233. [Google Scholar] [CrossRef]
- Guo, C.; Chen, W.-D.; Wang, Y.-D. TGR5, Not Only a Metabolic Regulator. Front. Physiol. 2016, 7, 646. [Google Scholar] [CrossRef] [PubMed]
- Creeden, J.F.; Gordon, D.M.; Stec, D.E.; Hinds, T.D. Bilirubin as a Metabolic Hormone: The Physiological Relevance of Low Levels. Am. J. Physiol.-Endocrinol. Metab. 2021, 320, E191–E207. [Google Scholar] [CrossRef] [PubMed]
- Repsold, L.; Joubert, A.M. Eryptosis: An Erythrocyte’s Suicidal Type of Cell Death. Biomed. Res. Int. 2018, 2018, 9405617. [Google Scholar] [CrossRef]
- Hamoud, A.-R.; Weaver, L.; Stec, D.E.; Hinds, T.D. Bilirubin in the Liver–Gut Signaling Axis. Trends Endocrinol. Metab. 2018, 29, 140–150. [Google Scholar] [CrossRef]
- Fahmy, K.; Gray, C.; Nicholson, D. The Reduction of Bile Pigments by Faecal and Intestinal Bacteria. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1972, 264, 85–97. [Google Scholar] [CrossRef]
- Vítek, L.; Zelenka, J.; Zadinová, M.; Malina, J. The Impact of Intestinal Microflora on Serum Bilirubin Levels. J. Hepatol. 2005, 42, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Vitek, L.; Hinds, T.D.; Stec, D.E.; Tiribelli, C. The Physiology of Bilirubin: Health and Disease Equilibrium. Trends Mol. Med. 2023, 29, 315–328. [Google Scholar] [CrossRef]
- Hall, B.; Levy, S.; Dufault-Thompson, K.; Ndjite, G.M.; Weiss, A.; Braccia, D.; Jenkins, C.; Yang, Y.; Arp, G.; Abeysinghe, S.; et al. Discovery of the Gut Microbial Enzyme Responsible for Bilirubin Reduction to Urobilinogen. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Boon, A.-C.; Hawkins, C.L.; Bisht, K.; Coombes, J.S.; Bakrania, B.; Wagner, K.-H.; Bulmer, A.C. Reduced Circulating Oxidized LDL Is Associated with Hypocholesterolemia and Enhanced Thiol Status in Gilbert Syndrome. Free Radic. Biol. Med. 2012, 52, 2120–2127. [Google Scholar] [CrossRef] [PubMed]
- Swift, D.L.; Johannesen, N.M.; Earnest, C.P.; Blair, S.N.; Church, T.S. Effect of Different Doses of Aerobic Exercise Training on Total Bilirubin Levels. Med. Sci. Sports Exerc. 2012, 44, 569–574. [Google Scholar] [CrossRef]
- Constanza, P. Soto Conti Bilirubin: The Toxic Mechanisms of an Antioxidant Molecule. Arch. Argent. Pediatr. 2021, 119, E18–E24. [Google Scholar] [CrossRef] [PubMed]
- Inoguchi, T.; Nohara, Y.; Nojiri, C.; Nakashima, N. Association of Serum Bilirubin Levels with Risk of Cancer Development and Total Death. Sci. Rep. 2021, 11, 13224. [Google Scholar] [CrossRef] [PubMed]
- Wen, G.; Yao, L.; Hao, Y.; Wang, J.; Liu, J. Bilirubin Ameliorates Murine Atherosclerosis through Inhibiting Cholesterol Synthesis and Reshaping the Immune System. J. Transl. Med. 2022, 20, 1. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Tarng, D.-C. Beyond a Measure of Liver Function-Bilirubin Acts as a Potential Cardiovascular Protector in Chronic Kidney Disease Patients. Int. J. Mol. Sci. 2018, 20, 117. [Google Scholar] [CrossRef]
- Marconi, V.C.; Duncan, M.S.; So-Armah, K.; Re, V.L.; Lim, J.K.; Butt, A.A.; Goetz, M.B.; Rodriguez-Barradas, M.C.; Alcorn, C.W.; Lennox, J.; et al. Bilirubin Is Inversely Associated with Cardiovascular Disease Among HIV-Positive and HIV-Negative Individuals in VACS (Veterans Aging Cohort Study). J. Am. Heart Assoc. 2018, 7, e007792. [Google Scholar] [CrossRef]
- Orozco-Aguilar, J.; Simon, F.; Cabello-Verrugio, C. Redox-Dependent Effects in the Physiopathological Role of Bile Acids. Oxid. Med. Cell. Longev. 2021, 2021, 4847941. [Google Scholar] [CrossRef]
- DeLange, R.J.; Glazer, A.N. Bile Acids: Antioxidants or Enhancers of Peroxidation Depending on Lipid Concentration. Arch. Biochem. Biophys. 1990, 276, 19–25. [Google Scholar] [CrossRef]
- Roda, A.; Russo, C.; Pasini, P.; Piazza, F.; Feroci, G.; Kricka, L.J.; Baraldini, M. Antioxidant Properties of Bile Salt Micelles Evaluated with Different Chemiluminescent Assays: A Possible Physiological Role. J. Biolumin. Chemilumin. 1998, 13, 327–337. [Google Scholar] [CrossRef]
- Desai, M.S.; Mathur, B.; Eblimit, Z.; Vasquez, H.; Taegtmeyer, H.; Karpen, S.J.; Penny, D.J.; Moore, D.D.; Anakk, S. Bile Acid Excess Induces Cardiomyopathy and Metabolic Dysfunctions in the Heart. Hepatology 2017, 65, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Angelini, A.; Li, S.; Wang, G.; Li, L.; Patterson, C.; Pi, X.; Xie, L. CRAT Links Cholesterol Metabolism to Innate Immune Responses in the Heart. Nat. Metab. 2023, 5, 1382–1394. [Google Scholar] [CrossRef] [PubMed]
- Bomzon, A.; Holt, S.; Moore, K. Bile Acids, Oxidative Stress, and Renal Function in Biliary Obstruction. Semin. Nephrol. 1997, 17, 549–562. [Google Scholar] [PubMed]
- Degirolamo, C.; Rainaldi, S.; Bovenga, F.; Murzilli, S.; Moschetta, A. Microbiota Modification with Probiotics Induces Hepatic Bile Acid Synthesis via Downregulation of the Fxr-Fgf15 Axis in Mice. Cell Rep. 2014, 7, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhou, J.; Wu, W.; Zhu, Y.; Liu, X. The Role of Bile Acids in Cardiovascular Diseases: From Mechanisms to Clinical Implications. Aging Dis. 2022, 14, 261–282. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liu, X.; Wang, B.; Xu, H.; Xia, Q.; Lu, T.; Wang, F. Farnesoid X Receptor Deletion Improves Cardiac Function, Structure and Remodeling Following Myocardial Infarction in Mice. Mol. Med. Rep. 2017, 16, 9270. [Google Scholar] [CrossRef]
- Pu, J.; Yuan, A.; Shan, P.; Gao, E.; Wang, X.; Wang, Y.; Lau, W.B.; Koch, W.; Ma, X.-L.; He, B. Cardiomyocyte-Expressed Farnesoid-X-Receptor Is a Novel Apoptosis Mediator and Contributes to Myocardial Ischaemia/Reperfusion Injury. Eur. Heart J. 2013, 34, 1834–1845. [Google Scholar] [CrossRef]
- Chiang, J.Y.L.; Ferrell, J.M.; Wu, Y.; Boehme, S. Bile Acid and Cholesterol Metabolism in Atherosclerotic Cardiovascular Disease and Therapy. Cardiol. Plus 2020, 5, 159–170. [Google Scholar] [CrossRef]
- Tishkoff, D.X.; Nibbelink, K.A.; Holmberg, K.H.; Dandu, L.; Simpson, R.U. Functional Vitamin D Receptor (VDR) in the T-Tubules of Cardiac Myocytes: VDR Knockout Cardiomyocyte Contractility. Endocrinology 2008, 149, 558–564. [Google Scholar] [CrossRef]
- Kida, T.; Tsubosaka, Y.; Hori, M.; Ozaki, H.; Murata, T. Bile Acid Receptor TGR5 Agonism Induces NO Production and Reduces Monocyte Adhesion in Vascular Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1663–1669. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.S.; Shabier, Z.; Taylor, M.; Lam, F.; Thevananther, S.; Kosters, A.; Karpen, S.J. Hypertrophic Cardiomyopathy and Dysregulation of Cardiac Energetics in a Mouse Model of Biliary Fibrosis. Hepatology 2010, 51, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Machida, T.; Matamura, R.; Iizuka, K.; Hirafuji, M. Cellular Function and Signaling Pathways of Vascular Smooth Muscle Cells Modulated by Sphingosine 1-Phosphate. J. Pharmacol. Sci. 2016, 132, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Vítek, L.; Tiribelli, C. Bilirubin: The Yellow Hormone? J. Hepatol. 2021, 75, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Tumanov, S.; Stanley, C.P.; Kong, S.M.Y.; Nadel, J.; Vigder, N.; Newington, D.L.; Wang, X.S.; Dunn, L.L.; Stocker, R. Destabilization of Atherosclerotic Plaque by Bilirubin Deficiency. Circ. Res. 2023, 132, 812–827. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, G.L.; Rigato, I.; Ostrow, J.D.; Bossi, F.; Bortoluzzi, A.; Sukowati, C.H.C.; Tedesco, F.; Tiribelli, C. Bilirubin Inhibits the TNFα-Related Induction of Three Endothelial Adhesion Molecules. Biochem. Biophys. Res. Commun. 2009, 386, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Basuroy, S.; Bhattacharya, S.; Leffler, C.W.; Parfenova, H. Nox4 NADPH Oxidase Mediates Oxidative Stress and Apoptosis Caused by TNF-α in Cerebral Vascular Endothelial Cells. Am. J. Physiol.-Cell Physiol. 2009, 296, C422–C432. [Google Scholar] [CrossRef] [PubMed]
- Datla, S.R.; Dusting, G.J.; Mori, T.A.; Taylor, C.J.; Croft, K.D.; Jiang, F. Induction of Heme Oxygenase-1 In Vivo Suppresses NADPH Oxidase–Derived Oxidative Stress. Hypertension 2007, 50, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, B.; Ye, T.; Wang, Y.; Xia, D.; Qian, J. Physiological Concentrations of Bilirubin Control Inflammatory Response by Inhibiting NF-ΚB and Inflammasome Activation. Int. Immunopharmacol. 2020, 84, 106520. [Google Scholar] [CrossRef]
- Vera, T.; Granger, J.P.; Stec, D.E. Inhibition of Bilirubin Metabolism Induces Moderate Hyperbilirubinemia and Attenuates ANG II-Dependent Hypertension in Mice. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2009, 297, R738–R743. [Google Scholar] [CrossRef]
- Stec, D.E.; Storm, M.V.; Pruett, B.E.; Gousset, M.U. Antihypertensive Actions of Moderate Hyperbilirubinemia: Role of Superoxide Inhibition. Am. J. Hypertens. 2013, 26, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Jain, R. Studies on Serum Nitric Oxide Levels in Subjects with High Bilirubin Value in Comparison of Normal Healthy Control Subjects. Int. J. Bioassays 2016, 5, 4870. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; McCarty, M.F.; O’Keefe, J.H. Antioxidant Bilirubin Works in Multiple Ways to Reduce Risk for Obesity and Its Health Complications. Open Heart 2018, 5, e000914. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, O.; Sabapathy, S.; Ashton, K.J.; Desbrow, B.; Peake, J.M.; Lazarus, R.; Wessner, B.; Cameron-Smith, D.; Wagner, K.-H.; Haseler, L.J.; et al. Time Course-Dependent Changes in the Transcriptome of Human Skeletal Muscle during Recovery from Endurance Exercise: From Inflammation to Adaptive Remodeling. J. Appl. Physiol. 2014, 116, 274–287. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Talavera, O.; Haas, J.; Grzych, G.; Tailleux, A.; Staels, B. Bile Acid Alterations in Nonalcoholic Fatty Liver Disease, Obesity, Insulin Resistance and Type 2 Diabetes: What Do the Human Studies Tell? Curr. Opin. Lipidol. 2019, 30, 244–254. [Google Scholar] [CrossRef]
- Charach, G.; Karniel, E.; Novikov, I.; Galin, L.; Vons, S.; Grosskopf, I.; Charach, L. Reduced Bile Acid Excretion Is an Independent Risk Factor for Stroke and Mortality: A Prospective Follow-up Study. Atherosclerosis 2020, 293, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xu, G.; Zhang, R.; Wang, Y.; Ji, J.; Long, F.; Sun, Y. Increased Admission Serum Total Bile Acids Can Be Associated with Decreased 3-Month Mortality in Patients with Acute Ischemic Stroke. Lipids Health Dis. 2022, 21, 15. [Google Scholar] [CrossRef] [PubMed]
- Jovanovich, A.; Isakova, T.; Block, G.; Stubbs, J.; Smits, G.; Chonchol, M.; Miyazaki, M. Deoxycholic Acid, a Metabolite of Circulating Bile Acids, and Coronary Artery Vascular Calcification in CKD. Am. J. Kidney Dis. 2018, 71, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Virk, M.K.; Mian, M.U.M.; Bashir, D.A.; Wilkes, J.K.; Schlingman, T.; Flores, S.; Kennedy, C.; Lam, F.; Arikan, A.A.; Nguyen, T.; et al. Elevated Bile Acids Are Associated with Left Ventricular Structural Changes in Biliary Atresia. Hepatol. Commun. 2023, 7, e0109. [Google Scholar] [CrossRef]
- Reshetnyak, V.I.; Maev, I.V. Features of Lipid Metabolism Disorders in Primary Biliary Cholangitis. Biomedicines 2022, 10, 3046. [Google Scholar] [CrossRef]
- Ponziani, F.R.; Nesci, A.; Caputo, C.; Salvatore, L.; Picca, A.; Del Chierico, F.; Paroni Sterbini, F.; Marzetti, E.; Di Giorgio, A.; Santoro, L.; et al. High Prevalence of Lower Limb Atherosclerosis Is Linked with the Gut–Liver Axis in Patients with Primary Biliary Cholangitis. Liver Int. 2023, 43, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Simental-Mendía, L.E.; Simental-Mendía, M.; Sánchez-García, A.; Banach, M.; Serban, M.-C.; Cicero, A.F.G.; Sahebkar, A. Impact of Ursodeoxycholic Acid on Circulating Lipid Concentrations: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. Lipids Health Dis. 2019, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.W.; Lynch, K.D. Obeticholic Acid a New Therapy in PBC and NASH. Br. Med. Bull. 2020, 133, 95–104. [Google Scholar] [CrossRef]
- Mayer, M. Association of Serum Bilirubin Concentration with Risk of Coronary Artery Disease. Clin. Chem. 2000, 46, 1723–1727. [Google Scholar] [CrossRef] [PubMed]
- Bulmer, A.C.; Verkade, H.J.; Wagner, K.-H. Bilirubin and beyond: A Review of Lipid Status in Gilbert’s Syndrome and Its Relevance to Cardiovascular Disease Protection. Prog. Lipid Res. 2013, 52, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Kartoun, U.; Fahed, A.C.; Kany, S.; Singh, P.; Khurshid, S.; Patel, A.P.; Batra, P.; Philippakis, A.; Khera, A.V.; Lubitz, S.A.; et al. Exploring the Link between Gilbert’s Syndrome and Atherosclerotic Cardiovascular Disease: Insights from a Subpopulation-Based Analysis of over One Million Individuals. Eur. Heart J. Open 2023, 3, oead059. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, F.W.; Abeysekera, K.; Hamilton, W.; Timpson, N.J. Effect of Bilirubin and Gilbert Syndrome on Health: Cohort Analysis of Observational, Genetic, and Mendelian Randomisation Associations. BMJ Med. 2023, 2, e000467. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Huang, J.; Zhang, H.; Huang, B.; Wu, X.; Chen, L.; Xia, S.; Dong, X.; Hao, G. Dose-Response Association Between Bilirubin and Cardiovascular Disease: A Systematic Review and Meta-Analysis. Angiology 2022, 73, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.-E.; Su, M.-Y.; Huang, Y.; Chen, W. Physiologically Increased Total Bilirubin Is Associated with Reduced Risk of First Myocardial Infarction: A Meta-Analysis and Dose-Response Analysis. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1016–1026. [Google Scholar] [CrossRef]
- Li, X.; Zhao, C.; Pan, C.; Jiang, G.; Zhang, B. Role of Bilirubin in the Prognosis of Coronary Artery Disease and Its Relationship with Cardiovascular Risk Factors: A Meta-Analysis. BMC Cardiovasc. Disord. 2022, 22, 458. [Google Scholar] [CrossRef]
- He, Z.; Zhang, S.; Thio, C.; Wang, Y.; Li, M.; Wu, Y.; Lin, R.; Liu, Z.; Snieder, H.; Zhang, Q. Serum Total Bilirubin and New-Onset Hypertension in Perimenopausal Women: A Cross-Sectional Study. Menopause 2022, 29, 944–951. [Google Scholar] [CrossRef]
- Su, Q.; Chen, H.; Du, S.; Dai, Y.; Chen, C.; He, T.; Feng, R.; Tao, T.; Hu, Z.; Zhao, H.; et al. Association Between Serum Bilirubin, Lipid Levels, and Prevalence of Femoral and Carotid Atherosclerosis: A Population-Based Cross-Sectional Study. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 136–145. [Google Scholar] [CrossRef]
- Coelho, F.d.S.; Borges-Canha, M.; von Hafe, M.; Neves, J.S.; Vale, C.; Leite, A.R.; Carvalho, D.; Leite-Moreira, A. Effects of Sodium-glucose Co-transporter 2 Inhibitors on Liver Parameters and Steatosis: A Meta-analysis of Randomized Clinical Trials. Diabetes Metab. Res. Rev. 2021, 37, e3413. [Google Scholar] [CrossRef]
- El-Eshmawy, M.M.; Mahsoub, N.; Asar, M.; Elsehely, I. Association Between Total Bilirubin Levels and Cardio-Metabolic Risk Factors Related to Obesity. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 64–70. [Google Scholar] [CrossRef]
- Andersson, C.; Weeke, P.; Fosbøl, E.L.; Brendorp, B.; Køber, L.; Coutinho, W.; Sharma, A.M.; Van Gaal, L.; Finer, N.; James, W.P.T.; et al. Acute Effect of Weight Loss on Levels of Total Bilirubin in Obese, Cardiovascular High-Risk Patients: An Analysis from the Lead-in Period of the Sibutramine Cardiovascular Outcome Trial. Metabolism 2009, 58, 1109–1115. [Google Scholar] [CrossRef]
- Wang, C.; Jin, C.; Yin, X.; Liu, J.; Liu, J. Relationship between Serum Bilirubin Concentration and Sarcopenia in Patients with Type 2 Diabetes: A Cross-Sectional Study. J. Int. Med. Res. 2021, 49, 3000605211004226. [Google Scholar]
- Woronyczová, J.; Nováková, M.; Leníček, M.; Bátovský, M.; Bolek, E.; Cífková, R.; Vítek, L. Serum Bilirubin Concentrations and the Prevalence of Gilbert Syndrome in Elite Athletes. Sports Med. Open 2022, 8, 84. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Mahoney, S.E. Association Between Flavonoid-Rich Fruit and Vegetable Consumption and Total Serum Bilirubin. Angiology 2015, 66, 286–290. [Google Scholar] [CrossRef]
- He, W.; Wang, L.; Zhang, Y.; Jiang, Y.; Chen, X.; Wang, Y.; Dou, Y.; Chen, H.; Yan, W. Higher Serum Bilirubin Levels in Response to Higher Carbohydrate Intake During Early Pregnancy and Lower Gestational Diabetes Mellitus Occurrence in Overweight and Obese Gravidae. Front. Nutr. 2021, 8, 701422. [Google Scholar] [CrossRef]
- Figge, A.; Sydor, S.; Wenning, C.; Manka, P.; Assmuth, S.; Vilchez-Vargas, R.; Link, A.; Jähnert, A.; Brodesser, S.; Lucas, C.; et al. Gender and Gut Microbiota Composition Determine Hepatic Bile Acid, Metabolic and Inflammatory Response to a Single Fast-Food Meal in Healthy Adults. Clin. Nutr. 2021, 40, 2609–2619. [Google Scholar] [CrossRef]
- Pallister, T.; Jackson, M.A.; Martin, T.C.; Glastonbury, C.A.; Jennings, A.; Beaumont, M.; Mohney, R.P.; Small, K.S.; MacGregor, A.; Steves, C.J.; et al. Untangling the Relationship between Diet and Visceral Fat Mass through Blood Metabolomics and Gut Microbiome Profiling. Int. J. Obes. 2017, 41, 1106–1113. [Google Scholar] [CrossRef]
- Adin, C.A. Bilirubin as a Therapeutic Molecule: Challenges and Opportunities. Antioxidants 2021, 10, 1536. [Google Scholar] [CrossRef]
- Dekker, D.; Dorresteijn, M.J.; Welzen, M.E.B.; Timman, S.; Pickkers, P.; Burger, D.M.; Smits, P.; Wagener, F.A.D.T.G.; Russel, F.G.M. Parenteral Bilirubin in Healthy Volunteers: A Reintroduction in Translational Research. Br. J. Clin. Pharmacol. 2018, 84, 268–279. [Google Scholar] [CrossRef]
- Raschi, E.; Casula, M.; Cicero, A.F.G.; Corsini, A.; Borghi, C.; Catapano, A. Beyond Statins: New Pharmacological Targets to Decrease LDL-Cholesterol and Cardiovascular Events. Pharmacol. Ther. 2023, 250, 108507. [Google Scholar] [CrossRef]
- Borghi, C.; Cicero, A.F.G. Improving Adherence with Treatment-Resistant Hypertension. Expert Opin. Pharmacother. 2021, 22, 1373–1375. [Google Scholar] [CrossRef]
- Ajala, O.N.; Everett, B.M. Targeting Inflammation to Reduce Residual Cardiovascular Risk. Curr. Atheroscler. Rep. 2020, 22, 66. [Google Scholar] [CrossRef]
- Davidson, M.H. Reducing Residual Cardiovascular Risk with Novel Therapies. Curr. Opin. Lipidol. 2020, 31, 108–110. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punzo, A.; Silla, A.; Fogacci, F.; Perillo, M.; Cicero, A.F.G.; Caliceti, C. Bile Acids and Bilirubin Role in Oxidative Stress and Inflammation in Cardiovascular Diseases. Diseases 2024, 12, 103. https://doi.org/10.3390/diseases12050103
Punzo A, Silla A, Fogacci F, Perillo M, Cicero AFG, Caliceti C. Bile Acids and Bilirubin Role in Oxidative Stress and Inflammation in Cardiovascular Diseases. Diseases. 2024; 12(5):103. https://doi.org/10.3390/diseases12050103
Chicago/Turabian StylePunzo, Angela, Alessia Silla, Federica Fogacci, Matteo Perillo, Arrigo F. G. Cicero, and Cristiana Caliceti. 2024. "Bile Acids and Bilirubin Role in Oxidative Stress and Inflammation in Cardiovascular Diseases" Diseases 12, no. 5: 103. https://doi.org/10.3390/diseases12050103
APA StylePunzo, A., Silla, A., Fogacci, F., Perillo, M., Cicero, A. F. G., & Caliceti, C. (2024). Bile Acids and Bilirubin Role in Oxidative Stress and Inflammation in Cardiovascular Diseases. Diseases, 12(5), 103. https://doi.org/10.3390/diseases12050103