Elevated IL-6 and Tumor Necrosis Factor-α in Immune Checkpoint Inhibitor Myocarditis
Abstract
:1. Introduction
2. Methods
2.1. Study Population
Laboratory Data Collection
- Cytokine A panel—Interleukin (IL)-6, Interferon-γ (IFN-γ), Tumor Necrosis Factor-α (TNF-α)
- Cytokine B panel—(Send-out lab)-IL-2, IL-1β, IL-10, IL-12, IL-13, IL-17, IL-2 receptor, IL-4, IL-5, IL-8
2.2. Clinical Events Adjudication
2.3. Immunomodulatory Treatment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Future Implications
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korman, A.J.; Garrett-Thomson, S.C.; Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug Discov. 2022, 21, 509–528. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.S.; Fradley, M.G.; Cohen, J.V.; Nohria, A.; Reynolds, K.L.; Heinzerling, L.M.; Sullivan, R.J.; Damrongwatanasuk, R.; Chen, C.L.; Gupta, D.; et al. Myocarditis in Patients Treated With Immune Checkpoint Inhibitors. J. Am. Coll. Cardiol. 2018, 71, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Bonaca, M.P.; Olenchock, B.A.; Salem, J.E.; Wiviott, S.D.; Ederhy, S.; Cohen, A.; Moslehi, J. Myocarditis in the Setting of Cancer Therapeutics: Proposed Case Definitions for Emerging Clinical Syndromes in Cardio-Oncology. Circulation 2019, 140, 80–91. [Google Scholar] [CrossRef]
- Champion, S.N.; Stone, J.R. Immune checkpoint inhibitor associated myocarditis occurs in both high-grade and low-grade forms. Mod. Pathol. 2020, 33, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Palaskas, N.L.; Segura, A.; Lelenwa, L.; Siddiqui, B.A.; Subudhi, S.K.; Lopez-Mattei, J.; Durand, J.B.; Deswal, A.; Zhao, B.; Buja, L.M.; et al. Immune checkpoint inhibitor myocarditis: Elucidating the spectrum of disease through endomyocardial biopsy. Eur. J. Heart Fail. 2021, 23, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Fecher, L.A.; Bishu, S.; Fontana, R.J.; Hayek, S.S.; Schneider, B.J. The Role of Tissue Biopsy in the Management of Immune Checkpoint Inhibitor Toxicity. J. Natl. Compr. Cancer Netw. 2022, 20, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Berner, F.; Bomze, D.; Diem, S.; Ali, O.H.; Fässler, M.; Ring, S.; Niederer, R.; Ackermann, C.J.; Baumgaertner, P.; Pikor, N.; et al. Association of Checkpoint Inhibitor–Induced Toxic Effects With Shared Cancer and Tissue Antigens in Non–Small Cell Lung Cancer. JAMA Oncol. 2019, 5, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Tarrio, M.L.; Grabie, N.; Bu, D.-X.; Sharpe, A.H.; Lichtman, A.H. PD-1 Protects against Inflammation and Myocyte Damage in T Cell-Mediated Myocarditis. J. Immunol. 2012, 188, 4876–4884. [Google Scholar] [CrossRef]
- Tivol, E.A.; Borriello, F.; Schweitzer, A.N.; Lynch, W.P.; Bluestone, J.A.; Sharpe, A.H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995, 3, 541–547. [Google Scholar] [CrossRef]
- Arangalage, D.; Degrauwe, N.; Michielin, O.; Monney, P.; Özdemir, B.C. Pathophysiology, diagnosis and management of cardiac toxicity induced by immune checkpoint inhibitors and BRAF and MEK inhibitors. Cancer Treat. Rev. 2021, 100, 102282. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.R.; Neumann, D.A.; Lafond-Walker, A.; Herskowitz, A.; Rose, N.R. Interleukin 1 or tumor necrosis factor can promote Coxsackie B3-induced myocarditis in resistant B10.A mice. J. Exp. Med. 1992, 175, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Bluestone, J.A.; Young, A. Predicting and Preventing Immune Checkpoint Inhibitor Toxicity: Targeting Cytokines. Trends Immunol. 2021, 42, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Tayar, J.; Trinh, V.A.; Suarez-Almazor, M.; Garcia, S.; Hwu, P.; Johnson, D.H.; Uemura, M.; Diab, A. Successful treatment of arthritis induced by checkpoint inhibitors with tocilizumab: A case series. Ann. Rheum. Dis. 2017, 76, 2061–2064. [Google Scholar] [CrossRef] [PubMed]
- Stroud, C.R.; Hegde, A.; Cherry, C.; Naqash, A.R.; Sharma, N.; Addepalli, S.; Cherukuri, S.; Parent, T.; Hardin, J.; Walker, P. Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade. J. Oncol. Pharm. Pract. 2019, 25, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Tsuruda, T.; Yoshikawa, N.; Kai, M.; Yamaguchi, M.; Toida, R.; Kodama, T.; Kajihara, K.; Kawabata, T.; Nakamura, T.; Sakata, K.; et al. The Cytokine Expression in Patients with Cardiac Complication after Immune Checkpoint Inhibitor Therapy. Intern. Med. 2021, 60, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Cautela, J.; Zeriouh, S.; Gaubert, M.; Bonello, L.; Laine, M.; Peyrol, M.; Thuny, F. Intensified immunosuppressive therapy in patients with immune checkpoint inhibitor-induced myocarditis. J. Immunol. Ther. Cancer 2020, 8, e001887. [Google Scholar] [CrossRef] [PubMed]
- Valpione, S.; Pasquali, S.; Campana, L.G.; Piccin, L.; Mocellin, S.; Pigozzo, J.; Chiarion-Sileni, V. Sex and interleukin-6 are prognostic factors for autoimmune toxicity following treatment with anti-CTLA4 blockade. J. Transl. Med. 2018, 16, 94. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Balko, J.M.; Compton, M.L.; Chalkias, S.; Gorham, J.; Xu, Y.; Hicks, M.; Puzanov, I.; Alexander, M.R.; Bloomer, T.L.; et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N. Engl. J. Med. 2016, 375, 1749–1755. [Google Scholar] [CrossRef]
- Maraskovsky, E.; Chen, W.F.; Shortman, K. IL-2 and IFN-gamma are two necessary lymphokines in the development of cytolytic T cells. J. Immunol. 1989, 143, 1210–1214. [Google Scholar] [CrossRef] [PubMed]
- Curtsinger, J.M.; Agarwal, P.; Lins, D.C.; Mescher, M.F. Autocrine IFN-γ Promotes Naive CD8 T Cell Differentiation and Synergizes with IFN-α To Stimulate Strong Function. J. Immunol. 2012, 189, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Coté, T.R.; Cuffe, M.S.; Kramer, J.M.; Braun, M.M. Case Reports of Heart Failure after Therapy with a Tumor Necrosis Factor Antagonist. Ann. Intern. Med. 2003, 138, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Tsutamoto, T.; Wada, A.; Matsumoto, T.; Maeda, K.; Mabuchi, N.; Hayashi, M.; Tsutsui, T.; Ohnishi, M.; Sawaki, M.; Fujii, M.; et al. Relationship between tumor necrosis factor-alpha production and oxidative stress in the failing hearts of patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 2001, 37, 2086–2092. [Google Scholar] [CrossRef] [PubMed]
- Slattery, E.; Ismail, N.; Sheridan, J.; Eustace, K.; Harewood, G.; Patchett, S. Myocarditis associated with infliximab: A case report and review of the literature. Inflamm. Bowel. Dis. 2011, 17, 1633–1634. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.S.; Packer, M.; Lo, K.H.; Fasanmade, A.A.; Willerson, J.T. Randomized, Double-Blind, Placebo-Controlled, Pilot Trial of Infliximab, a Chimeric Monoclonal Antibody to Tumor Necrosis Factor-α, in Patients With Moderate-to-Severe Heart Failure. Circulation 2003, 107, 3133–3140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.S.; Padegimas, A.; Murphy, K.M.; Evans, P.T.; Peters, C.J.; Domenico, C.M.; Vidula, M.K.; Mather, P.J.; Cevasco, M.; Cohen, R.B.; et al. Treatment of corticosteroid refractory immune checkpoint inhibitor myocarditis with Infliximab: A case series. Cardio-Oncology 2021, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef] [PubMed]
- Salem, J.E.; Manouchehri, A.; Moey, M.; Lebrun-Vignes, B.; Bastarache, L.; Pariente, A.; Moslehi, J.J. Cardiovascular toxicities associated with immune checkpoint inhibitors: An observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018, 19, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, T.; Inoue, T.; Otsuka, T.; Kuno, I.; Kukita, Y.; Nakamura, H.; Ikeda, Y.; Yasui, T.; Shioyama, W.; Oka, T.; et al. Prevalence and characteristics of immune checkpoint inhibitor-related myocardial damage: A prospective observational study. PLoS ONE 2022, 17, e0275865. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, A.; Tamura, Y.; Taniguchi, H.; Kawamura, A.; Nagase, S.; Hayashi, A.; Tada, Y.; Sase, K.; Hatake, K. Prospective screening for myocarditis in cancer patients treated with immune checkpoint inhibitors. J. Cardiol. 2023, 81, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Infante, N.; Ramírez-Flores, Y.A.; Castillo, E.C.; Lozano, O.; García-Rivas, G.; Torre-Amione, G. Cardiotoxicity associated with immune checkpoint inhibitor therapy: A meta-analysis. Eur. J. Heart Fail. 2021, 23, 1739–1747. [Google Scholar] [CrossRef] [PubMed]
- Escudier, M.; Cautela, J.; Malissen, N.; Ancedy, Y.; Orabona, M.; Pinto, J.; Monestier, S.; Grob, J.J.; Scemama, U.; Jacquier, A.; et al. Clinical Features, Management, and Outcomes of Immune Checkpoint Inhibitor-Related Cardiotoxicity. Circulation 2017, 136, 2085–2087. [Google Scholar] [CrossRef]
Total Cohort (n = 99) | Peak TNF-α ≤ 22 pg/mL (n = 21) | Peak TNF-α > 22 pg/mL (n = 44) | p-Value, Comparing Peak TNF-α Groups | |
---|---|---|---|---|
Age (years), mean ± SD | 67.8 ± 12.7 | 69.6 ± 13.2 | 68.1 ± 12.9 | 0.66 |
Male sex, n (%) | 69 (70.0) | 15 (71.4) | 32 (72.7) | 0.85 |
Race, n (%) | 0.75 | |||
Caucasian | 82 (82.8) | 19 (90.5) | 37 (84.1) | |
African American | 6 (6.1) | - | 3 (6.8) | |
Asian | 4 (4.0) | 1 (4.8) | - | |
Other | 7 (7.1) | 1(4.8) | 4 (9.1) | |
Hypertension, n (%) | 75 (75.6) | 18 (85.7) | 34 (77.3) | 0.65 |
Hyperlipidemia, n (%) | 53 (53.5) | 8 (38.1) | 27 (61.4) | 0.13 |
Diabetes, n (%) | 24 (24.2) | 4 (19.0) | 10 (22.7) | 0.97 |
Coronary Artery Disease, n (%) | 25 (25.3) | 6 (28.6) | 11 (25) | 0.99 |
Heart failure, n (%) | 8 (8.1) | 1 (4.8) | 2 (4.5) | 0.59 |
Tobacco history, n (%) | 41 (41.4) | 11 (52.4) | 19 (43.2) | 0.67 |
Cancer types, n (%) | 0.88 | |||
Genitourinary | 35 (35.3) | 12 (57.1) | 21 (47.8) | |
Melanoma | 22 (22.2) | 4 (19.0) | 9 (20.4) | |
Lung | 17 (17.2) | - | 6 (13.6) | |
Others | 25 (25.3) | 5 (23.8) | 8 (18.1) | |
ICI type *, n (%) | 0.36 | |||
CTLA-4 | 5 (5.1) | - | - | |
PD-1 | 78 (78.8) | 18 (85.7) | 39 (88.6) | |
PD-L1 | 13 (13.1) | 2 (9.5) | 3 (6.8) | |
PD-1 and CTLA-4 | 2 (2.0) | - | 2 (4.6) | |
PD-1 and LAG3 | 1 (1.0) | 1 (4.8) | - | |
Myocarditis classification, n (%) | 0.20 | |||
Definite | 50 (50.5) | 9 (42.9) | 27 (61.4) | |
Probable | 17 (17.2) | 1 (4.8) | 4 (9.1) | |
Possible | 32 (32.3) | 11 (52.4) | 13 (29.6) | |
Cardiotox grade, n (%) | 0.04 | |||
1 | 14 (14.1) | 3 (14.3) | 6 (13.6) | |
2 | 35 (35.4) | 11 (52.4) | 10 (22.7) | |
3 | 38 (38.4) | 7 (33.3) | 20 (45.5) | |
4 | 12 (12.1) | - | 8 (18.2) | |
Any Concomitant Neuromuscular Immunotoxicity, n (%) | 45 (46.0) | 9 (42.9) | 25 (56.8) | 0.29 |
Types of Neuromuscular Toxicity in those with concomitant neuromuscular toxicity, n (%) | ||||
Myositis | 19/45 (42.2) | 6/9 (66.7) | 9/25 (36.0) | |
Myasthenia Gravis | 2/45 (4.4) | 1/9 (11.1) | 1/25 (4.0) | |
Guillain Barre | 2/45 (2.0) | - | 1/25 (4.0) | |
Myositis and Myasthenia Gravis | 22/45 (48.9) | 2/9 (22.2) | 14/25 (56.0) | |
Laboratory values | ||||
NTproBNP (pg/mL), median (IQR) | 1678 (455, 4326) | 1360 (342, 2112) | 2301 (570, 4727) | 0.15 |
Troponin T (ng/mL), median (IQR) | 639.5 (229–1585) | 503 (177, 1292) | 754.5 (419, 2079.5) | 0.12 |
Number of Patients with Elevation/Number of Patients with Levels Measured (% Positive) Median (Interquartile Range) | |
---|---|
TNF-α normal ≤ 22 pg/mL | 44/65 (67.7) 36 (30–68) |
IFN-γ, Normal ≤ 5 pg/mL | 17/65 (26.2) 10 (8–17) |
IL-6, Normal ≤ 5 pg/mL | 48/65 (73.8) 27.5 (18–83) |
IL-2, Normal ≤ 12 pg/mL | 7/34 (20.6) 12 (5–66) |
IL-1β, Normal ≤ 36 pg/mL | 0/34 (0.0) 10 (7–10.1) |
IL-10, Normal ≤ 18 pg/mL | 6/34 (17.7) 10.85 (6–16) |
IL-12, Normal ≤ 6 pg/mL | 2/34 (5.9) - |
IL-13, Normal ≤ 5 pg/mL | 4/34 (11.8) 11.5 (5.5–35.7) |
IL-17, Normal ≤ 13 pg/mL | 3/34 (8.8) 38.9 (29–72) |
IL-2 receptor, Normal ≤ 1033 pg/mL | 21/34 (61.8) 1476 (869–2167) |
IL-4, Normal ≤ 5 pg/mL | 2/34 (5.9) - |
IL-5, Normal ≤ 5 pg/mL | 1/34 (2.9) - |
IL-8, Normal ≤ 5 pg/mL | 1/34 (2.9) - |
Total Cohort (n = 99) | PeakTNF-α ≤ 22 pg/mL (n = 21) | Peak TNF-α > 22 pg/mL (n = 44) | p-Value, Comparing Peak TNF-α Groups | |
---|---|---|---|---|
Types of Immunosuppression, n (%) | ||||
| 81 (81.8) | 19 (90.5) | 39 (88.6) | 0.84 |
| 61 (75.3) | 14 (66.7 | 32 (72.7) | 0.31 |
Immunomodulators, n (%) | ||||
| 2 (2.0) | - | 2 (4.5) | 1.00 |
| 23 (23.2) | 6 (28.6) | 16 (36.4) | 0.54 |
| 23 (23.2) | 2 (9.5) | 11 (25.0) | 0.15 |
| 12 (12.1) | 2 (9.5) | 4 (9.1) | 0.96 |
| 42 (42.4) | 10 (47.6) | 27 (61.4) | 0.26 |
| 21 (21.2) | 7 (33.3) | 13 (29.5) | 0.76 |
| 2 (2.0) | 1 (4.8) | - | 0.98 |
Outcomes | Total Cohort (n = 99) | Peak IL-6 ≤ 5 pg/mL (n = 17) | Peak IL-6 > 5 pg/mL (n = 48) | p-Value, Comparing Peak IL-6 Groups | Peak TNF-α ≤ 22 pg/mL (n = 21) | Peak TNF-α > 22 pg/mL (n = 44) | p-Value, Comparing Peak TNF-α Groups |
---|---|---|---|---|---|---|---|
90-day mortality, n (%) | 23 (23.2) | 2 (11.8) | 5 (10.4) | 0.88 | 3 (14.3) | 13 (29.6) | 0.18 |
MACEs, n (%) | 13 (13.1) | 3 (17.7) | 4 (8.3) | 0.37 | 1 (4.8) | 6 (13.6) | 0.41 |
Heart failure | 8 (8.1) | 2 (11.7) | 2 (4.2) | 0.28 | 1 (4.8) | 3 (6.8) | 1.00 |
Arterial thrombosis | 1 (1.01) | - | - | - | - | - | - |
Arrhythmia | 5 (5.1) | 1 (5.9) | 3 (6.3) | 1.00 | - | 4 (9.1) | 0.30 |
Pulmonary embolism | 1 (1.01) | 1 (5.9) | - | 0.26 | - | 1 (2.3) | 1.00 |
Sudden cardiac death | 4 (4.0) | - | 2 (4.2) | 1.00 | - | 2 (4.6) | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Caldwell, R.; Pina, G.; Beinart, N.; Jensen, G.; Yusuf, S.W.; Koutroumpakis, E.; Hamzeh, I.; Khalaf, S.; Iliescu, C.; et al. Elevated IL-6 and Tumor Necrosis Factor-α in Immune Checkpoint Inhibitor Myocarditis. Diseases 2024, 12, 88. https://doi.org/10.3390/diseases12050088
Ali A, Caldwell R, Pina G, Beinart N, Jensen G, Yusuf SW, Koutroumpakis E, Hamzeh I, Khalaf S, Iliescu C, et al. Elevated IL-6 and Tumor Necrosis Factor-α in Immune Checkpoint Inhibitor Myocarditis. Diseases. 2024; 12(5):88. https://doi.org/10.3390/diseases12050088
Chicago/Turabian StyleAli, Abdelrahman, Rebecca Caldwell, Gaspar Pina, Noah Beinart, Garrett Jensen, Syed Wamique Yusuf, Efstratios Koutroumpakis, Ihab Hamzeh, Shaden Khalaf, Cezar Iliescu, and et al. 2024. "Elevated IL-6 and Tumor Necrosis Factor-α in Immune Checkpoint Inhibitor Myocarditis" Diseases 12, no. 5: 88. https://doi.org/10.3390/diseases12050088
APA StyleAli, A., Caldwell, R., Pina, G., Beinart, N., Jensen, G., Yusuf, S. W., Koutroumpakis, E., Hamzeh, I., Khalaf, S., Iliescu, C., Deswal, A., & Palaskas, N. L. (2024). Elevated IL-6 and Tumor Necrosis Factor-α in Immune Checkpoint Inhibitor Myocarditis. Diseases, 12(5), 88. https://doi.org/10.3390/diseases12050088