Cardiometabolic Risk Assessment in a Cohort of Children and Adolescents Diagnosed with Hyperinsulinemia
Abstract
:1. Introduction
2. Patients and Methods
2.1. Inclusion and Exclusion Criteria
- Age < 18 years.
- Suspected hyperinsulinism (defined as basal insulin > 25 OR family history of hyperinsulinism and/or diabetes OR presence of acanthosis nigricans and/or other signs of hyperinsulinism on the physical examination OR body mass index (BMI), waist circumference (WC), and/or hip circumference (HC) > 95th percentile according to age and sex).
- Complete endocrinological follow-up, including blood pressure measurement, abdominal ultrasound with assessment of hepatic parenchyma features, auxological parameters (weight, height, BMI, WC, HC; for each variable we calculated the respective standard deviation [SD] for age and sex), laboratory test (transaminases, complete thyroid profile, including thyroid-stimulating hormone (TSH), triiodothyronine (fT3), thyroxine (fT4), insulin growth factor-1 (IGF-1), insulin, glucose, glycated hemoglobin, uric acid, complete lipid profile including total cholesterol, triglycerides, low density lipoprotein (LDL), HDL, very low density lipoprotein (VLDL)), and oral glucose tolerance test (OGTT) results, including insulin and glucose peak.
- Diagnosis of diabetes mellitus, defined as glycated hemoglobin ≥ 6.5% OR fasting plasma glucose ≥ 126 mg/dL OR glucose ≥ 200 mg/dL during an OGTT, OR random glucose ≥ 200 mg/dL in a patient with classic diabetic symptoms, like polyuria and/or polydipsia [7].
- Coded diagnosis of metabolic syndrome (obesity with waist circumference > 90th percentile and two risk factors among blood pressure ≥ 130/85 mmHg, HDL ≤ 40 mg/dL, triglycerides ≥ 150 mg/dL, or fasting glucose ≥ 100 mg/dL [4].
- Therapy with metformin and/or other antidiabetic drugs (excluding patients who started a specific therapy following the execution of the OGTT).
- ✓ The sum of insulin measurements at different sampling times during the OGTT > or <2083.5 pmol/L (300 μU/mL).
- ✓ An insulin peak ≥ 1041.75 pmol/L.
- ✓ A blood insulin value ≥ 520.88 pmol/L (75 μU/mL) when sampled 120 min after glucose loading.
- ✓ An insulin peak above 100 uIU/mL.
2.2. Cardiovascular Risk Indices
- -
- Homeostasis model assessment of insulin resistance index (HOMA-IR) [10], calculated with the following formula: (Fasting plasma insulin × fasting plasma glucose)/22.5. This index combines basal blood glucose and insulin values to provide an indirect estimate of hyperinsulinism and increased insulin resistance. In general terms, HOMA-IR higher than 2.5 is considered pathological, although the cut-offs used may vary based on age, ethnicity, and gender.
- -
- Triglyceride glucose index (TyG) [11,12], calculated with the following formula: Ln [TG (mg/dL) × FPG (mg/dL)]/2; this index combines the value of triglycerides with glucose levels, incorporating two of the diagnostic criteria for the metabolic syndrome; it may be associated with increased cardiovascular risk when >4.5 [13].
- -
- -
- TyG-BMI [16], calculated with the following formula: TyG Index × BMI (kg/m2); this derives from the TyG index in association with patient’s BMI; however, there are no specific cut-offs available for its interpretation.
- -
- -
- Lipid accumulation product index (LAP) [19], calculated with the following formula: (LAP = (WC (cm) − 65) × TG (mmol/L)) for males, and (LAP = (WC (cm) − 58) × TG (mmol/L)) for females; we usually consider ‘pathological’ an LAP > 30; in adults it could be considered ‘pathological’ if higher than 56.7 for men and higher than 30.4 for women [20].
- -
- Waist/hip ratio (WHR) [21], calculated with the following formula: waist circumference (cm)/hip circumference (cm); its increase is associated with higher cardiovascular risk in both men and women [22], and is generally considered ‘pathological’ when exceeding the 95th percentile for age and sex, as there is no unique and universally accepted cut-off value for all clinical contexts.
- -
- -
- Fatty liver index (FLI) [25], an algorithm used to estimate the presence of fatty liver disease and hepatic steatosis: it is calculated using the formula reported in Figure 2, that incorporates several parameters such as BMI, waist circumference, triglycerides, and gamma-glutamyl transferase (GGT) levels. In pediatric patients, an FLI exceeding 30 is considered pathological, as it is associated with hepatic steatosis and increased cardiovascular risk.
- -
- Hepatic steatosis index (HSI) [26], calculated using a formula based on BMI, waist circumference, and serum levels of AST (aspartate aminotransferase) and ALT (alanine aminotransferase), as reported in Figure 3. Similar to the FLI, an HSI > 30 is considered associated with hepatic steatosis and increased cardiovascular risk.
- -
- -
- Atherogenic index of plasma (AIP) [29,30], used to assess the risk of cardiovascular diseases, based on lipid levels in the blood and calculated as follows: [AIP = log10 (triglyceride/HDL cholesterol)]. In our study, we considered a cut-off of 0.1 to identify patients with increased cardiovascular risk.
- -
- In addition to the aforementioned indices, we also assessed, for each patient, the association between hyperinsulinemia and presence of elevated blood pressure (above the 95th percentile) [31] and hepatic steatosis, evaluated by abdominal ultrasound.
2.3. Statistical Analysis
2.4. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DeBoer, M.D. Assessing and managing the metabolic syndrome in children and adolescents. Nutrients 2019, 11, 1788. [Google Scholar] [CrossRef] [PubMed]
- Weihrauch-Blüher, S.; Schwarz, P.; Klusmann, J.H. Childhood obesity: Increased risk for cardiometabolic disease and cancer in adulthood. Metabolism 2019, 92, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Han, J.C.; Lawlor, D.A.; Kimm, S.Y. Childhood obesity. Lancet 2010, 375, 1737–1748. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Candelino, M.; Tagi, V.M.; Chiarelli, F. Cardiovascular risk in children: A burden for future generations. Ital. J. Pediatr. 2022, 48, 57. [Google Scholar] [CrossRef] [PubMed]
- Ighbariya, A.; Weiss, R. Insulin resistance, prediabetes, metabolic syndrome: What should every pediatrician know? J. Clin. Res. Pediatr. Endocrinol. 2017, 9 (Suppl. S2), 49–57. [Google Scholar] [CrossRef] [PubMed]
- Reckziegel, M.B.; Nepomuceno, P.; Machado, T.; Renner, J.D.P.; Pohl, H.H.; Nogueira-de-Almeida, C.A.; de Mello, E.D. The triglyceride-glucose index as an indicator of insulin resistance and cardiometabolic risk in Brazilian adolescents. Arch. Endocrinol. Metab. 2023, 67, 153–161. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Soliman, A.; Daar, S.; Tzoulis, P.; Di Maio, S.; Kattamis, C. Oral glucose tolerance test: How to maximize its diagnostic value in children and adolescents. Acta Biomed. 2022, 93, e2022318. [Google Scholar] [CrossRef] [PubMed]
- Sahin, N.M.; Kinik, S.T. Tekindal MAOGTT results in obese adolescents with normal HOMA-IR values. J. Pediatr. Endocrinol. Metab. 2013, 26, 285–291. [Google Scholar] [CrossRef]
- Mayer-Davis, E.J.; Kahkoska, A.R.; Jefferies, C.; Dabelea, D.; Balde, N.; Gong, C.X.; Aschner, P.; Craig, M.E. ISPAD Clinical Practice Consensus Guidelines 2018: Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr. Diabetes 2018, 19 (Suppl. S27), 7–19. [Google Scholar] [CrossRef]
- Tang, Q.; Li, X.; Song, P.; Xu, L. Optimal cut-off values for the homeostasis model assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in research and prospects for the future. Drug Discov. Ther. 2015, 9, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Sodero, G.; Pane, L.C.; Malavolta, E.; Rotunno, G.; Sessa, L.; Fraccascia, B.; Candelli, M.; Rigante, D.; Cipolla, C. Lipid Profile and Triglyceride-Glucose Index (TyG) Alterations in a Single-Center Cohort of Children Diagnosed with Central Precocious Puberty. Children 2024, 11, 639. [Google Scholar] [CrossRef]
- Ramdas Nayak, V.K.; Satheesh, P.; Shenoy, M.T.; Kalra, S. Triglyceride glucose (TyG) index: A surrogate biomarker of insulin resistance. J. Pak. Med. Assoc. 2022, 72, 986–988. [Google Scholar] [CrossRef]
- de Giorgis, T.; Marcovecchio, M.L.; Di Giovanni, I.; Giannini, C.; Chiavaroli, V.; Chiarelli, F.; Mohn, A. Triglycerides-to-HDL ratio as a new marker of endothelial dysfunction in obese prepubertal children. Eur. J. Endocrinol. 2013, 170, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Di Bonito, P.; Valerio, G.; Grugni, G.; Licenziati, M.; Maffeis, C.; Manco, M.; del Giudice, E.M.; Pacifico, L.; Pellegrin, M.; Tomat, M.; et al. Comparison of non-HDL-cholesterol versus triglycerides-to-HDL-cholesterol ratio in relation to cardiometabolic risk factors and preclinical organ damage in overweight/obese children: The CARITALY study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Nilofer Sagana, M.K.; Arul Senghor, K.A.; Vinodhini, V.M.; Renuka, P. Irisin and triglyceride glucose index as markers of dyslipidemia in young adults. Indian. J. Clin. Biochem. 2024, 39, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Kim, J.; Koo, S.H.; Kwon, G.C. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007–2010 Korean National Health and Nutrition Examination Survey. PLoS ONE 2019, 14, e0212963. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral adiposity index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Y.; Li, Y.; Wang, C.; Wang, Y.; Dong, M.; Xiao, J.; Lin, Z.; Lu, H.; Ji, X. Association between visceral adiposity index and heart failure: A cross-sectional study. Clin. Cardiol. 2023, 46, 310–319. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Seyedi, S.A.; Nabipoorashrafi, S.A.; Rabizadeh, S.; Sarzaeim, M.; Yadegar, A.; Mohammadi, F.; Bahri, R.A.; Pakravan, P.; Shafiekhani, P.; et al. Lipid accumulation product (LAP) index for the diagnosis of nonalcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Lipids Health Dis. 2023, 22, 41. [Google Scholar] [CrossRef]
- Ahn, N.; Baumeister, S.E.; Amann, U.; Rathmann, W.; Peters, A.; Huth, C.; Thorand, B.; Meisinger, C. Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes. Sci. Rep. 2019, 9, 9693. [Google Scholar] [CrossRef] [PubMed]
- Huxley, R.; Mendis, S.; Zheleznyakov, E.; Reddy, S.; Chan, J. Body mass index, waist circumference and waist: Hip ratio as predictors of cardiovascular risk—A review of the literature. Eur. J. Clin. Nutr. 2010, 64, 16–22. [Google Scholar] [CrossRef] [PubMed]
- de Koning, L.; Merchant, A.T.; Pogue, J.; Anand, S.S. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: Meta-regression analysis of prospective studies. Eur. Heart J. 2007, 28, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Savva, S.C.; Lamnisos, D.; Kafatos, A.G. Predicting cardiometabolic risk: Waist-to-height ratio or BMI. A meta-analysis. Diabetes Metab. Syndr. Obes. 2013, 6, 403–419. [Google Scholar] [CrossRef] [PubMed]
- de Silva, M.H.A.D.; Hewawasam, R.P.; Kulatunge, C.R.; Chamika, R.M.A. The accuracy of fatty liver index for the screening of overweight and obese children for non-alcoholic fatty liver disease in resource limited settings. BMC Pediatr. 2022, 22, 511. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.-H.; Hsieh, C.-S.; Lai, M.-W.; Chen, C.-C.; Chao, H.-C.; Yeh, H.-Y.; Lai, H.-H.; Tsui, P.-H. Detection of pediatric hepatic steatosis through ultrasound backscattering analysis. Eur. Radiol. 2021, 31, 3216–3225. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, J.; Ren, Y.; Shi, H.; Rong, X.; Zhang, X.; Shao, Y.; Wu, R.; Chu, M.; Qiu, H. Association between alanine aminotransferase/aspartate aminotransferase ratio (AST/ALT ratio) and coronary artery injury in children with Kawasaki disease. Cardiol. Res. Pract. 2020, 2020, 8743548. [Google Scholar] [CrossRef] [PubMed]
- Visaria, A.; Pai, S.; Cheung, M.; Ahlawat, S. Association between aspartate aminotransferase-to-alanine aminotransferase ratio and insulin resistance among US adults. Eur. J. Gastroenterol. Hepatol. 2022, 34, 316–323. [Google Scholar] [CrossRef]
- Nogay, N.H. Assessment of the correlation between the atherogenic index of plasma and cardiometabolic risk factors in children and adolescents: Might it be superior to the TG/HDL-C ratio? J. Pediatr. Endocrinol. Metab. 2017, 30, 947–955. [Google Scholar] [CrossRef]
- Dağ, H.; İncirkuş, F.; Dikker, O. Atherogenic index of plasma (AIP) and its association with fatty liver in obese adolescents. Children 2023, 10, 641. [Google Scholar] [CrossRef]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; De Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, E.; De León, D.D. Bridging the gaps: Recent advances in diagnosis, care, and outcomes in congenital hyperinsulinism. Curr. Opin. Pediatr. 2023, 35, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Yoo, E.G. Waist-to-height ratio as a screening tool for obesity and cardiometabolic risk. Korean J. Pediatr. 2016, 59, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Gou, H.; Song, H.; Tian, Z.; Liu, Y. Prediction models for children/adolescents with obesity/overweight: A systematic review and meta-analysis. Prev. Med. 2024, 179, 107823. [Google Scholar] [CrossRef] [PubMed]
- Wyszynska, J.; Ring-Dimitriou, S.; Thivel, D.; Weghuber, D.; Hadjipanayis, A.; Grossman, Z.; Ross-Russell, R.; Deren, K.; Mazur, A. Physical activity in the prevention of childhood obesity: The position of the European Childhood Obesity Group and the European Academy of Pediatrics. Front. Pediatr. 2020, 8, 535705. [Google Scholar] [CrossRef] [PubMed]
- Romanelli, R.; Cecchi, N.; Carbone, M.G.; Dinardo, M.; Gaudino, G.; Miraglia Del Giudice, E.; Umano, G.R. Pediatric obesity: Prevention is better than care. Ital. J. Pediatr. 2020, 46, 103. [Google Scholar] [CrossRef] [PubMed]
- Maffeis, C.; Olivieri, F.; Valerio, G.; Verduci, E.; Licenziati, M.R.; Calcaterra, V.; Pelizzo, G.; Salerno, M.; Staiano, A.; Bernasconi, S.; et al. The treatment of obesity in children and adolescents: Consensus position statement of the Italian society of pediatric endocrinology and diabetology, Italian Society of Pediatrics and Italian Society of Pediatric Surgery. Ital. J. Pediatr. 2023, 49, 69. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, G.; Pardeo, M.; Rigante, D. Current recommendations for the pharmacological therapy in Kawasaki syndrome and management of its cardiovascular complications. Eur. Rev. Med. Pharmacol. Sci. 2007, 11, 301–308. [Google Scholar] [PubMed]
- Méndez Eirín, E.; Suárez Ouréns, Y.; Guerra Vázquez, J.L. Cardiac manifestations of rheumatic diseases. Med. Clin. 2021, 156, 615–621. [Google Scholar] [CrossRef]
- Rigante, D.; Segni, G. Cardiac structural involvement in mucopolysaccharidoses. Cardiology 2002, 98, 18–20. [Google Scholar] [CrossRef]
- Rigante, D.; Cantarini, L.; Imazio, M.; Lucherini, O.M.; Sacco, E.; Galeazzi, M.; Brizi, M.G.; Brucato, A. Autoinflammatory diseases and cardiovascular manifestations. Ann. Med. 2011, 43, 341–346. [Google Scholar] [CrossRef]
- Stabile, A.; Bertoni, B.; Ansuini, V.; La Torraca, I.; Sallì, A.; Rigante, D. The clinical spectrum and treatment options of macrophage activation syndrome in the pediatric age. Eur. Rev. Med. Pharmacol. Sci. 2006, 10, 53–59. [Google Scholar] [PubMed]
- Rosenfeld, E.; Ganguly, A.; De Leon, D.D. Congenital hyperinsulinism disorders: Genetic and clinical characteristics. Am. J. Med. Genet. C Semin. Med. Genet. 2019, 181, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L.; et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996, 334, 292–295. [Google Scholar] [CrossRef]
- Kazeminasab, F.; Sharafifard, F.; Miraghajani, M.; Behzadnejad, N.; Rosenkranz, S.K. The effects of exercise training on insulin resistance in children and adolescents with overweight or obesity: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1178376. [Google Scholar] [CrossRef] [PubMed]
- Halloun, R.; Galderisi, A.; Caprio, S.; Weiss, R. Lack of evidence for a causal role of hyperinsulinemia in the progression of obesity in children and adolescents: A longitudinal study. Diabetes Care 2022, 45, 1400–1407. [Google Scholar] [CrossRef]
- Burden, S.; Weedon, B.; Whaymand, L.; Rademaker, J.; Dawes, H.; Jones, A. The effect of overweight/obesity on diastolic function in children and adolescents: A meta-analysis. Clin. Obes. 2021, 11, e12476. [Google Scholar] [CrossRef] [PubMed]
- Cipolla, C.; Lazzareschi, I.; Curatola, A.; Lasorella, C.; Pane, L.C.; Sessa, L.; Rotunno, G.; Rigante, D.; Sodero, G. Characteristics of children and adolescents with hyperinsulinemia undergoing oral glucose tolerance test: A single-center retrospective observational study. Diseases 2023, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, M.; Xu, L.; Wang, Y.; Cheng, H.; Zhao, X.; Mi, J. Insulin resistance determined by Homeostasis Model Assessment (HOMA) and associations with metabolic syndrome among Chinese children and teenagers. Diabetol. Metab. Syndr. 2013, 5, 71. [Google Scholar] [CrossRef]
- Yajnik, C.S.; Katre, P.A.; Joshi, S.M.; Kumaran, K.; Bhat, D.S.; Lubree, H.G.; Memane, N.; Kinare, A.S.; Pandit, A.N.; Bhave, S.A.; et al. Higher glucose, insulin and insulin resistance (HOMA-IR) in childhood predict adverse cardiovascular risk in early adulthood: The Pune Children’s Study. Diabetologia 2015, 58, 1626–1636. [Google Scholar] [CrossRef] [PubMed]
- Dikaiakou, E.; Vlachopapadopoulou, E.A.; Paschou, S.A.; Athanasouli, F.; Panagiotopoulos, Ι.; Kafetzi, M.; Fotinou, A.; Michalacos, S. Τriglycerides-glucose (TyG) index is a sensitive marker of insulin resistance in Greek children and adolescents. Endocrine 2020, 70, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Liu, X.; Xue, H.; Wang, Y.; Shi, Z. Comparisons of visceral adiposity index, body shape index, body mass index and waist circumference and their associations with diabetes mellitus in adults. Nutrients 2019, 11, 1580. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Giordano, C.; Pitrone, M.; Galluzzo, A. Cut-off points of the visceral adiposity index (VAI) identifying a visceral adipose dysfunction associated with cardiometabolic risk in a Caucasian Sicilian population. Lipids Health Dis. 2011, 10, 183. [Google Scholar] [CrossRef]
- Vizzuso, S.; Del Torto, A.; Dilillo, D.; Calcaterra, V.; Di Profio, E.; Leone, A.; Gilardini, L.; Bertoli, S.; Battezzati, A.; Zuccotti, G.V.; et al. Visceral adiposity index (VAI) in children and adolescents with obesity: No association with daily energy intake but promising tool to identify metabolic syndrome (MetS). Nutrients 2021, 13, 413. [Google Scholar] [CrossRef] [PubMed]
- Sheng, G.; Lu, S.; Xie, Q.; Peng, N.; Kuang, M.; Zou, Y. The usefulness of obesity and lipid-related indices to predict the presence of non-alcoholic fatty liver disease. Lipids Health Dis. 2021, 20, 134. [Google Scholar] [CrossRef]
- Özcabı, B.; Demirhan, S.; Akyol, M.; Öztürkmen Akay, H.; Güven, A. Lipid accumulation product is a predictor of nonalcoholic fatty liver disease in childhood obesity. Korean J. Pediatr. 2019, 62, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Sgambat, K.; Roem, J.; Mitsnefes, M.; Portale, A.A.; Furth, S.; Warady, B.; Moudgil, A. Waist-to-height ratio, body mass index, and cardiovascular risk profile in children with chronic kidney disease. Pediatr. Nephrol. 2018, 33, 1577–1583. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, M.; Zafirovic, S.; Soskic, S.; Stanimirovic, J.; Trpkovic, A.; Jevremovic, D.; Isenovic, E.R. Effects of IGF-1 on the cardiovascular system. Curr. Pharm. Des. 2019, 25, 3715–3725. [Google Scholar] [CrossRef]
- Sodero, G.; Mariani, F.; Caprarelli, M.; Agazzi, C.; Quarta, L.; Benacquista, L.; Rigante, D.; Cipolla, C. Growth hormone responses during arginine and clonidine stimulation test: Correlations with patients’ auxological and metabolic parameters in a single centre study. Growth Horm. IGF Res. 2023, 68, 101522. [Google Scholar] [CrossRef]
- Al-Samerria, S.; Radovick, S. Exploring the therapeutic potential of targeting GH and IGF-1 in the management of obesity: Insights from the interplay between these hormones and metabolism. Int. J. Mol. Sci. 2023, 24, 9556. [Google Scholar] [CrossRef]
Variable | Population | Insulin Peak > 100 uIU/mL | Normal Insulin Peak | p Value |
---|---|---|---|---|
Age (years) ± SD | 12.1 ± 2.9 | 12.1 ± 2.9 | 12.1 ± 2.9 | 0.52 |
Sex (male) N (%) | 58 (41.7) | 36 (37.9) | 22 (50) | 0.17 |
Weight (kg) ± SD | 65.21 ± 19.3 | 68.02 ± 19.7 | 59.16 ± 17.2 | 0.01 |
Height (cm) ± SD | 150.74 ± 13.9 | 151.89 ± 12.7 | 148.26 ± 16.1 | 0.19 |
BMI (kg/cm2) ± SD | 28.06 ± 4.3 | 28.85 ± 4.5 | 26.36 ± 3.3 | <0.001 |
WC (cm) ± SD | 86.66 ± 12.3 | 88.20 ± 12.3 | 83.33 ± 11.6 | 0.03 |
WC > 75° N (%) | 130 (93.5) | 90 (94.7) | 40 (90.9) | 0.46 |
WC > 90° N (%) | 94 (67.6) | 66 (69.5) | 28 (63.6) | 0.49 |
HC (cm) ± SD | 97.96 ± 11.3 | 99.60 ± 11.1 | 94.41 ± 11.1 | 0.01 |
DM familiarity N (%) | 112 (80.6%) | 75 (78.9) | 37 (84.9) | 0.47 |
GOT (IU/L) ± SD | 23.1 ± 6.3 | 22.4 ± 5.0 | 24.59 ± 6.8 | 0.07 |
GPT (IU/L) ± SD | 21.66 ± 12.4 | 22.28 ± 13.8 | 20.34 ± 8.8 | 0.32 |
Uric acid (mg/dL) ± SD | 4.87 ± 1.2 | 5 ± 1.3 | 4.58 ± 1.0 | 0.05 |
TSH (uIU/mL) ± SD | 2.97 ± 1.7 | 3.09 ± 1.8 | 2.70 ± 1.4 | 0.16 |
fT3 (pg/mL) ± SD | 4.10 ± 0.5 | 4.12 ± 0.5 | 4.06 ± 0.5 | 0.47 |
fT4 (pg/mL ± SD | 11.31 ± 1.6 | 11.19 ± 1.4 | 11.56 ± 1.9 | 0.27 |
IGF-1 (ng/mL) ± SD | 264.4 ± 117.4 | 280.87 ± 115.4 | 228.86 ± 115.1 | 0.02 |
HbA1C (mmol/mol) ± SD | 35.95 ± 3.3 | 36.14 ± 3.4 | 35.55 ± 3.1 | 0.32 |
Total cholesterol (mg/dL) ± SD | 154.78 ± 27.5 | 155.80 ± 29.7 | 152.59 ± 22.2 | 0.48 |
HDL (mg/dL) ± SD | 45.93 ± 9.4 | 45.45 ± 9.7 | 46.95 ± 8.8 | 0.37 |
LDL (mg/dL) ± SD | 91.32 ± 21.8 | 92.28 ± 22.9 | 89.27 ± 19.5 | 0.43 |
VLDL (mg/dL) ± SD | 19.65 ± 15.3 | 21.19 ± 17.2 | 16.26 ± 8.9 | 0.03 |
Triglycerides (mg/dL) ± SD | 98.08 ± 76.1 | 105.41 ± 86.2 | 82.25 ± 44.0 | 0.04 |
Glucose (mg/dL) ± SD | 85.42 ± 7.1 | 86.05 ± 7.2 | 84.05 ± 6.9 | 0.12 |
Insulin (uUI/m) ± SD | 20.96 ± 21.38 | 25.48 ± 24.4 | 11.19 ± 5.1 | <0.001 |
GGT (u/L) ± SD | 17.78 ± 10.61 | 17.78 ± 9.51 | 17.80 ± 12.79 | 0.994 |
Blood pressure > 95th N (%) | 22 | 17 (17.89) | 5 (11.36) | 0.45 |
Steatosis N (%) | 90 (64.75) | 84 (88.42) | 6 (13.64) | 0 |
CV Index | Population Mean ± SD | Insulin Peak > 100 Mean ± SD | Normal Insulin Peak Mean ± SD | p Value |
---|---|---|---|---|
HOMA-IR | 3.76 ± 3.99 | 4.56 ± 4.56 | 2.04 ± 1.08 | <0.001 |
TyG | 4.44 ± 0.3 | 4.48 ± 0.3 | 4.36 ± 0.2 | 0.01 |
TyG-BMI | 124.67 ± 20.9 | 129.1 ± 21.1 | 115.1 ± 16.9 | <0.001 |
Triglycerides/HDL | 2.19 ± 1.95 | 2.53 ± 2.49 | 1.86 ± 1.20 | 0.034 |
VAI | 1.48 ± 1.0 | 1.62 ± 1.1 | 1.19 ± 0, | 0.01 |
LAP | 29.1 ± 28.4 | 32.64 ± 31.2 | 21.36 ± 19.2 | 0.01 |
WHtR | 0.58 ± 0.1 | 0.58 ± 0.1 | 0.56 ± 0.1 | 0.18 |
WHR | 0.65 ± 0.1 | 0.66 ± 0.1 | 0.64 ± 0.1 | 0.11 |
FLI | 3.72 ± 6.74 | 4.57 ± 7.78 | 1.89 ± 2.93 | 0.004 |
HSI | 29.61 ± 6.89 | 30.98 ± 6.84 | 26.65 ± 6.07 | 0.0003 |
AST/ALT ratio | 0.92 ± 0.32 | 0.96 ± 0.34 | 0.82 ± 0.26 | 0.01 |
AIP | 0.27 ± 0.26 | 0.31 ± 0.27 | 0.20 ± 0.24 | 0.02 |
Parameter | p Value | Parameter | p Value |
---|---|---|---|
BMI (kg/cm2) | 0.962 | HOMA-IR | 0.021 |
WC (cm) | 0.948 | TyG | 0.768 |
HC (cm) | 0.946 | TyG-BMI | 0.882 |
TSH (IU/mL) | 0.711 | VAI | 0.288 |
IGF-1 (ng/mL) | 0.019 | LAP | 0.312 |
Uric acid (mg/dL) | 0.904 | WHtR | 0.764 |
VLDL (mg/dL) | 0.100 | WHR | 0.985 |
Triglycerides (mg/dL) | 0.175 | FLI | 0.924 |
HSI | 0.312 | AST/ALT | 0.049 |
AIP | 0.206 | HDL/Triglycerides | 0.442 |
Parameter | AUC | 95% Confidence Interval | p |
---|---|---|---|
IGF-1 (ng/mL) | 0.650 | 0.549–0.751 | 0.005 |
HOMA-IR | 0.836 | 0.767–0.906 | >0.0001 |
AST/ALT ratio | 0.620 | 0.517–0.722 | 0.023 |
Variable | Best Cut-Off | p | OR (95%IC) |
---|---|---|---|
Age | 0.33 | 1.090 (0.917–1.296) | |
Male sex | 0.63 | 1.270 (0.472–3.420) | |
IGF-1 (ng/mL) | 202 | 0.005 | 5.359 (1.674–17.153) |
HOMA-IR | 2.62 | <0.0001 | 15.774 (5.537–44.936) |
ALT/AST ratio | 0.69 | 0.40 | 1.616 (0.529–4.934) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sodero, G.; Rigante, D.; Pane, L.C.; Sessa, L.; Quarta, L.; Candelli, M.; Cipolla, C. Cardiometabolic Risk Assessment in a Cohort of Children and Adolescents Diagnosed with Hyperinsulinemia. Diseases 2024, 12, 119. https://doi.org/10.3390/diseases12060119
Sodero G, Rigante D, Pane LC, Sessa L, Quarta L, Candelli M, Cipolla C. Cardiometabolic Risk Assessment in a Cohort of Children and Adolescents Diagnosed with Hyperinsulinemia. Diseases. 2024; 12(6):119. https://doi.org/10.3390/diseases12060119
Chicago/Turabian StyleSodero, Giorgio, Donato Rigante, Lucia Celeste Pane, Linda Sessa, Ludovica Quarta, Marcello Candelli, and Clelia Cipolla. 2024. "Cardiometabolic Risk Assessment in a Cohort of Children and Adolescents Diagnosed with Hyperinsulinemia" Diseases 12, no. 6: 119. https://doi.org/10.3390/diseases12060119
APA StyleSodero, G., Rigante, D., Pane, L. C., Sessa, L., Quarta, L., Candelli, M., & Cipolla, C. (2024). Cardiometabolic Risk Assessment in a Cohort of Children and Adolescents Diagnosed with Hyperinsulinemia. Diseases, 12(6), 119. https://doi.org/10.3390/diseases12060119