COVID-19 and Prostatitis: A Review of Current Evidence
Abstract
:1. Introduction
2. Role of the Angiotensin-Converting Enzyme 2 (ACE2) Receptor in Viral Entry and Inflammation
3. Role of the Transmembrane Serine Protease 2 (TMPRSS2) Receptor in Viral Entry and Inflammation
4. The Prostate as a Target Organ of COVID-19 Infection
5. Studies Supporting an Association between COVID-19 and Prostatitis
6. Controversial Findings Regarding the Association between COVID-19 and Prostatitis
7. Concluding Remarks and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19); StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- World Health Organization WHO Coronavirus (COVID-19) Dashboard. Available online: https://data.who.int/dashboards/covid19/data (accessed on 31 December 2022).
- Akhtar, D.O.S. Clinical Use of the UPOINT Classification in Indian Patients with Chronic Prostatitis or Chronic Pelvic Pain Syndrome. J. Med. Sci. Clin. Res. 2018, 6, 214–219. [Google Scholar] [CrossRef]
- Liu, L.; Yang, J. Physician’s Practice Patterns for Chronic Prostatitis. Andrologia 2009, 41, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Bergman, J.; Zeitlin, S.I. Prostatitis and Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Expert Rev. Neurother. 2007, 7, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Nickel, J.C. Prostatitis and Related Conditions, Orchitis, and Epididymitis. In Campbell-Walsh Urology; Elsevier: Amsterdam, The Netherlands, 2012; pp. 327–356.e12. [Google Scholar]
- Krieger, J.N.; Lee, S.W.H.; Jeon, J.; Cheah, P.Y.; Liong, M.L.; Riley, D.E. Epidemiology of Prostatitis. Int. J. Antimicrob. Agents 2008, 31, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Ku, J.H.; Kim, S.W.; Paick, J.-S. Epidemiologic Risk Factors for Chronic Prostatitis. Int. J. Androl. 2005, 28, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Smješko, G. Acute and Chronic Prostatitis. Sanamed 2020, 15, 71–76. [Google Scholar] [CrossRef]
- Lee, D.S.; Choe, H.-S.; Kim, H.Y.; Kim, S.W.; Bae, S.R.; Yoon, B.I.; Lee, S.-J. Acute Bacterial Prostatitis and Abscess Formation. BMC Urol. 2016, 16, 38. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Jin, W.; Hua, S.; Song, Y. Prospective Study on Association of Prostatic Calcifications with Clinical Symptoms and Results of Treatment in Men with Type III Prostatitis. Sci. Rep. 2017, 7, 5234. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses 2020, 12, 372. [Google Scholar] [CrossRef]
- Park, S.E. Epidemiology, Virology, and Clinical Features of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin. Exp. Pediatr. 2020, 63, 119–124. [Google Scholar] [CrossRef]
- Epstein, R.J. The Secret Identities of TMPRSS2: Fertility Factor, Virus Trafficker, Inflammation Moderator, Prostate Protector and Tumor Suppressor. Tumor Biol. 2021, 43, 159–176. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 2020, 181, 1016–1035.e19. [Google Scholar] [CrossRef]
- Lukassen, S.; Chua, R.L.; Trefzer, T.; Kahn, N.C.; Schneider, M.A.; Muley, T.; Winter, H.; Meister, M.; Veith, C.; Boots, A.W.; et al. SARS-CoV-2 Receptor ACE2 and TMPRSS2 Are Primarily Expressed in Bronchial Transient Secretory Cells. EMBO J. 2020, 39, e105114. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Cheng, J.; Zhou, J.; Fu, S.; Fu, J.; Zhou, B.; Chen, H.; Fu, J.; Wei, C. Prostate Adenocarcinoma and COVID-19: The Possible Impacts of TMPRSS2 Expressions in Susceptibility to SARS-CoV-2. J. Cell. Mol. Med. 2021, 25, 4157–4165. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Seddighzadeh, B.; Cooperberg, M.R.; Huang, F.W. Expression of ACE2, the SARS-CoV-2 Receptor, and TMPRSS2 in Prostate Epithelial Cells. Eur. Urol. 2020, 78, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Cinislioglu, A.E.; Demirdogen, S.O.; Cinislioglu, N.; Altay, M.S.; Sam, E.; Akkas, F.; Tor, I.H.; Aydin, H.R.; Karabulut, I.; Ozbey, I. Variation of Serum PSA Levels in COVID-19 Infected Male Patients with Benign Prostatic Hyperplasia (BPH): A Prospective Cohort Studys. Urology 2022, 159, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Gheblawi, M.; Oudit, G.Y. Angiotensin Converting Enzyme 2. Circulation 2020, 142, 426–428. [Google Scholar] [CrossRef]
- Patel, V.B.; Zhong, J.-C.; Grant, M.B.; Oudit, G.Y. Role of the ACE2/Angiotensin 1–7 Axis of the Renin–Angiotensin System in Heart Failure. Circ. Res. 2016, 118, 1313–1326. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural Basis for the Recognition of SARS-CoV-2 by Full-Length Human ACE2. Science 2020, 367, 1444–1448. [Google Scholar] [CrossRef]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural Basis of Receptor Recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef]
- Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; et al. Angiotensin-Converting Enzyme 2 Protects from Severe Acute Lung Failure. Nature 2005, 436, 112–116. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Y.; Zhang, C.; Huang, F.; Wang, F.; Yuan, J.; Wang, Z.; Li, J.; Li, J.; Feng, C.; et al. Clinical and Biochemical Indexes from 2019-NCoV Infected Patients Linked to Viral Loads and Lung Injury. Sci. China Life Sci. 2020, 63, 364–374. [Google Scholar] [CrossRef]
- Xudong, X.; Junzhu, C.; Xingxiang, W.; Furong, Z.; Yanrong, L. Age- and Gender-Related Difference of ACE2 Expression in Rat Lung. Life Sci. 2006, 78, 2166–2171. [Google Scholar] [CrossRef] [PubMed]
- Jia, H. Pulmonary Angiotensin-Converting Enzyme 2 (ACE2) and Inflammatory Lung Disease. Shock 2016, 46, 239–248. [Google Scholar] [CrossRef]
- Ko, C.-J.; Huang, C.-C.; Lin, H.-Y.; Juan, C.-P.; Lan, S.-W.; Shyu, H.-Y.; Wu, S.-R.; Hsiao, P.-W.; Huang, H.-P.; Shun, C.-T.; et al. Androgen-Induced TMPRSS2 Activates Matriptase and Promotes Extracellular Matrix Degradation, Prostate Cancer Cell Invasion, Tumor Growth, and Metastasis. Cancer Res. 2015, 75, 2949–2960. [Google Scholar] [CrossRef]
- Lucas, J.M.; Heinlein, C.; Kim, T.; Hernandez, S.A.; Malik, M.S.; True, L.D.; Morrissey, C.; Corey, E.; Montgomery, B.; Mostaghel, E.; et al. The Androgen-Regulated Protease TMPRSS2 Activates a Proteolytic Cascade Involving Components of the Tumor Microenvironment and Promotes Prostate Cancer Metastasis. Cancer Discov. 2014, 4, 1310–1325. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Lee, M.-S.; Lucht, A.; Chou, F.-P.; Huang, W.; Havighurst, T.C.; Kim, K.; Wang, J.-K.; Antalis, T.M.; Johnson, M.D.; et al. TMPRSS2, a Serine Protease Expressed in the Prostate on the Apical Surface of Luminal Epithelial Cells and Released into Semen in Prostasomes, Is Misregulated in Prostate Cancer Cells. Am. J. Pathol. 2010, 176, 2986–2996. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zheng, Y.; Li, M.; Lin, X.; Li, X.; Li, X.; Cui, L.; Luo, H. TMPRSS2 Correlated with Immune Infiltration Serves as a Prognostic Biomarker in Prostatic Adenocarcinoma: Implication for the COVID-2019. Front. Genet. 2020, 11, 575770. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Chen, K.; Zou, J.; Han, P.; Hao, J.; Han, Z. Single-Cell RNA-Seq Data Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of Different Human Organs Vulnerable to 2019-NCoV Infection. Front. Med. 2020, 14, 185–192. [Google Scholar] [CrossRef]
- Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.-C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circ. Res. 2020, 126, 1456–1474. [Google Scholar] [CrossRef]
- Matsuyama, S.; Nao, N.; Shirato, K.; Kawase, M.; Saito, S.; Takayama, I.; Nagata, N.; Sekizuka, T.; Katoh, H.; Kato, F.; et al. Enhanced Isolation of SARS-CoV-2 by TMPRSS2-Expressing Cells. Proc. Natl. Acad. Sci. USA 2020, 117, 7001–7003. [Google Scholar] [CrossRef] [PubMed]
- Zang, R.; Castro, M.F.G.; McCune, B.T.; Zeng, Q.; Rothlauf, P.W.; Sonnek, N.M.; Liu, Z.; Brulois, K.F.; Wang, X.; Greenberg, H.B.; et al. TMPRSS2 and TMPRSS4 Promote SARS-CoV-2 Infection of Human Small Intestinal Enterocytes. Sci. Immunol. 2020, 5, eabc3582. [Google Scholar] [CrossRef] [PubMed]
- Montopoli, M.; Zumerle, S.; Vettor, R.; Rugge, M.; Zorzi, M.; Catapano, C.V.; Carbone, G.M.; Cavalli, A.; Pagano, F.; Ragazzi, E.; et al. Androgen-Deprivation Therapies for Prostate Cancer and Risk of Infection by SARS-CoV-2: A Population-Based Study (N = 4532). Ann. Oncol. 2020, 31, 1040–1045. [Google Scholar] [CrossRef]
- Balk, S.P.; Ko, Y.-J.; Bubley, G.J. Biology of Prostate-Specific Antigen. J. Clin. Oncol. 2003, 21, 383–391. [Google Scholar] [CrossRef]
- Cardona Maya, W.D.; Carvajal, A. SARS-CoV-2 and Prostatitis: Dangerous Relationship for Male Sexual and Reproductive Health. Med. Hypotheses 2020, 144, 109914. [Google Scholar] [CrossRef]
- Reddy, R.; Farber, N.; Kresch, E.; Seetharam, D.; Diaz, P.; Ramasamy, R. SARS-CoV-2 in the Prostate: Immunohistochemical and Ultrastructural Studies. World J. Mens Health 2022, 40, 340. [Google Scholar] [CrossRef] [PubMed]
- Achua, J.K.; Chu, K.Y.; Ibrahim, E.; Khodamoradi, K.; Delma, K.S.; Iakymenko, O.A.; Kryvenko, O.N.; Arora, H.; Ramasamy, R. Histopathology and Ultrastructural Findings of Fatal COVID-19 Infections on Testis. World J. Mens Health 2021, 39, 65. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.-B. Klebsiella Pneumoniae Liver Abscess. Infect. Chemother. 2018, 50, 210. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-W.; Lin, T.-C.; Chang, Y.-T.; Tsai, C.-A.; Hu, S.-Y. Prostatic Abscess of Klebsiella Pneumonia Complicating Septic Pulmonary Emboli and Meningitis: A Case Report and Brief Review. Asian Pac. J. Trop. Med. 2017, 10, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Crane, A.B.; Abreu Diaz, M.C.; Jiang, Y.; Pergament, K.M. Rare Case of Endogenous Klebsiella Endophthalmitis Associated with Emphysematous Prostatitis in a Patient with Diabetes, Cirrhosis and COVID-19. BMJ Case Rep. 2021, 14, e240425. [Google Scholar] [CrossRef] [PubMed]
- Mumm, J.-N.; Osterman, A.; Ruzicka, M.; Stihl, C.; Vilsmaier, T.; Munker, D.; Khatamzas, E.; Giessen-Jung, C.; Stief, C.; Staehler, M.; et al. Urinary Frequency as a Possibly Overlooked Symptom in COVID-19 Patients: Does SARS-CoV-2 Cause Viral Cystitis? Eur. Urol. 2020, 78, 624–628. [Google Scholar] [CrossRef]
- Al Nemer, A. Histopathologic and Autopsy Findings in Patients Diagnosed with Coronavirus Disease 2019 (COVID-19): What We Know So Far Based on Correlation with Clinical, Morphologic and Pathobiological Aspects. Adv. Anat. Pathol. 2020, 27, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Madden, P.J.; Thomas, Y.; Blair, R.V.; Samer, S.; Doyle, M.; Midkiff, C.C.; Doyle-Meyers, L.A.; Becker, M.E.; Arif, M.S.; McRaven, M.D.; et al. An ImmunoPET Probe to SARS-CoV-2 Reveals Early Infection of the Male Genital Tract in Rhesus Macaques. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Elsaqa, M.; Rao, A.; Liu, L.; Hua, Y.; Volz, M.; Morris, R.; Risinger, J.; Tayeb, M.M. El Molecular Detection of the COVID-19 Genome in Prostatic Tissue of Patients with Previous Infection. Bayl. Univ. Med. Cent. Proc. 2022, 35, 759–761. [Google Scholar] [CrossRef]
- Di Vincenzo, A.; Busetto, L.; Vettor, R.; Rossato, M. Prostate Specific Antigen in COVID-19 Patients. Andrology 2021, 9, 1042. [Google Scholar] [CrossRef]
- Pecoraro, A.; Morselli, S.; Raspollini, M.R.; Sebastianelli, A.; Nicoletti, R.; Manera, A.; Campi, R.; Liaci, A.; Serni, S.; Gacci, M. The Role of COVID-19 in Prostate Tissue Inflammation: First Pathological Evidence. Prostate Cancer Prostatic Dis. 2022, 25, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Quan, W.; Chen, J.; Liu, Z.; Tian, J.; Chen, X.; Wu, T.; Ji, Z.; Tang, J.; Chu, H.; Xu, H.; et al. No SARS-CoV-2 in Expressed Prostatic Secretion of Patients with Coronavirus Disease 2019: A Descriptive Multicentre Study in China. medRxiv 2020. [Google Scholar] [CrossRef]
- Ruan, Y.; Hu, B.; Liu, Z.; Liu, K.; Jiang, H.; Li, H.; Li, R.; Luan, Y.; Liu, X.; Yu, G.; et al. No Detection of SARS-CoV-2 from Urine, Expressed Prostatic Secretions, and Semen in 74 Recovered COVID-19 Male Patients: A Perspective and Urogenital Evaluation. Andrology 2021, 9, 99–106. [Google Scholar] [CrossRef] [PubMed]
Study | Title | Findings |
---|---|---|
Cinislioglu et al., 2022 [21] | Variation of Serum PSA Levels in COVID-19 Infected Male Patients with Benign Prostatic Hyperplasia (BPH): A Prospective Cohort Studys | Higher serum PSA levels during the active COVID-19 infection phase compared to the pre- and post-infection phases (4.34 ± 3.78 ng/mL vs. 1.58 ± 1.09 ng/mL and 2.09 ± 2.70 ng/mL, respectively). An elevated PSA indicates prostate tissue disruption and inflammation. |
Cardona Maya and Carvajal, 2020 [43] | SARS-CoV-2 and prostatitis: Dangerous relationship for male sexual and reproductive health | Association between COVID-19 and prostatitis suggested due to the presence of ACE2 and TMPRSS2 receptors on the prostate. |
Reddy et al., 2022 [44] | SARS-CoV-2 in the Prostate: Immunohistochemical and Ultrastructural Studies. | Presence of SARS-CoV-2 viral particles in prostate tissues and detection of SARS-CoV-2 RNA through PCR. The viral particles persisted for four months post infection, suggestive of chronic prostatitis. |
Achua et al., 2021 [45] | Histopathology and Ultrastructural Findings of Fatal COVID-19 Infections on Testis. | Abnormalities in spermatogenesis observed in men with COVID-19. ACE2 receptor expression correlated with impaired spermatogenesis. No direct link to prostatitis mentioned. |
Crane et al., 2021 [48] | Rare Case of Endogenous Klebsiella Endophthalmitis Associated with Emphysematous Prostatitis in a Patient with Diabetes, Cirrhosis and COVID-19. | Emphysematous prostatitis in a COVID-19 patient, complicated by sepsis and hepatic involvement. No conclusive link to COVID-19 established. |
Mumm et al., 2020 [49] | Urinary Frequency as a Possibly Overlooked Symptom in COVID-19 Patients: Does SARS-CoV-2 Cause Viral Cystitis? | Mildly enlarged prostates in seven patients with COVID-19. SARS-CoV-2 RNA was detected in the serum of two patients. No signs of prostatitis but suspected viral cystitis. |
Al-Nemer et al., 2020 [50] | Histopathologic and Autopsy Findings in Patients Diagnosed with Coronavirus Disease 2019 (COVID-19): What We Know So Far Based on Correlation With Clinical, Morphologic and Pathobiological Aspects. | Presence of microthrombi in the prostates of fatal COVID-19 cases. |
Madden et al., 2022 [51] | An ImmunoPET Probe to SARS-CoV-2 Reveals Early Infection of the Male Genital Tract in Rhesus Macaques | PET signals detected in the prostate of COVID-19-infected macaques. Immune infiltrates observed in prostate tissues. |
Elsaqa et al., 2022 [52] | Molecular detection of the COVID-19 genome in prostatic tissue of patients with previous infection | No definite correlation was found between the presence of COVID-19 genome in prostate biopsies and the severity of COVID-19 manifestations or the interval between infection and prostate surgery due to the small sample size. In patients who tested positive, prolonged positive testing for COVID-19 for 40 days. The histological examination showed nonspecific dense inflammation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daneshwar, D.; Lee, Y.; Nordin, A. COVID-19 and Prostatitis: A Review of Current Evidence. Diseases 2024, 12, 157. https://doi.org/10.3390/diseases12070157
Daneshwar D, Lee Y, Nordin A. COVID-19 and Prostatitis: A Review of Current Evidence. Diseases. 2024; 12(7):157. https://doi.org/10.3390/diseases12070157
Chicago/Turabian StyleDaneshwar, Datesh, Yemin Lee, and Abid Nordin. 2024. "COVID-19 and Prostatitis: A Review of Current Evidence" Diseases 12, no. 7: 157. https://doi.org/10.3390/diseases12070157