COVID-19, Nutrients and Lifestyle Eating Behaviors: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Definition of Research Question
2.3. Literature Search and Criteria
2.4. Data Synthesis
3. Results
3.1. Characteristics of the Studies Included
3.2. Vitamin D and Other Vitamins
3.3. Omega-3 and Probiotics
3.4. Lifestyle Eating Behaviors
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- World Health Organization (WHO). Coronavirus. Available online: https://www.who.int/health-topics/coronavirus (accessed on 1 December 2023).
- COVID-19 Coronavirus Pandemic COVID-19. Available online: https://www.worldometers.info/coronavirus/ (accessed on 13 April 2024).
- Maioli, C.; Cioni, F.; Ciappellano, S. COVID-19 and Nutrition Implications: A Review. Prog. Nutr. 2021, 23, e2021228. [Google Scholar] [CrossRef]
- Demirci, O.O. Eating disorder and its relationship with psychological distress in the COVID-19 pandemic in Turkey. Prog. Nutr. 2023, 25, e2023008. [Google Scholar] [CrossRef]
- Pandey, V.; Mohan, R.; Kumar, A.; Gangadevi, P.; Kurien, N. The Impact of the COVID-19 Outbreak on Lifestyle-Related Behavior Among the General Population. Cureus 2023, 15, e45756. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Yang, M.; Sun, M.; Pan, B.; Wang, Q.; Wang, J.; Tian, J.; Ding, G.; Yang, K.; Song, X.; et al. Risk of incident diabetes after COVID-19 infection: A systematic review and meta-analysis. Metabolism 2022, 137, 155330. [Google Scholar] [CrossRef]
- Luo, W.; Liu, X.; Bao, K.; Huang, C. Ischemic stroke associated with COVID-19: A systematic review and meta-analysis. J. Neurol. 2022, 269, 1731–1740. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Posa, M.K.; Kumar, A. Diabetes and deaths of COVID-19 patients: Systematic review of meta-analyses. Health Sci. Rev. 2023, 7, 100099. [Google Scholar] [CrossRef]
- Palaiodimos, L.; Kokkinidis, D.G.; Li, W.; Karamanis, D.; Ognibene, J.; Arora, S.; Southern, W.N.; Mantzoros, C.S. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism 2020, 108, 154262. [Google Scholar] [CrossRef]
- Kruglikov, I.L.; Scherer, P.E. The Role of Adipocytes and Adipocyte-Like Cells in the Severity of COVID-19 Infections. Obesity 2020, 28, 1187–1190. [Google Scholar] [CrossRef]
- Zhou, Y.; Chi, J.; Lv, W.; Wang, Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (COVID-19). Diabetes Metab. Res. Rev. 2021, 37, e3377. [Google Scholar] [CrossRef]
- Obukhov, A.G.; Stevens, B.R.; Prasad, R.; Li Calzi, S.; Boulton, M.E.; Raizada, M.K.; Oudit, G.Y.; Grant, M.B. SARS-CoV-2 Infections and ACE2: Clinical Outcomes Linked with Increased Morbidity and Mortality in Individuals with Diabetes. Diabetes 2020, 69, 1875–1886. [Google Scholar] [CrossRef]
- Lee, M.M.Y.; Docherty, K.F.; Sattar, N.; Mehta, N.; Kalra, A.; Nowacki, A.S.; Solomon, S.D.; Vaduganathan, M.; Petrie, M.C.; Jhund, P.S.; et al. Renin-angiotensin system blockers, risk of SARS-CoV-2 infection and outcomes from COVID-19: Systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 165–178. [Google Scholar] [CrossRef]
- Giryes, S.; Bragazzi, N.L.; Bridgewood, C.; De Marco, G.; McGonagle, D. COVID-19 Vasculitis and vasculopathy-Distinct immunopathology emerging from the close juxtaposition of Type II Pneumocytes and Pulmonary Endothelial Cells. Semin. Immunopathol. 2022, 44, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Yoon, C.H.; Jang, E.J.; Lee, C.H. Renin-angiotensin system blocker and outcomes of COVID-19: A systematic review and meta-analysis. Thorax 2021, 76, 479–486. [Google Scholar] [CrossRef]
- Jacks, R.D.; Lumeng, C.N. Macrophage and T cell networks in adipose tissue. Nat. Rev. Endocrinol. 2024, 20, 50–61. [Google Scholar] [CrossRef]
- Misumi, I.; Starmer, J.; Uchimura, T.; Beck, M.A.; Magnuson, T.; Whitmire, J.K. Obesity Expands a Distinct Population of T Cells in Adipose Tissue and Increases Vulnerability to Infection. Cell Rep. 2019, 27, 514–524.e5. [Google Scholar] [CrossRef]
- Karagiannis, F.; Peukert, K.; Suracey, L.; Michla, M.; Nikolka, F.; Fox, M. Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19. Nature 2022, 609, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Detopoulou, P.; Demopoulos, C.A.; Antonopoulou, S. Micronutrients, Phytochemicals and Mediterranean Diet: A Potential Protective Role against COVID-19 through Modulation of PAF Actions and Metabolism. Nutrients 2021, 13, 462. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention (CDC). Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19: Information for Healthcare Professionals. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html (accessed on 10 February 2024).
- Renata, R.N.; Arely, G.A.; Gabriela, L.A.; Esther, M.M. Immunomodulatory Role of Microelements in COVID-19 Outcome: A Relationship with Nutritional Status. Biol. Trace Elem. Res. 2023, 201, 1596–1614. [Google Scholar] [CrossRef] [PubMed]
- Rust, P.; Ekmekcioglu, C. The Role of Diet and Specific Nutrients during the COVID-19 Pandemic: What Have We Learned over the Last Three Years? Int. J. Environ. Res. Public Health 2023, 20, 5400. [Google Scholar] [CrossRef]
- Amir-Behghadami, M.; Janati, A. Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg. Med. J. 2020, 37, 387. [Google Scholar] [CrossRef]
- Sabico, S.; Enani, M.A.; Sheshah, E.; Aljohani, N.J.; Aldisi, D.A.; Alotaibi, N.H.; Alshingetti, N.; Alomar, S.Y.; Alnaami, A.M.; Amer, O.E.; et al. Effects of a 2-Week 5000 IU versus 1000 IU Vitamin D3 Supplementation on Recovery of Symptoms in Patients with Mild to Moderate COVID-19: A Randomized Clinical Trial. Nutrients 2021, 13, 2170. [Google Scholar] [CrossRef] [PubMed]
- Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.; et al. Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients With Moderate to Severe COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 1053–1060. [Google Scholar] [CrossRef]
- Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il’Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E.; et al. Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction Among Ambulatory Patients With SARS-CoV-2 Infection: The COVID A to Z Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e210369. [Google Scholar] [CrossRef] [PubMed]
- Maghbooli, Z.; Sahraian, M.A.; Jamalimoghadamsiahkali, S.; Asadi, A.; Zarei, A.; Zendehdel, A.; Varzandi, T.; Mohammadnabi, S.; Alijani, N.; Karimi, M.; et al. Treatment with 25-Hydroxyvitamin D3 (Calcifediol) Is Associated with a Reduction in the Blood Neutrophil-to-Lymphocyte Ratio Marker of Disease Severity in Hospitalized Patients with COVID-19: A Pilot Multicenter, Randomized, Placebo-Controlled, Double-Blinded Clinical Trial. Endocr. Pract. 2021, 27, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Annweiler, C.; Beaudenon, M.; Gautier, J.; Gonsard, J.; Boucher, S.; Chapelet, G.; Darsonval, A.; Fougère, B.; Guérin, O.; Houvet, M.; et al. High-dose versus standard-dose vitamin D supplementation in older adults with COVID-19 (COVIT-TRIAL): A multicenter, open-label, randomized controlled superiority trial. PLoS Med. 2022, 19, e1003999. [Google Scholar] [CrossRef] [PubMed]
- Mariani, J.; Antonietti, L.; Tajer, C.; Ferder, L.; Inserra, F.; Sanchez Cunto, M.; Brosio, D.; Ross, F.; Zylberman, M.; López, D.E.; et al. High-dose vitamin D versus placebo to prevent complications in COVID-19 patients: Multicentre randomized controlled clinical trial. PLoS ONE 2022, 17, e0267918. [Google Scholar] [CrossRef]
- De Niet, S.; Trémège, M.; Coffiner, M.; Rousseau, A.F.; Calmes, D.; Frix, A.N.; Gester, F.; Delvaux, M.; Dive, A.F.; Guglielmi, E.; et al. Positive Effects of Vitamin D Supplementation in Patients Hospitalized for COVID-19: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2022, 14, 3048. [Google Scholar] [CrossRef]
- Karonova, T.L.; Golovatyuk, K.A.; Kudryavtsev, I.V.; Chernikova, A.T.; Mikhaylova, A.A.; Aquino, A.D.; Lagutina, D.I.; Zaikova, E.K.; Kalinina, O.V.; Golovkin, A.S.; et al. Effect of Cholecalciferol Supplementation on the Clinical Features and Inflammatory Markers in Hospitalized COVID-19 Patients: A Randomized, Open-Label, Single-Center Study. Nutrients 2022, 14, 2602. [Google Scholar] [CrossRef]
- Majidi, N.; Rabbani, F.; Gholami, S.; Gholamalizadeh, M.; BourBour, F.; Rastgoo, S.; Hajipour, A.; Shadnoosh, M.; Akbari, M.E.; Bahar, B.; et al. The Effect of Vitamin C on Pathological Parameters and Survival Duration of Critically Ill Coronavirus Disease 2019 Patients: A Randomized Clinical Trial. Front. Immunol. 2021, 12, 717816. [Google Scholar] [CrossRef]
- Beigmohammadi, M.T.; Bitarafan, S.; Hoseindokht, A.; Abdollahi, A.; Amoozadeh, L.; Soltani, D. The effect of supplementation with vitamins A, B, C, D, and E on disease severity and inflammatory responses in patients with COVID-19: A randomized clinical trial. Trials 2021, 22, 802. [Google Scholar] [CrossRef]
- Doaei, S.; Gholami, S.; Rastgoo, S.; Gholamalizadeh, M.; Bourbour, F.; Bagheri, S.E.; Samipoor, F.; Akbari, M.E.; Shadnoush, M.; Ghorat, F.; et al. The effect of omega-3 fatty acid supplementation on clinical and biochemical parameters of critically ill patients with COVID-19: A randomized clinical trial. J. Transl. Med. 2021, 19, 128. [Google Scholar] [CrossRef]
- Gutiérrez-Castrellón, P.; Gandara-Martí, T.; Abreu YAbreu, A.T.; Nieto-Rufino, C.D.; López-Orduña, E.; Jiménez-Escobar, I.; Jiménez-Gutiérrez, C.; López-Velazquez, G.; Espadaler-Mazo, J. Probiotic improves symptomatic and viral clearance in COVID-19 outpatients: A randomized, quadruple-blinded, placebo-controlled trial. Gut Microbes 2022, 14, 2018899. [Google Scholar] [CrossRef]
- Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.Z.; Teh, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.W.; Chandran, M.; Chay, J.W.M.; et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition 2020, 79–80, 111017. [Google Scholar] [CrossRef]
- Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Wasilewska, E.; Małgorzewicz, S. Dietary Habits before and during the COVID-19 Epidemic in Selected European Countries. Nutrients 2021, 13, 1690. [Google Scholar] [CrossRef]
- Caballero-García, A.; Pérez-Valdecantos, D.; Guallar, P.; Caballero-Castillo, A.; Roche, E.; Noriega, D.C.; Córdova, A. Effect of Vitamin D Supplementation on Muscle Status in Old Patients Recovering from COVID-19 Infection. Medicina 2021, 57, 1079. [Google Scholar] [CrossRef]
- Bhutani, S.; vanDellen, M.R.; Cooper, J.A. Longitudinal Weight Gain and Related Risk Behaviors during the COVID-19 Pandemic in Adults in the US. Nutrients 2021, 13, 671. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Giovannini, M.; Mezzadri, M.; Grandi, E.; Borghi, C. COVID-19-Related Quarantine Effect on Dietary Habits in a Northern Italian Rural Population: Data from the Brisighella Heart Study. Nutrients 2021, 13, 309. [Google Scholar] [CrossRef] [PubMed]
- Mascherini, G.; Catelan, D.; Pellegrini-Giampietro, D.E.; Petri, C.; Scaletti, C.; Gulisano, M. Changes in physical activity levels, eating habits and psychological well-being during the Italian COVID-19 pandemic lockdown: Impact of socio-demographic factors on the Florentine academic population. PLoS ONE 2021, 16, e0252395. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.S.; Woon, F.C.; Chan, Y.M. The impact of Movement Control Order during the COVID-19 pandemic on lifestyle behaviours and body weight changes: Findings from the MyNutriLifeCOVID-19 online survey. PLoS ONE 2022, 17, e0262332. [Google Scholar] [CrossRef] [PubMed]
- Paltrinieri, S.; Bressi, B.; Costi, S.; Mazzini, E.; Cavuto, S.; Ottone, M.; De Panfilis, L.; Fugazzaro, S.; Rondini, E.; Rossi, P.G. Beyond Lockdown: The Potential Side Effects of the SARS-CoV-2 Pandemic on Public Health. Nutrients 2021, 13, 1600. [Google Scholar] [CrossRef]
- Rastogi, A.; Bhansali, A.; Khare, N.; Suri, V.; Yaddanapudi, N.; Sachdeva, N.; Puri, G.D.; Malhotra, P. Short term, high-dose vitamin D supplementation for COVID-19 disease: A randomised, placebo-controlled, study (SHADE study). Postgrad. Med. J. 2022, 98, 87–90. [Google Scholar] [CrossRef]
- Cangelosi, G.; Grappasonni, I.; Nguyen, C.T.T.; Acito, M.; Pantanetti, P.; Benni, A.; Petrelli, F. Mediterranean Diet (MedDiet) and Lifestyle Medicine (LM) for support and care of patients with type II diabetes in the COVID-19 era: A cross-observational study. Acta Biomed. 2023, 94, e2023189. [Google Scholar] [CrossRef]
- Nirala, S.K.; Naik, B.N.; Rao, R.; Pandey, S.; Singh, C.M.; Chaudhary, N. Impact of Lockdown due to COVID-19 on lifestyle and diet pattern of college students of Eastern India: A cross-sectional survey. Nepal J. Epidemiol. 2022, 12, 1139–1155. [Google Scholar] [CrossRef]
- Cangelosi, G.; Acito, M.; Grappasonni, I.; Nguyen, C.T.T.; Tesauro, M.; Pantanetti, P.; Morichetti, L.; Ceroni, E.; Benni, A.; Petrelli, F. Yoga or Mindfulness on Diabetes: Scoping Review for Theoretical Experimental Framework. Ann. Ig. 2024, 36, 153–168. [Google Scholar] [CrossRef]
- Argano, C.; Mallaci Bocchio, R.; Natoli, G.; Scibetta, S.; Lo Monaco, M.; Corrao, S. Protective Effect of Vitamin D Supplementation on COVID-19-Related Intensive Care Hospitalization and Mortality: Definitive Evidence from Meta-Analysis and Trial Sequential Analysis. Pharmaceuticals 2023, 16, 130. [Google Scholar] [CrossRef]
- Lai, Y.H.; Fang, T.C. The pleiotropic effect of vitamin d. ISRN Nephrol. 2013, 2013, 898125. [Google Scholar] [CrossRef]
- Taha, R.; Abureesh, S.; Alghamdi, S.; Hassan, R.Y.; Cheikh, M.M.; Bagabir, R.A.; Almoallim, H.; Abdulkhaliq, A. The Relationship Between Vitamin D and Infections Including COVID-19: Any Hopes? Int. J. Gen. Med. 2021, 14, 3849–3870. [Google Scholar] [CrossRef]
- Ashique, S.; Gupta, K.; Gupta, G.; Mishra, N.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Dureja, H.; Zacconi, F.; Oliver, B.G.; et al. Vitamin D-A prominent immunomodulator to prevent COVID-19 infection. Int. J. Rheum. Dis. 2023, 26, 13–30. [Google Scholar] [CrossRef]
- Louca, P.; Murray, B.; Klaser, K.; Graham, M.S.; Mazidi, M.; Leeming, E.R.; Thompson, E.; Bowyer, R.; Drew, D.A.; Nguyen, L.H.; et al. Modest effects of dietary supplements during the COVID-19 pandemic: Insights from 445,850 users of the COVID-19 Symptom Study app. BMJ Nutr. Prev. Health 2021, 4, 149–157. [Google Scholar] [CrossRef]
- Mancin, S.; Mazzoleni, B. Probiotics as adjuvant therapy in the treatment of Allergic Rhinitis. Res. J. Pharm. Technol. 2023, 16, 2393–2398. [Google Scholar] [CrossRef]
- Kumar, M.; Pal, N.; Sharma, P.; Kumawat, M.; Sarma, D.K.; Nabi, B.; Verma, V.; Tiwari, R.R.; Shubham, S.; Arjmandi, B.; et al. Omega-3 Fatty Acids and Their Interaction with the Gut Microbiome in the Prevention and Amelioration of Type-2 Diabetes. Nutrients 2022, 14, 1723. [Google Scholar] [CrossRef] [PubMed]
First Author/Year/Country | Nutrients/Lifestyle Eating Behaviors | Type of Study | Sample | Principal Intervention | Principal Results |
---|---|---|---|---|---|
Sabico et al. (2020)/Saudi Arabia | Vitamin D3 | Multi-center RCT | 36 IG, 33 CG | Two weeks oral 5000 IU for IG or 1000 IU for CG | Significantly shorter days needed to resolve cough (6.2 ± 0.8 vs. 9.1 ± 0.8; p = 0.007) and ageusia (11.4 ± 1.0 vs. 16.9 ± 1.7; p = 0.035) |
Murai et al. (2020)/Brazil | Vitamin D3 | Multi-center RCT | 120 IG, 120 CG | Single oral dose of 200,000 IU of vitamin D3 or placebo | No significant differences found for hospital mortality, ICU admission, and mechanical ventilation support |
Thomas et al. (2020)/USA | VIT-C GZ | Multi-center RCT | 48 VIT-C, 58 GZ, 58 both, 50 usual care | 8000 mg of VIT-C (2–3 times/day with meals) 50 mg of GZ at bedtime, both therapies, or usual care | No significant differences in primary endpoint achievement among groups (p = 0.45) |
Tan et al. (2020)/Singapore | VIT-D Magnesium and B12 | Retrospective cohort | 17 DMB IG, 26 CG | 1000 IU D3, 150 mg/d magnesium, and 500 mcg/d vitamin B12 orally for 14 days after hospital admission | DMB exposure associated with lower odds of oxygen therapy or ICU support in univariate and multivariate analysis |
Caballero-García et al. (2020)/Spain | VIT-D | Pilot double-blind RCT | 15 IG, 15 CG | 6 weeks of treatment with VIT-D (2000 IU/day) | Increase in serum creatine kinase levels |
Rastogi et al. (2020)/India | Cholecalciferol | RCT | 16 IG, 24 CG | 60,000 IU oral per day of cholecalciferol for 7 days targeting 25OH-D > 50 ng/ml | Mean duration of SARS-CoV-2 negativity similar in both groups (p = 0.283) |
Maghbooli et al. (2020)/Iran | Cholecalciferol | Multi-center RCT | 53 IG (24 completed), 53 CG (19 completed) | 25 μg of 25OH-D daily | At 30 and 60 days, higher proportion of sufficient 25OH-D concentration in IG compared to CG |
Annweiler et al. (2020)/France | VIT-D | Multi-center RCT | 127 high-dose IG, 127 standard-dose CG | High-dose (400,000 IU) and standard-dose (50,000 IU) vitamin D3 | No maintained protective effect at 28 days; similar death rates between high-dose and standard-dose groups (p = 0.29) |
Mariani et al. (2020–2021)/Argentina | VIT-D | Multi-center RCT | 115 IG, 103 CG | 500,000 IU of vitamin D3 (5 capsules of 100,000 IU) | No significant differences for ICU admissions or in-hospital mortality between groups |
De Niet et al. (2020–2021)/Belgium | VIT-D | Single-center RCT | 26 IG, 24 CG | 25,000 IU per day of VIT-D for 4 days, then 25,000 IU per week for up to 6 weeks | No hospitalizations in IG after 21 days compared to 14% in CG; no significant mortality differences |
Karonova et al. (2020–2021)/Russia | Cholecalciferol | Single-center RCT | 56 IG, 54 CG | Cholecalciferol at 50,000 IU on first and eighth days of hospitalization | IG showed higher neutrophil and lymphocyte counts, lower C-RP level on ninth day of hospitalization |
Majidi et al. (2020)/Iran | VIT-C | Single-center RCT | 31 IG, 69 CG | One capsule of 500 mg of VIT-C daily for 14 days | Higher survival rate in IG (p = 0.028) |
Beigmohammadi et al. (2020)/Iran | Multi-vitamins (A-B-C-D-E) | Single-center RCT | 30 IG, 30 CG | 25,000 IU daily of vitamins A, 600,000 IU once during study of VIT-D, 300 IU twice daily of VIT-E, 500 mg four times daily of VIT-C, Vit-B complex for 7 days | Significant improvements in serum levels of vitamins, ESR, C-RP, IL6, TNF-a, and SOFA score after intervention |
Doaei et al. (2020)/Iran | Omega-3 | Single-center RCT | 28 IG, 73 CG | 1000 mg omega-3 daily containing 400 mg EPA and 200 mg DHA added in Enteral Formula for 2 weeks after ICU admission | Higher 1-month survival rate, arterial pH levels, bicarbonate, and base excess in IG compared to CG |
Gutiérrez-Castrellón et al. (2020)/Mexico | Probiotics | Single-center RCT | 147 IG, 146 CG | Strains Lactiplantibacillus plantarum KABP022, KABP023, KAPB033, Pediococcus acidilactici KABP021 (totaling 2 × 109 CFU) | Complete symptomatic remission and viral clearance at day 30 higher in IG [RR: 1.89 (95% CI 1.40–2.55); p < 0.001] |
Bhutani et al. (2020)/USA | Lifestyle eating behaviors | Cross-sectional study | 727 | Online survey | Mean body weight gain of 0.62 kg during lockdown, increased BMI (p < 0.01) |
Skotnicka et al. (2020)/Poland-Austria-United Kingdom | Lifestyle eating behaviors | Retrospective observational study | 1071 | Online survey | Increased frequency of eating, ordering ready meals, eating sweets, fruits, and drinking alcohol; decreased physical activity, increased body mass |
Cicero et al. (2020)/Italy | Lifestyle eating behaviors | Cross-sectional study | 359 | Phone interview | No significant changes in lifestyle or BMI (p = 0.361) |
Mascherini et al. (2020)/Italy | Lifestyle eating behaviors | Cross-sectional study | 1383 | Online survey | Increase in body weight from 64.9 ± 13.8 to 65.3 ± 14.1 kg (p < 0.001) |
Chin et al. (2020)/Malaysia | Lifestyle eating behaviors | Cross-sectional study | 1319 | Online survey | 41.2% felt eating patterns were healthier, 36.3% reduced physical activities, 25.7% had lower sleep quality |
Paltrinieri et al. (2020)/Italy | Lifestyle eating behaviors | Cross-sectional study | 1826 | Online survey | Working remotely or in usual modalities positively influenced lifestyle, reducing likelihood of worsening physical activity (OR 0.50; 95% CI 0.31–0.79) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cangelosi, G.; Palomares, S.M.; Pantanetti, P.; De Luca, A.; Biondini, F.; Nguyen, C.T.T.; Mancin, S.; Sguanci, M.; Petrelli, F. COVID-19, Nutrients and Lifestyle Eating Behaviors: A Narrative Review. Diseases 2024, 12, 193. https://doi.org/10.3390/diseases12080193
Cangelosi G, Palomares SM, Pantanetti P, De Luca A, Biondini F, Nguyen CTT, Mancin S, Sguanci M, Petrelli F. COVID-19, Nutrients and Lifestyle Eating Behaviors: A Narrative Review. Diseases. 2024; 12(8):193. https://doi.org/10.3390/diseases12080193
Chicago/Turabian StyleCangelosi, Giovanni, Sara Morales Palomares, Paola Pantanetti, Alessia De Luca, Federico Biondini, Cuc Thi Thu Nguyen, Stefano Mancin, Marco Sguanci, and Fabio Petrelli. 2024. "COVID-19, Nutrients and Lifestyle Eating Behaviors: A Narrative Review" Diseases 12, no. 8: 193. https://doi.org/10.3390/diseases12080193
APA StyleCangelosi, G., Palomares, S. M., Pantanetti, P., De Luca, A., Biondini, F., Nguyen, C. T. T., Mancin, S., Sguanci, M., & Petrelli, F. (2024). COVID-19, Nutrients and Lifestyle Eating Behaviors: A Narrative Review. Diseases, 12(8), 193. https://doi.org/10.3390/diseases12080193