Integrating AI into Cancer Immunotherapy—A Narrative Review of Current Applications and Future Directions
Abstract
:1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Synthesis
2.4. Quality Assessment
3. The Role of AI in Cancer Immunotherapy
3.1. Enhancing Immunotherapy Efficacy
3.2. Predicting Patient Response
3.3. Discovering Novel Therapeutic Targets
4. AI Metrics and Comparative Analysis in Cancer Immunotherapy
4.1. Biomarker Identification
4.2. Patient Response Prediction
4.3. Therapeutic Target Discovery
4.4. Drug Development
4.5. Clinical Trial Optimization
4.6. Real-Time Monitoring
5. Future Directions
5.1. Real-Time Data Analysis
5.2. AI-Driven Clinical Trials
5.3. Personalized Immunotherapy
5.4. Benchmarks for Measuring Success in AI-Driven Cancer Immunotherapy
6. Limitations and Challenges
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; Wolfe, C.; et al. The Global Burden of Cancer 2013. JAMA. Oncol. 2015, 1, 505–527. [Google Scholar] [CrossRef]
- Urruticoechea, A.; Alemany, R.; Balart, J.; Villanueva, A.; Viñals, F.; Capellá, G. Recent advances in cancer therapy: An overview. Curr. Pharm. Des. 2010, 16, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer Chemotherapy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Boussios, S.; Pentheroudakis, G.; Katsanos, K.; Pavlidis, N. Systemic treatment-induced gastrointestinal toxicity: Incidence, clinical presentation and management. Ann. Gastroenterol. 2012, 25, 106–118. [Google Scholar] [PubMed]
- Rebucci, M.; Michiels, C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem. Pharmacol. 2013, 85, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.T.; Li, Z.L.; He, Z.X.; Qiu, J.X.; Zhou, S.F. Molecular mechanisms for tumour resistance to chemotherapy. Clin. Exp. Pharmacol. Physiol. 2016, 43, 723–737. [Google Scholar] [CrossRef]
- Aweys, H.; Lewis, D.; Sheriff, M.; Rabbani, R.D.; Lapitan, P.; Sanchez, E.; Papadopoulos, V.; Ghose, A.; Boussios, S. Renal Cell Cancer—Insights in Drug Resistance Mechanisms. Anticancer Res. 2023, 43, 4781–4792. [Google Scholar] [CrossRef] [PubMed]
- Baskar, R.; Yap, S.P.; Chua, K.L.; Itahana, K. The diverse and complex roles of radiation on cancer treatment: Therapeutic target and genome maintenance. Am. J. Cancer. Res. 2012, 2, 372–382. [Google Scholar] [PubMed]
- Majeed, H.; Gupta, V. Adverse Effects of Radiation Therapy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Apte, V.; Ghose, A.; Linares, C.A.; Adeleke, S.; Papadopoulos, V.; Rassy, E.; Boussios, S. Paediatric Anatomical Models in Radiotherapy Applications. Clin. Oncol. 2024, 36, 562–575. [Google Scholar] [CrossRef]
- Kamrani, A.; Hosseinzadeh, R.; Shomali, N.; Heris, J.A.; Shahabi, P.; Mohammadinasab, R.; Sadeghvand, S.; Ghahremanzadeh, K.; Sadeghi, M.; Akbari, M. New immunotherapeutic approaches for cancer treatment. Pathol. Res. Pract. 2023, 248, 154632. [Google Scholar] [CrossRef]
- Rassy, E.; Karam, E.; Adeleke, S.; Okoli, S.; Galante, J.; Boussios, S.; Pavlidis, N. Immune checkpoint inhibitors in patients with cancers of unknown primary. Eur. J. Cancer 2023, 195, 113377. [Google Scholar] [CrossRef]
- Parent, P.; Marcq, G.; Adeleke, S.; Turpin, A.; Boussios, S.; Rassy, E.; Penel, N. Predictive biomarkers for immune checkpoint inhibitor response in urothelial cancer. Ther. Adv. Med. Oncol. 2023, 15, 17588359231192402. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Ghose, A.; Naicker, K.; Sanchez, E.; Chargari, C.; Rassy, E.; Boussios, S. Advances in adoptive T-cell therapy for metastatic melanoma. Curr. Res. Transl. Med. 2023, 71, 103404. [Google Scholar] [CrossRef] [PubMed]
- Eden, D.; Ghose, A.; Moschetta, M.; Pérez-Fidalgo, J.A.; Rassy, E.; Boussios, S. Immunotherapy Combined With Standard Therapies in Head and Neck Squamous Cell Carcinoma—A Meta-analysis. Anticancer Res. 2024, 44, 861–878. [Google Scholar] [CrossRef]
- Gupta, S.L.; Basu, S.; Soni, V.; Jaiswal, R.K. Immunotherapy: An alternative promising therapeutic approach against cancers. Mol. Biol. Rep. 2022, 49, 9903–9913. [Google Scholar] [CrossRef]
- Boussios, S.; Sheriff, M.; Rassy, E.; Moschetta, M.; Samartzis, E.P.; Hallit, R.; Sadauskaite, A.; Katsanos, K.H.; Christodoulou, D.K.; Pavlidis, N. Immuno-oncology: A narrative review of gastrointestinal and hepatic toxicities. Ann. Transl. Med. 2021, 9, 423. [Google Scholar] [CrossRef] [PubMed]
- Parvez, A.; Choudhary, F.; Mudgal, P.; Khan, R.; Qureshi, K.A.; Farooqi, H.; Aspatwar, A. PD-1 and PD-L1: Architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front. Immunol. 2023, 14, 1296341. [Google Scholar] [CrossRef] [PubMed]
- Immunotherapy to Treat Cancer. Available online: https://www.cancer.gov/about-cancer/treatment/types/immunotherapy (accessed on 24 September 2024).
- Seliger, B.; Massa, C. Immune Therapy Resistance and Immune Escape of Tumors. Cancers 2021, 13, 551. [Google Scholar] [CrossRef] [PubMed]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015, 35, S185–S198. [Google Scholar] [CrossRef]
- Linares, C.A.; Varghese, A.; Ghose, A.; Shinde, S.D.; Adeleke, S.; Sanchez, E.; Sheriff, M.; Chargari, C.; Rassy, E.; Boussios, S. Hallmarks of the Tumour Microenvironment of Gliomas and Its Interaction with Emerging Immunotherapy Modalities. Int. J. Mol. Sci. 2023, 24, 13215. [Google Scholar] [CrossRef] [PubMed]
- Ganatra, H.; Tan, J.K.; Simmons, A.; Bigogno, C.M.; Khurana, V.; Ghose, A.; Ghosh, A.; Mahajan, I.; Boussios, S.; Maniam, A.; et al. Applying whole-genome and whole-exome sequencing in breast cancer: A review of the landscape. Breast Cancer 2024, 31, 999–1009. [Google Scholar] [CrossRef]
- Labani-Motlagh, A.; Ashja-Mahdavi, M.; Loskog, A. The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front. Immunol. 2020, 11, 940. [Google Scholar] [CrossRef]
- Emens, L.A.; Ascierto, P.A.; Darcy, P.K.; Demaria, S.; Eggermont, A.M.M.; Redmond, W.L.; Seliger, B.; Marincola, F.M. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer 2017, 81, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Boussios, S.; Rassy, E.; Samartzis, E.; Moschetta, M.; Sheriff, M.; Pérez-Fidalgo, J.A.; Pavlidis, N. Melanoma of unknown primary: New perspectives for an old story. Crit. Rev. Oncol. 2021, 158, 103208. [Google Scholar] [CrossRef] [PubMed]
- Onoi, K.; Chihara, Y.; Uchino, J.; Shimamoto, T.; Morimoto, Y.; Iwasaku, M.; Kaneko, Y.; Yamada, T.; Takayama, K. Immune Checkpoint Inhibitors for Lung Cancer Treatment: A Review. J. Clin. Med. 2020, 9, 1362. [Google Scholar] [CrossRef] [PubMed]
- Chipuc, S.; Bogdan, H.; Serban, D.; Badiu, D.C.; Zgura, A.; Anghel, R. Immunotherapeutic Innovations in Clear Cell Renal Cell Carcinoma: Current Strategies and Future Directions. Cancer Diagn. Progn. 2024, 4, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Su, G.H.; Ma, D.; Xiao, Y.; Shao, Z.M.; Jiang, Y.Z. Technological advances in cancer immunity: From immunogenomics to single-cell analysis and artificial intelligence. Signal Transduct. Target. Ther. 2021, 6, 312. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.; Zeng, S.; Ren, X.; Yan, Y.; Gong, Z. Applying artificial intelligence for cancer immunotherapy. Acta Pharm. Sin. B 2021, 11, 3393–3405. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.R.; Devan, A.R.; Nair, B.; Vinod, B.S.; Nath, L.R. Harnessing the immune system against cancer: Current immunotherapy approaches and therapeutic targets. Mol. Biol. Rep. 2021, 48, 8075–8095. [Google Scholar] [CrossRef]
- El-Sayes, N.; Vito, A.; Mossman, K. Tumor Heterogeneity: A Great Barrier in the Age of Cancer Immunotherapy. Cancers 2021, 13, 806. [Google Scholar] [CrossRef]
- Prelaj, A.; Miskovic, V.; Zanitti, M.; Trovo, F.; Genova, C.; Viscardi, G.; Rebuzzi, S.E.; Mazzeo, L.; Provenzano, L.; Kosta, S.; et al. Artificial intelligence for predictive biomarker discovery in immuno-oncology: A systematic review. Ann. Oncol. 2024, 35, 29–65. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, Y.; Liu, X.; Huang, J. Artificial intelligence for prediction of response to cancer immunotherapy. Semin. Cancer Biol. 2022, 87, 137–147. [Google Scholar] [CrossRef]
- Yin, X.; Liao, H.; Yun, H.; Lin, N.; Li, S.; Xiang, Y.; Ma, X. Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer. Semin. Cancer Biol. 2022, 86, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Chen, R.; Gao, S.; Li, W.; Liu, Y.; Su, G.; Song, M.; Jiang, M.; Jiang, C.; Zhang, X. Artificial intelligence applied in neoantigen identification facilitates personalized cancer immunotherapy. Front. Oncol. 2023, 12, 1054231. [Google Scholar] [CrossRef]
- Sobhani, N.; Tardiel-Cyril, D.R.; Chai, D.; Generali, D.; Li, J.R.; Vazquez-Perez, J.; Lim, J.M.; Morris, R.; Bullock, Z.N.; Davtyan, A.; et al. Artificial intelligence-powered discovery of small molecules inhibiting CTLA-4 in cancer. BJC Rep. 2024, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Sun, C.; Guo, Z.; Wang, Y.; Zeng, X.; Su, Y.; Zhao, Q.; Ma, B. Accelerating antibody discovery and design with artificial intelligence: Recent advances and prospects. Semin. Cancer Biol. 2023, 95, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Khondakar, K.R.; Anwar, M.S.; Mazumdara, H.; Kaushik, A. Perspective of point-of-care sensing systems in cancer management. Mater. Adv. 2023, 4, 4991–5002. [Google Scholar] [CrossRef]
- Chopra, H.; Annu; Shin, D.K.; Munjal, K.; Priyanka; Dhama, K.; Emran, T.B. Revolutionizing clinical trials: The role of AI in accelerating medical breakthroughs. Int. J. Surg. 2023, 109, 4211–4220. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Li, X.; Gan, Y.; Han, S.; Rong, P.; Wang, W.; Li, W.; Zhou, L. Artificial intelligence assists precision medicine in cancer treatment. Front. Oncol. 2023, 12, 998222. [Google Scholar] [CrossRef]
- Rassy, E.; Boussios, S.; Pavlidis, N. Genomic correlates of response and resistance to immune checkpoint inhibitors in carcinomas of unknown primary. Eur. J. Clin. Investig. 2021, 51, e13583. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Chen, J.; Wu, T.; Li, L.; Wang, G.; Wu, H.; Song, X.; Liu, X.; Wang, H. CAR-Toner: An AI-driven approach for CAR tonic signaling prediction and optimization. Cell Res. 2024, 34, 386–388. [Google Scholar] [CrossRef]
- Martarelli, N.; Capurro, M.; Mansour, G.; Jahromi, R.V.; Stella, A.; Rossi, R.; Longetti, E.; Bigerna, B.; Gentili, M.; Rosseto, A.; et al. Artificial intelligence-powered molecular docking and steered molecular dynamics for accurate scFv selection of anti-CD30 chimeric antigen receptors. Int. J. Mol. Sci. 2024, 25, 7231. [Google Scholar] [CrossRef] [PubMed]
- Bujak, J.; Kłęk, S.; Balawejder, M.; Kociniak, A.; Wilkus, K.; Szatanek, R.; Orzeszko, Z.; Welanyk, J.; Torbicz, G.; Jęckowski, M.; et al. Creating an Innovative Artificial Intelligence–Based Technology (TCRact) for Designing and Optimizing T Cell Receptors for Use in Cancer Immunotherapies: Protocol for an Observational Trial. JMIR Res. Protoc. 2023, 12, e45872. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, J.; Zhong, X.; Selistre-de-Araujo, H.S.; Boussios, S.; Ma, Y.; Fang, H. A novel PD-1/PD-L1 pathway-related seven-gene signature for the development and validation of the prognosis prediction model for breast cancer. Transl. Cancer Res. 2024, 13, 1554–1566. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, L.A.; Pierce, C.J.; Dennis, M.; Paracha, M.; Maoz, A. Artificial Intelligence for Histology-Based Detection of Microsatellite Instability and Prediction of Response to Immunotherapy in Colorectal Cancer. Cancers 2021, 13, 391. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.; Li, Z.; Wang, Q. A novel artificial intelligence network to assess the prognosis of gastrointestinal cancer to immunotherapy based on genetic mutation features. Front. Immunol. 2024, 15, 1428529. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Yang, L.; Lu, M.; Jin, R.; Ye, H.; Ma, T. The artificial intelligence and machine learning in lung cancer immunotherapy. J. Hematol. Oncol. 2023, 16, 55. [Google Scholar] [CrossRef] [PubMed]
- Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.; Lallo, E.; Munnia, A.; Spedicato, M.; Messerini, L.; D’Aurizio, R.; Ceroni, E.G.; Brunelli, G.; Galvano, A.; Russo, A.; et al. Artificial intelligence predictive models of response to cytotoxic chemotherapy alone or combined to targeted therapy for metastatic colorectal cancer patients: A systematic review and meta-analysis. Cancers 2022, 14, 4012. [Google Scholar] [CrossRef]
- Dlamini, Z.; Francies, F.Z.; Hull, R.; Marima, R. Artificial intelligence (AI) and big data in cancer and precision oncology. Comput. Struct. Biotechnol. J. 2020, 18, 2300–2311. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, W.; Li, N.; Neri, S.; Sharma, A.; Jiang, W.; Lin, S.H. Combining Immunotherapy and Radiotherapy for Cancer Treatment: Current Challenges and Future Directions. Front. Pharmacol. 2018, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Weerarathna, I.N.; Kamble, A.R.; Luharia, A. Artificial Intelligence Applications for Biomedical Cancer Research: A Review. Cureus 2023, 15, e48307. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. Cancer Immunotherapy, Part 3: Challenges and Future Trends. Pharm. Ther. 2017, 42, 514–521. [Google Scholar]
- Duffy, M.J.; Crown, J. Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors in Cancer Patients. Clin. Chem. 2019, 65, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Pilard, C.; Ancion, M.; Delvenne, P.; Jerusalem, G.; Hubert, P.; Herfs, M. Cancer immunotherapy: It’s time to better predict patients’ response. Br. J. Cancer 2021, 125, 927–938. [Google Scholar] [CrossRef]
- Ahn, J.S.; Shin, S.; Yang, S.A.; Park, E.K.; Kim, K.H.; Cho, S.I.; Ock, C.Y.; Kim, S. Artificial Intelligence in Breast Cancer Diagnosis and Personalized Medicine. J. Breast Cancer 2023, 26, 405–435. [Google Scholar] [CrossRef] [PubMed]
- Lococo, F.; Ghaly, G.; Chiappetta, M.; Flamini, S.; Evangelista, J.; Bria, E.; Stefani, A.; Vita, E.; Martino, A.; Boldrini, L.; et al. Implementation of Artificial Intelligence in Personalized Prognostic Assessment of Lung Cancer: A Narrative Review. Cancers 2024, 16, 1832. [Google Scholar] [CrossRef]
- Li, T.; Li, Y.; Zhu, X.; He, Y.; Wu, Y.; Ying, T.; Xie, Z. Artificial intelligence in cancer immunotherapy: Applications in neoantigen recognition, antibody design and immunotherapy response prediction. Semin. Cancer Biol. 2023, 91, 50–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lin, G.; Yan, Z.; Li, L.; Wu, X.; Shi, J.; He, J.; Zhao, L.; Liang, H.; Wang, W. Predictive mutation signature of immunotherapy benefits in NSCLC based on machine learning algorithms. Front. Immunol. 2022, 13, 989275. [Google Scholar] [CrossRef] [PubMed]
- Ho, D. Artificial intelligence in cancer therapy. Science 2020, 367, 982–983. [Google Scholar] [CrossRef]
- Wang, D.R.; Wu, X.L.; Sun, Y.L. Therapeutic targets and biomarkers of tumor immunotherapy: Response versus non-response. Signal Transduct. Target. Ther. 2022, 7, 331. [Google Scholar] [CrossRef]
- Pun, F.W.; Ozerov, I.V.; Zhavoronkov, A. AI-powered therapeutic target discovery. Trends Pharmacol. Sci. 2023, 44, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Bulashevska, A.; Nacsa, Z.; Lang, F.; Braun, M.; Machyna, M.; Diken, M.; Childs, L.; König, R. Artificial intelligence and neoantigens: Paving the path for precision cancer immunotherapy. Front. Immunol. 2024, 15, 1394003. [Google Scholar] [CrossRef]
- Berson, E.; Chung, P.; Espinosa, C.; Montine, T.J.; Aghaeepour, N. Unlocking human immune system complexity through AI. Nat. Methods 2024, 21, 1400–1402. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Luo, X.; Deng, X.; Tang, Y.; Tian, W.; Cheng, H.; Zhang, J.; Zou, Y.; Guo, Z.; Xie, X. Advances in artificial intelligence to predict cancer immunotherapy efficacy. Front. Immunol. 2023, 13, 1076883. [Google Scholar] [CrossRef] [PubMed]
- Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023, 15, 1916. [Google Scholar] [CrossRef] [PubMed]
- Zadeh Shirazi, A.; Tofighi, M.; Gharavi, A.; Gomez, G.A. The Application of Artificial Intelligence to Cancer Research: A Comprehensive Guide. Technol. Cancer Res. Treat. 2024, 23, 1533033824125032. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, W.; Ma, T.; Fu, S.; Gao, X.; Qin, N.; Wu, Y.; Zhang, X.; Wang, J.; Pan, Y.; et al. Assessing the efficacy of immunotherapy in lung squamous carcinoma using artificial intelligence neural network. Front. Immunol. 2022, 13, 1024707. [Google Scholar] [CrossRef]
- Kather, J.N.; Pearson, A.T.; Halama, N.; Jäger, D.; Krause, J.; Loosen, S.H.; Marx, A.; Boor, P.; Tacke, F.; Neumann, U.P.; et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 2019, 25, 1054–1056. [Google Scholar] [CrossRef]
- Tapper, W.; Carneiro, G.; Mikropoulos, C.; Thomas, S.A.; Evans, P.M.; Boussios, S. The Application of Radiomics and AI to Molecular Imaging for Prostate Cancer. J. Pers. Med. 2024, 14, 287. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, Y.; Broughton, P.; Abdollahi, H.; Valafar, H.; Blenda, A.V. Integrating Omics Data and AI for Cancer Diagnosis and Prognosis. Cancers 2024, 16, 2448. [Google Scholar] [CrossRef] [PubMed]
- Sinha, T.; Khan, A.; Awan, M.; Bokhari, S.F.; Ali, K.; Amir, M.; Jadhav, A.N.; Bakht, D.; Puli, S.T.; Burhanuddin, M. Artificial Intelligence and Machine Learning in Predicting the Response to Immunotherapy in Non-small Cell Lung Carcinoma: A Systematic Review. Cureus 2024, 16, e61220. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, H.; Wang, P.; Liu, X.; Lv, K.; Ye, M. XGBoost-based and tumor-immune characterized gene signature for the prediction of metastatic status in breast cancer. J. Transl. Med. 2022, 20, 177. [Google Scholar] [CrossRef]
- Lee, M. Deep learning techniques with genomic data in cancer prognosis: A comprehensive review of the 2021–2023 literature. Biology 2023, 12, 893. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, J.; Tang, R.; Yang, J.; Wang, W.; Yu, X.; Shi, S. Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment. J. Hematol. Oncol. 2023, 16, 114. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Asif, M.; Rehman, A.; Alharbi, M.; Khan, M.A.; Elmitwally, N. Emerging research trends in artificial intelligence for cancer diagnostic systems: A comprehensive review. Heliyon 2024, 10, e36743. [Google Scholar] [CrossRef]
- Darbandi, M.R.; Darbandi, M.; Darbandi, S.; Bado, I.; Hadizadeh, M.; Khorshid, H.R. Artificial intelligence breakthroughs in pioneering early diagnosis and precision treatment of breast cancer: A multimethod study. Eur. J. Cancer 2024, 209, 114227. [Google Scholar] [CrossRef]
- Gal, J.; Bailleux, C.; Chardin, D.; Pourcher, T.; Gilhodes, J.; Jing, L.; Guigonis, J.M.; Ferrero, J.M.; Milano, G.; Mograbi, B.; et al. Comparison of unsupervised machine-learning methods to identify metabolomic signatures in patients with localized breast cancer. Comput. Struct. Biotechnol. J. 2020, 18, 1509–1524. [Google Scholar] [CrossRef]
- Ye, Y.; Shen, Y.; Wang, J.; Li, D.; Zhu, Y.; Zhao, Z.; Pan, Y.; Wang, Y.; Liu, X.; Wan, J. SIGANEO: Similarity network with GAN enhancement for immunogenic neoepitope prediction. Comput. Struct. Biotechnol. J. 2023, 21, 5538–5543. [Google Scholar] [CrossRef]
- Visan, A.I.; Negut, I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life 2024, 14, 233. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, H.; Sharma, P.; Sahi, S. Advances in Artificial Intelligence (AI)-assisted approaches in drug screening. Artif. Intell. Chem. 2024, 2, 100039. [Google Scholar] [CrossRef]
- Wang, L.; Song, Y.; Wang, H.; Zhang, X.; Wang, M.; He, J.; Li, S.; Zhang, L.; Li, K.; Cao, L. Advances of artificial intelligence in anti-cancer drug design: A review of the past decade. Pharmaceuticals 2023, 16, 253. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Shi, H.; Wang, H. Machine learning and AI in cancer prognosis, prediction, and treatment selection: A critical approach. J. Multidiscip. Healthc. 2023, 16, 1779–1791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; You, P.; Liu, R.; Lu, Y.; Li, J.; Lei, Y.; Wu, S.; Zhou, H. Artificial Intelligence in Clinical Trials of Lung Cancer: Current and Future Prospects. Intell. Oncol. 2025, 1, 34–51. [Google Scholar] [CrossRef]
- Shajari, S.; Kuruvinashetti, K.; Komeili, A.; Sundararaj, U. The emergence of AI-based wearable sensors for digital health technology: A review. Sensors 2023, 23, 9498. [Google Scholar] [CrossRef] [PubMed]
- Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.F.; Alotaibi, S.R. Applications of Artificial Intelligence and Big Data Analytics in m-Health: A Healthcare System Perspective. J. Healthc. Eng. 2020, 2020, 8894694. [Google Scholar] [CrossRef] [PubMed]
- Chow, R.; Midroni, J.; Kaur, J.; Boldt, G.; Liu, G.; Eng, L.; Liu, F.F.; Haibe-Kains, B.; Lock, M.; Raman, S. Use of artificial intelligence for cancer clinical trial enrollment: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2023, 115, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.K.; Balijepalli, M.K.; Pichika, M.R. Success stories of AI in drug discovery—Where do things stand? Expert Opin. Drug Discov. 2022, 17, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.M.; Peter, D. Artificial Intelligence in Cancer Research: Trends, Challenges and Future Directions. Life 2022, 12, 1991. [Google Scholar] [CrossRef] [PubMed]
- Hartung, T. Artificial intelligence as the new frontier in chemical risk assessment. Front. Artif. Intell. 2023, 6, 1269932. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Chen, Q.; Jin, Z.; Liu, S.; Zhang, S. Harnessing artificial intelligence to improve clinical trial design. Commun. Med. 2023, 3, 191. [Google Scholar] [CrossRef]
- Niazi, S.K. The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives. Drug Des. Dev. Ther. 2023, 17, 2691–2725. [Google Scholar] [CrossRef] [PubMed]
- Askin, S.; Burkhalter, D.; Calado, G.; El Dakrouni, S. Artificial Intelligence Applied to clinical trials: Opportunities and challenges. Health Technol. 2023, 13, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Maleki Varnosfaderani, S.; Forouzanfar, M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering 2024, 11, 337. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, E.Y.; Luchini, C.; Eccher, A.; Tizaoui, K.; Shin, J.I.; Lim, B.J. Artificial intelligence for predicting microsatellite instability based on tumor histomorphology: A systematic review. Int. J. Mol. Sci. 2022, 23, 2462. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Rehman, A.U.; Li, M.; Wu, B.; Ali, Y.; Rasheed, S.; Shaheen, S.; Liu, X.; Luo, R.; Zhang, J. Role of Artificial Intelligence in Revolutionizing Drug Discovery. Fundam. Res. 2024; in press. [Google Scholar] [CrossRef]
- Lu, X.; Chen, M.; Lu, Z.; Shi, X.; Liang, L. Artificial intelligence tools for optimising recruitment and retention in clinical trials: A scoping review protocol. BMJ Open 2024, 14, e080032. [Google Scholar] [CrossRef]
- Olawade, D.B.; David-Olawade, A.C.; Wada, O.Z.; Asaolu, A.J.; Adereni, T.; Ling, J. Artificial intelligence in healthcare delivery: Prospects and pitfalls. J. Med. Surg. Public Health 2024, 3, 100108. [Google Scholar] [CrossRef]
- Olawade, D.B.; Teke, J.; Fapohunda, O.; Weerasinghe, K.; Usman, S.O.; Ige, A.O.; David-Olawade, A.C. Leveraging artificial intelligence in vaccine development: A narrative review. J. Microbiol. Methods 2024, 224, 106998. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; Aderinto, N.; Olatunji, G.; Kokori, E.; David-Olawade, A.C.; Hadi, M. Advancements and applications of Artificial Intelligence in cardiology: Current trends and future prospects. J. Med. Surg. Public Health 2024, 3, 100109. [Google Scholar] [CrossRef]
Application | Description | Methodology | Examples | Impact on Treatment |
---|---|---|---|---|
Biomarker Identification [30] | AI analyzes complex biological data to discover biomarkers that predict immunotherapy response | Supervised ML algorithms (e.g., Random Forest, Support Vector Machines) and DL algorithms (e.g., Convolutional Neural Networks, Recurrent Neural Networks) applied to multi-omics data [genomic, transcriptomic, proteomic) | Identification of TMB, MSI, PD-L1 expression levels, and gene signatures predictive of ICI response | Enables personalized treatment by stratifying patients based on likely treatment response, improving efficacy, and minimizing adverse effects |
Optimization of Combination Therapies [33] | AI predicts the most effective combinations of immunotherapy with other treatments [e.g., chemotherapy, radiation] | Reinforcement learning models and Bayesian networks applied to clinical trial data, real-world evidence, and patient-specific data | Successful combinations of ICIs with chemotherapy or radiation therapy in lung cancer and melanoma | Reduces reliance on trial and error, accelerates the identification of optimal treatment regimens, and enhances overall therapeutic outcomes |
Predicting Patient Response [30,34,35] | AI models forecast which patients will benefit from specific immunotherapy treatments and who might experience severe side effects | Gradient Boosting Machines, Logistic Regression, and DL models (e.g., Multi-Layer Perceptrons) using patient data (e.g., genomic profiles, immune signatures, imaging data) | ML predictions for PD-1/PD-L1 inhibitor responses in melanoma and non-small cell lung cancer | Guides clinical decision-making, allowing for more precise, personalized treatment, and avoiding unnecessary side effects |
Discovering Novel Therapeutic Targets [30,36] | AI uncovers new targets for immunotherapy by analyzing vast biological datasets | Unsupervised ML models (e.g., Clustering, Principal Component Analysis) and Generative Adversarial Networks (GANs) applied to genetic, epigenetic, and transcriptomic data | Identification of neoantigens and novel ICIs for developing personalized vaccines and new therapeutic agents | Expands the range of therapeutic options, leading to the development of new immunotherapy agents tailored to specific tumor types |
Enhancing Drug Discovery [37,38] | AI accelerates the discovery and development of new immunotherapeutic agents | Virtual screening, DL molecular modeling (e.g., Graph Neural Networks), and simulation of drug interactions | AI-driven discovery of novel checkpoint inhibitors and monoclonal antibodies for cancer treatment | Shortens the drug development timeline, reducing costs and bringing effective treatments to market more quickly |
Monitoring Treatment Response [39] | AI facilitates real-time monitoring of patient responses during immunotherapy | Time-series analysis models and DL algorithms (e.g., Long Short-Term Memory networks) applied to data from wearables, imaging, and EHR | AI-integrated wearable devices monitor physiological changes and detect early signs of adverse reactions | Enables timely interventions, optimizing treatment outcomes and improving patient safety during therapy |
Improving Patient Selection for Clinical Trials [40] | AI identifies suitable candidates for clinical trials based on predictive models | Natural Language Processing (NLP), supervised ML models (e.g., Decision Trees), and DL models (e.g., Transformers) applied to EHR, genetic profiles, and clinical history | Enhanced recruitment for immunotherapy trials, particularly for rare cancer types or specific genetic subtypes | Increases the efficiency and success rate of clinical trials, ensuring that trials are populated with the most suitable candidates |
Adaptive Treatment Strategies [41] | AI supports dynamic adjustment of treatment plans based on ongoing patient data | Adaptive reinforcement learning and real-time DL models integrating data from multiple sources for adjusting treatment parameters | AI-driven adaptive dosing and sequencing strategies in immunotherapy to enhance effectiveness and reduce toxicity | Personalizes treatment regimens, improving outcomes by adapting to individual patient responses over time |
Future Direction | Description | Potential Benefits | Challenges to Address |
---|---|---|---|
Adaptive Treatment Strategies [30] | AI enables dynamic adjustment of treatment protocols based on real-time patient response data, ensuring optimal dosing and timing | Improves patient outcomes by continuously adapting treatment plans to changing patient conditions, reducing toxicity, and enhancing efficacy | Developing robust real-time monitoring systems, managing the computational demands of real-time data processing, and ensuring clinical acceptance of AI-guided adaptive protocols |
Personalized Immunotherapy [30,68] | AI creates tailored treatment plans by integrating multi-omics data (genomic, transcriptomic, proteomic) with clinical data for each patient | Maximizes treatment efficacy and minimizes side effects by delivering personalized treatment regimens | Complexity in integrating diverse data sources, ensuring the interpretability of AI-generated treatment plans, and gaining regulatory approval for personalized approaches |
AI-Driven Clinical Trials [40,91,92] | Use of AI to optimize all stages of clinical trials, from patient recruitment and trial design to data analysis and outcome prediction | Reduces the time and cost associated with clinical trials, improves patient matching, and enhances the likelihood of trial success | Standardization of trial protocols across different regions, regulatory approval, and ensuring the generalizability of AI-driven trial outcomes across diverse patient populations |
AI-Enhanced Imaging for Immunotherapy [54] | AI improves the interpretation of imaging data (e.g., PET scans, CT scans) to assess tumor response to immunotherapy more accurately | Provides more precise evaluations of treatment effectiveness, leading to better-informed clinical decisions and adjustments in therapy | Addressing variability in imaging quality, ensuring the integration of AI-driven imaging with other clinical data, and gaining clinician trust in AI interpretations |
AI in Drug Discovery and Development [69,93] | AI accelerates the identification and development of new immunotherapeutic agents by predicting molecular interactions and simulating drug responses | Shortens the drug development timeline, reduces costs, and enhances the precision of drug-target interactions, leading to more effective treatments | Addressing the accuracy of AI predictions, regulatory challenges in drug approval, and the need for extensive validation studies to confirm AI-generated drug candidates’ efficacy and safety |
Real-Time Data Analysis [91,94] | Integration of AI with real-time data from wearable devices, EHRs, and mobile apps to continuously monitor patients during immunotherapy | Enables continuous, personalized monitoring of patient health, leading to timely interventions and optimized treatment outcomes | Ensuring data privacy and security, managing data overload, and developing algorithms that can accurately interpret and act on real-time data in a clinical setting |
AI for Predictive Toxicology [95] | AI predicts potential toxicities and side effects of new immunotherapies before clinical trials, reducing the risk of adverse effects | Enhances patient safety, reduces trial failure rates due to toxicity, and accelerates the development of safer immunotherapeutic drugs | Ensuring the robustness and accuracy of AI models in predicting rare toxicities, integrating these predictions into the drug development pipeline, and balancing predictive sensitivity with clinical relevance |
AI in Immune System Modeling | AI models complex immune system interactions to better understand how tumors evade immune detection and how therapies can be optimized | Provides deeper insights into immune–tumor interactions, leading to the development of more effective immunotherapy strategies | Complexity in modeling the immune system accurately, ensuring that AI models are based on validated biological principles, and integrating these models with clinical decision-making processes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olawade, D.B.; Clement David-Olawade, A.; Adereni, T.; Egbon, E.; Teke, J.; Boussios, S. Integrating AI into Cancer Immunotherapy—A Narrative Review of Current Applications and Future Directions. Diseases 2025, 13, 24. https://doi.org/10.3390/diseases13010024
Olawade DB, Clement David-Olawade A, Adereni T, Egbon E, Teke J, Boussios S. Integrating AI into Cancer Immunotherapy—A Narrative Review of Current Applications and Future Directions. Diseases. 2025; 13(1):24. https://doi.org/10.3390/diseases13010024
Chicago/Turabian StyleOlawade, David B., Aanuoluwapo Clement David-Olawade, Temitope Adereni, Eghosasere Egbon, Jennifer Teke, and Stergios Boussios. 2025. "Integrating AI into Cancer Immunotherapy—A Narrative Review of Current Applications and Future Directions" Diseases 13, no. 1: 24. https://doi.org/10.3390/diseases13010024
APA StyleOlawade, D. B., Clement David-Olawade, A., Adereni, T., Egbon, E., Teke, J., & Boussios, S. (2025). Integrating AI into Cancer Immunotherapy—A Narrative Review of Current Applications and Future Directions. Diseases, 13(1), 24. https://doi.org/10.3390/diseases13010024