Comparative Analysis of Blood MMP-9 Concentration in Alcohol- and Opioid-Addicted Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Study
2.2. Human Ethics
2.3. MMP-9 Concentration in Plasma
2.4. Methods of Analysis
3. Results
3.1. MMP-9 in Plasma of Alcohol-Addicted Patients
3.2. MMP-9 in Plasma of Opioid-Addicted Patients
3.3. Comparison of MMP-9 in Plasma in Alcohol and Opioid-Addicted Patients
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lech, A.M.; Wiera, G.; Mozrzymas, J.W. Matrix metalloproteinase-3 in brain physiology and neurodegeneration. Adv. Clin. Exp. Med. 2019, 28, 1717–1722. [Google Scholar] [CrossRef] [PubMed]
- Zipfel, P.; Rochais, C.; Baranger, K.; Rivera, S.; Dallemagne, P. Matrix metalloproteinases as new targets in Alzheimer’s disease: Opportunities and challenges. J. Med. Chem. 2020, 63, 10705–10725. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Hu, M.; Khalil, R.A. Chapter One—Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73. [Google Scholar] [CrossRef] [PubMed]
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix Metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67. [Google Scholar] [CrossRef]
- Gasche, Y.; Soccal, P.M.; Kanemitsu, M.; Copin, J.-C. Matrix metalloproteinases and diseases of the central nervous system with a special emphasis on ischemic brain. Front. Biosci. (Landmark Ed.) 2006, 11, 1289–1301. [Google Scholar] [CrossRef]
- Singh, D.; Srivastava, S.K.; Chaudhuri, T.K.; Upadhyay, G. Multifaceted role of matrix metalloproteinases (MMPs). Front. Mol. Biosci. 2015, 2, 19. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, G.; Sehgal, A.; Bhardwaj, S.; Singh, S.; Buhas, C.; Judea-Pusta, C.; Uivarosan, D.; Munteanu, M.A.; Bungau, S. Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perspectives. Int. J. Mol. Sci. 2021, 22, 1413. [Google Scholar] [CrossRef]
- Dzwonek, J.; Rylski, M.; Kaczmarek, L. Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Lett. 2004, 567, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Joh, T.H. Matrix Metalloproteinases, New Insights into the Understanding of Neurodegenerative Disorders. Biomol. Ther. 2012, 20, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, A.; Rink, L.; Wessels, I. Regulation of matrix metalloproteinase-9 during monopoiesis and zinc deficiency by chromatin remodeling. J. Trace Elem. Med. Biol. 2023, 78, 127162. [Google Scholar] [CrossRef] [PubMed]
- Sarker, H.; Haimour, A.; Toor, R.; Fernandez-Patron, C. The Emerging Role of Epigenetic Mechanisms in the Causation of Aberrant MMP Activity during Human Pathologies and the Use of Medicinal Drugs. Biomolecules 2021, 11, 578. [Google Scholar] [CrossRef] [PubMed]
- Haorah, J.; Ramirez, S.H.; Schall, K.; Smith, D.; Pandya, R.; Persidsky, Y. Oxidative stress activates protein tyrosine kinase and matrixmetalloproteinases leading to blood–brain barrier dysfunction. J. Neurochem. 2007, 101, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Bronisz, E.; Kurkowska-Jastrzębska, I. Matrix Metalloproteinase 9 in Epilepsy: The Role of Neuroinflammation in Seizure Development. Mediat. Inflamm. 2016, 2016, 7369020. [Google Scholar] [CrossRef]
- Vandooren, J.; Van den Steen, P.E.; Opdenakker, G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): The next decade. Crit. Rev. Biochem. Mol. 2013, 48, 222–272. [Google Scholar] [CrossRef] [PubMed]
- Van Wart, H.E.; Birkedal-Hansen, H. The cysteine switch: A principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. USA 1990, 87, 5578–5582. [Google Scholar] [CrossRef]
- Ra, H.J.; Parks, W.C. Control of matrix metalloproteinase catalytic activity. Matrix Biol. 2007, 26, 587–596. [Google Scholar] [CrossRef]
- Kaczmarek, L. MMP-9 inhibitors in the brain: Can old bullets shoot new targets? Curr. Pharm. Des. 2013, 19, 1085–1089. [Google Scholar] [CrossRef]
- Aid, S.; Silva, A.C.; Candelario-Jalil, E.; Choi, S.H.; Rosenberg, G.A.; Bosetti, F. Cyclooxygenase-1 and -2 differentially modulate lipopolysaccharide-induced blood-brain barrier disruption through matrix metalloproteinase activity. J. Cereb. Blood Flow Metab. 2010, 30, 370–380. [Google Scholar] [CrossRef]
- Lepeta, K.; Kaczmarek, L. Matrix Metalloproteinase-9 as a Novel Player in Synaptic Plasticity and Schizophrenia. Schizophr. Bull. 2015, 41, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Beroun, A.; Mitra, S.; Michaluk, P.; Pijet, B.; Stefaniuk, M.; Kaczmarek, L. MMPs in learning and memory and neuropsychiatric disorders. Cell. Mol. Life Sci. 2019, 76, 3207–3228. [Google Scholar] [CrossRef] [PubMed]
- Vafadari, B.; Salamian, A.; Kaczmarek, L. MMP-9 in translation: From molecule to brain physiology, pathology, and therapy. J. Neurochem. 2016, 139, 91–114. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Tian, W.; Chen, X.; Xu, H.; Dai, W.; Zhang, Y.; Wu, X.; Yu, W.; Tian, J.; Su, D. Peripheral Neutrophils-Derived Matrix Metallopeptidase-9 Induces Postoperative Cognitive Dysfunction in Aged Mice. Front. Aging Neurosci. 2022, 14, 683295. [Google Scholar] [CrossRef]
- Dwir, D.; Giangreco, B.; Xin, L.; Tenenbaum, L.; Cabungcal, J.H.; Steullet, P.; Goupil, A.; Cleusix, M.; Jenni, R.; Chtarto, A.; et al. MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: A reverse translation study in schizophrenia patients. Mol. Psychiatry 2020, 25, 2889–2904. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Vasudevan, D.M. Alcohol-induced oxidative stress. Life Sci. 2007, 81, 177–187. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Bland, S.T.; Hutchinson, M.R.; Maier, S.F.; Watkins, L.R.; Johnson, K.W. The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain Behav. Immun. 2009, 23, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Hofford, R.S.; Russo, S.J.; Kiraly, D.D. Neuroimmune mechanisms of psychostimulant and opioid use disorders. Eur. J. Neurosci. 2019, 50, 2562–2573. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, H.; Liu, Q.R.; Gong, J.P.; Hall, F.S.; Ujike, H.; Morales, M.; Sakurai, T.; Grumet, M.; Uhl, G.R. NrCAM in addiction vulnerability: Positional cloning, drug-regulation, haplotype-specific expression, and altered drug reward in knockout mice. Neuropsychopharmacology 2006, 31, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.C.; Scofield, M.D.; Kalivas, P.W. The tetrapartite synapse: Extracellular matrix remodeling contributes to corticoaccumbens plasticity underlying drug addiction. Brain Res. 2015, 1628 Pt A, 29–39. [Google Scholar] [CrossRef]
- Najafi, K.; Komi, D.E.A.; Khazaie, H.; Moini, A.; Vaisi-Raygani, A.; Ahmadi, H.R.; Ghadami, M.R.; Kiani, A. Investigation of Serum Levels and Activity of Matrix Metalloproteinases 2 and 9 (MMP2, 9) in Opioid and Methamphetamine-Dependent Patients. Acta Med. Iran. 2018, 56, 559–562. [Google Scholar]
- Kaczmarek, K.T.; Protokowicz, K.; Kaczmarek, L. Matrix metalloproteinase-9: A magic drug target in neuropsychiatry? J. Neurochem. 2024, 168, 1842–1853. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.W.; Masino, A.J.; Reichert, J.R.; Turner, G.D.; Meighan, S.E.; Meighan, P.C.; Harding, J.W. Ethanol-induced impairment of spatial memory and brain matrix metalloproteinases. Brain Res. 2003, 963, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Sillanaukee, P.; Kalela, A.; Seppa, K.; Hoyhtya, M.; Nikkari, S.T. Matrix metalloproteinase-9 is elevated in serum of alcohol abusers. Eur. J. Clin. Investig. 2002, 32, 225–229. [Google Scholar] [CrossRef]
- Dematteis, M.; Auriacombe, M.; D’Agnone, O.; Somaini, L.; Szerman, N.; Littlewood, R.; Alam, F.; Alho, H.; Benyamina, A.; Bobes, J.; et al. Recommendations for buprenorphine and methadone therapy in opioid use disorder: A European consensus. Expert Opin. Pharmacother. 2017, 18, 1987–1999. [Google Scholar] [CrossRef] [PubMed]
- Keshri, N.; Nandeesha, H.; Rajappa, M.; Menon, V. Matrix metalloproteinase-9 increases the risk of cognitive impairment in schizophrenia. Nord. J. Psychiatry 2021, 75, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Seitz-Holland, J.; Alemán-Gómez, Y.; Cho, K.I.K.; Pasternak, O.; Cleusix, M.; Jenni, R.; Baumann, P.S.; Klauser, P.; Conus, P.; Hagmann, P.; et al. Matrix metalloproteinase 9 (MMP-9) activity, hippocampal extracellular free water, and cognitive deficits are associated with each other in early phase psychosis. Neuropsychopharmacology 2024, 49, 1140–1150. [Google Scholar] [CrossRef]
- Harper, C. The neuropathology of alcohol-related brain damage. Alcohol. Alcohol. 2009, 44, 136–140. [Google Scholar] [CrossRef]
- Peng, B.; Yang, Q.; B Joshi, R.; Liu, Y.; Akbar, M.; Song, B.-J.; Zhou, S.; Wang, X. Role of Alcohol Drinking in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2020, 21, 2316. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, J.; Shi, Z.; Zhu, X. Correlation of MMP-9 and HMGB1 expression with the cognitive function in patients with epilepsy and factors affecting the prognosis. Cell Mol. Biol. 2020, 66, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.; Keshri, N.; Nandeesha, H.; Menon, V.; Goud, A.C. Matrixmetalloproteinase-9 gene polymorphism (rs 17576) increases the risk of depressive symptoms in bipolar disorder. J. Neurosci. Rural Pract. 2022, 13, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Watling, S.E.; Rhind, S.G.; Warsh, J.; Green, D.; McCluskey, T.; Tong, J.; Truong, P.; Chavez, S.; Richardson, J.D.; Kish, S.J.; et al. Exploring brain glutathione and peripheral blood markers in posttraumatic stress disorder: A combined [1H] MRS and peripheral blood study. Front. Psychiatry 2023, 14, 1195012. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Cole, G.; Head, E.; Ingram, D. Nutrition, brain aging, and neurodegeneration. J. Neurosci. 2009, 29, 12795–12801. [Google Scholar] [CrossRef] [PubMed]
- Asatiani, N.; Sapojnikova, N.; Kartvelishvili, T.; Asanishvili, L.; Sichinava, N.; Chikovani, Z. Blood antioxidant profile in alcohol and opioid-addicted patients. Discov. Toxicol. 2024, submitted.
- Cui, C.; Shurtleff, D.; Harris, R.A. Chapter one—Neuroimmune mechanisms of alcohol and drug addiction. Int. Rev. Neurobiol. 2014, 118, 1–12. [Google Scholar] [CrossRef]
- Ray, L.A.; Roche, D.J.; Heinzerling, K.; Shoptaw, S. Chapter Twelve—Opportunities for the development of neuroimmune therapies in addiction. Int. Rev. Neurobiol. 2014, 118, 381–401. [Google Scholar] [CrossRef] [PubMed]
- Mash, D.C.; Ffrench-Mullen, J.; Adi, N.; Qin, Y.; Buck, A.; Pablo, J. Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling. PLoS ONE 2007, 2, e1187. [Google Scholar] [CrossRef] [PubMed]
- Kovatsi, L.; Batzios, S.; Nikolaou, K.; Fragou, D.; Njau, S.; Tsatsakis, A.; Karakiulakis, G.; Papakonstantinou, E. Alterations in serum MMP and TIMP concentrations following chronic heroin abuse. Toxicol. Mech. Methods 2013, 23, 377–381. [Google Scholar] [CrossRef]
- Wang, Q.; Ishikawa, T.; Michiue, T.; Zhu, B.L.; Guan, D.W.; Maeda, H. Molecular pathology of brain matrix metalloproteases, claudin5, and aquaporins in forensic autopsy cases with special regard to methamphetamine intoxication. Int. J. Leg. Med. 2014, 128, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Stein, C. Opioid receptors. Annu. Rev. Med. 2016, 67, 433–451. [Google Scholar] [CrossRef]
- Kleber, H.D. Pharmacologic treatments for opioid dependence: Detoxification and maintenance options. Dialogues Clin. Neurosci. 2007, 9, 455–470. [Google Scholar] [CrossRef]
- Monwell, B.; Bülow, P.; Gerdner, A. Type of opioid dependence among patients seeking opioid substitution treatment: Are there differences in background and severity of problems? Subst. Abuse Treat. Prev. Policy 2016, 11, 23. [Google Scholar] [CrossRef]
- Cunha-Oliveira, T.; Rego, A.C.; Oliveira, C.R. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res. Rev. 2008, 58, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Lötsch, J. Opioid Metabolites. J. Pain Symptom Manag. 2005, 29, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Bisen, A.C.; Sanap, S.N.; Agrawal, S.; Biswas, A.; Bhatta, R.S. Chemical metabolite synthesis and profiling: Mimicking in vivo biotransformation reactions. Bioorganic Chem. 2023, 139, 106722. [Google Scholar] [CrossRef]
- Viola, T.W.; Orso, R.; Florian, L.F.; Garcia, M.G.; Gomes, M.G.S.; Mardini, E.M.; Niederauer, J.P.O.; Zaparte, A.; Grassi-Oliveira, R. Effects of substance use disorder on oxidative and antioxidative stress markers: A systematic review and meta-analysis. Addict. Biol. 2023, 28, e13254. [Google Scholar] [CrossRef] [PubMed]
Control | Alcohol | Alcohol Withdrawal | Narcotic | Narcotic Withdrawal | |
---|---|---|---|---|---|
MMP-9 ng/mL | 50.3 (49.7) ± 25.2 | 104.9 (88.7) ± 72.8 | 86.7 (61.3) ± 43.1 | 124.9 (102.1) ± 89.6 | 157.8 (131.6) ± 98.6 |
Alcohol L | Alcohol M | Alcohol H | |
---|---|---|---|
MMP-9 ng/mL | 100.3 (93.0) ± 59.6 | 102.9 (88.7) ± 67.5 | 115.3 (77.7) ± 99.4 |
Methadone | Buprenorphine | Methadone Withdrawal | Buprenorphine Withdrawal | Heroin Withdrawal | |
---|---|---|---|---|---|
MMP-9 ng/mL | 124.2 (119) ± 81.3 | 118 (89) ± 88 | 206 (189) ± 124.5 | 130 (131.2) ± 80 | 105.7 (115.4) ± 30 |
Alcohol and Narcotic | Alcohol Withdrawal and Narcotic Withdrawal | |
---|---|---|
MMP-9 ng/mL | 0.29 (are not significantly different p > 0.05) | 0.00016 (are significantly different p < 0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kartvelishvili, T.; Sapojnikova, N.; Asatiani, N.; Asanishvili, L.; Sokhadze, V.; Sichinava, N.; Chikovani, Z. Comparative Analysis of Blood MMP-9 Concentration in Alcohol- and Opioid-Addicted Patients. Diseases 2025, 13, 30. https://doi.org/10.3390/diseases13020030
Kartvelishvili T, Sapojnikova N, Asatiani N, Asanishvili L, Sokhadze V, Sichinava N, Chikovani Z. Comparative Analysis of Blood MMP-9 Concentration in Alcohol- and Opioid-Addicted Patients. Diseases. 2025; 13(2):30. https://doi.org/10.3390/diseases13020030
Chicago/Turabian StyleKartvelishvili, Tamar, Nelly Sapojnikova, Nino Asatiani, Lali Asanishvili, Victor Sokhadze, Nestan Sichinava, and Zaza Chikovani. 2025. "Comparative Analysis of Blood MMP-9 Concentration in Alcohol- and Opioid-Addicted Patients" Diseases 13, no. 2: 30. https://doi.org/10.3390/diseases13020030
APA StyleKartvelishvili, T., Sapojnikova, N., Asatiani, N., Asanishvili, L., Sokhadze, V., Sichinava, N., & Chikovani, Z. (2025). Comparative Analysis of Blood MMP-9 Concentration in Alcohol- and Opioid-Addicted Patients. Diseases, 13(2), 30. https://doi.org/10.3390/diseases13020030