Lifestyle and Biochemical Parameters That May Hamper Immune Responses in Pediatric Patients After Immunization with the BNT162b2 mRNA COVID-19 Vaccine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Assessment of SARS-CoV-2 Binding Antibody and Biochemical Parameters
2.3. Statistical Analysis
3. Results
3.1. Results of Humoral Immune Responses of Study Population Divided by BMI and Characteristics of Study Population
3.2. Characteristics of Study Population
3.3. Results of Biochemical Profile of Study Population
3.4. Results of Humoral Immune Responses of Study Population According to BMI, Age, and Gender
3.5. Impact of Smoke Exposure, BMI, FGIR, HBA1c, and Uric Acid on Humoral Immune Responses of Study Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Group of Children Divided by BMI & COVID-19 Disease History | ||||||
---|---|---|---|---|---|---|
Biochemical Parameters | Negative Disease History | Positive Disease History | ||||
Normal BMI | Overweight-Obese | p-Value | Normal BMI | Overweight-Obese | p-Value | |
HDL (mg/dl) mean (95% CI) a | 62.50 (56.81–68.19) | 50.89 (45.79–56.00) | 0.005 | 60.24 (55.86–64.62) | 58.31 (51.48–65.15) | 0.581 |
CRP (mg/l) mean rank b | 18.25 | 30.33 | 0.01 | 13.12 | 21.13 | 0.017 |
HBA1c (%) mean rank b | 18.96 | 28.05 | 0.021 | 15.12 | 19.00 | 0.261 |
Uric acid (mg/dl) mean (95% CI) c | 4.28 (3.92–4.64) | 5.13 (4.61–5.66) | 0.002 | 4.05 (3.57–4.54) | 4.54 (3.81–5.28) | 0.382 |
FGIR mean rank c | 29.94 | 14.33 | <0.001 | 20.88 | 12.88 | 0.017 |
Appendix B
Variables in the Equation | |||||
---|---|---|---|---|---|
B | p-Value | Exp (B) | 95% CI for EXP (B) | ||
Lower | Upper | ||||
BMI group | 0.518 | <0.001 | 1.679 | 1.303 | 2.164 |
Smoke exposure a | 0.122 | 0.876 | 1.130 | 0.245 | 5.202 |
COVID-19 disease prior to vaccination | 0.42 | 0.56 | 1.53 | 0.36 | 6.43 |
Gender | 0.379 | 0.612 | 1.461 | 0.337 | 6.328 |
Age | 0.581 | 0.516 | 1.787 | 0.310 | 10.311 |
KIDMED score b | −1.440 | 0.281 | 0.237 | 0.017 | 3.244 |
Physical activity c | −0.034 | 0.965 | 0.966 | 0.214 | 4.369 |
Constant | −12.029 | <0.001 | <0.001 |
References
- Bartsch, Y.C.; Denis, K.J.S.; Kaplonek, P.; Kang, J.; Lam, E.C.; Burns, M.D.; Farkas, E.J.; Davis, J.P.; Boribong, B.P.; Edlow, A.G.; et al. SARS-CoV-2 mRNA vaccination elicits robust antibody responses in children. Sci. Transl. Med. 2022, 14, eabn9237. [Google Scholar] [CrossRef] [PubMed]
- Höppner, J.; Maier, C.; Schlegtendal, A.; Hoffmann, A.; Petersmann, A.; Lücke, T.; Toepfner, N.; Brinkmann, F. Long-term effects of SARS-CoV-2 infection and vaccination in a population-based pediatric cohort. Sci. Rep. 2025, 15, 2921. [Google Scholar] [CrossRef]
- Messiah, S.E.; Talebi, Y.; Swartz, M.D.; Sabharwal, R.; Han, H.; Bergqvist, E.; Kohl, H.W.; Valerio-Shewmaker, M.; DeSantis, S.M.; Yaseen, A.; et al. Long-term immune response to SARS-CoV-2 infection and vaccination in children and adolescents. Pediatr. Res. 2024, 96, 525–534. [Google Scholar] [CrossRef]
- Pivonello, C.; Negri, M.; Pivonello, R.; Colao, A. How May Obesity-Induced Oxidative Stress Affect the Outcome of COVID-19 Vaccines? Lesson Learned from the Infection. Stresses 2021, 1, 119–122. [Google Scholar] [CrossRef]
- OECD. Health at a Glance 2019: OECD Indicators; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- OECD. Health at a Glance 2017: OECD Indicators; OECD Publishing: Paris, France, 2017. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Shin, M.-H.; Kweon, S.-S.; Choi, J.-S.; Rhee, J.-A.; Ahn, H.-R.; Yun, W.-J.; Ryu, S.-Y.; Kim, B.-H.; Nam, H.-S.; et al. Cumulative smoking exposure, duration of smoking cessation, and peripheral arterial disease in middle-aged and older Korean men. BMC Public Health 2011, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Serra-Majem, L.; Ribas, L.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Nutrient adequacy and Mediterranean Diet in Spanish school children and adolescents. Eur. J. Clin. Nutr. 2003, 57 (Suppl. 1), S35–S39. [Google Scholar] [CrossRef]
- Paruthi, S.; Brooks, L.J.; D’Ambrosio, C.; Hall, W.A.; Kotagal, S.; Lloyd, R.M.; Malow, B.A.; Maski, K.; Nichols, C.; Quan, S.F.; et al. Recommended amount of sleep for pediatric populations: A consensus statement of the American academy of sleep medicine. J. Clin. Sleep Med. 2016, 12, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Hampl, S.E.; Hassink, S.G.; Skinner, A.C.; Armstrong, S.C.; Barlow, S.E.; Bolling, C.F.; Avila Edwards, K.C.; Eneli, I.; Hamre, R.; Joseph, M.M.; et al. Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents with Obesity. Pediatrics 2023, 151, e2022060640. [Google Scholar] [CrossRef]
- Perkmann, T.; Perkmann-Nagele, N.; Koller, T.; Mucher, P.; Radakovics, A.; Marculescu, R.; Wolzt, M.; Wagner, O.F.; Binder, C.J.; Haslacher, H. Anti-Spike Protein Assays to Determine SARS-CoV-2 Antibody Levels: A Comparative Evaluation. Microbiol. Spectr. 2021, 9, e0024721. [Google Scholar] [CrossRef]
- Mink, S.; Fraunberger, P. Anti-SARS-CoV-2 Antibody Testing: Role and Indications. J. Clin. Med. 2023, 12, 7575. [Google Scholar] [CrossRef] [PubMed]
- Letelier, P.; Encina, N.; Morales, P.; Riffo, A.; Silva, H.; Riquelme, I.; Guzmán, N. Role of Biochemical Markers in the Monitoring of COVID-19 Patients. Crit. Rev. Clin. Lab. Sci. 2021, 58, 247–265. [Google Scholar] [CrossRef]
- Assal, H.H.; Abdel-hamid, H.M.; Magdy, S.; Salah, M.; Ali, A.; Elkaffas, R.H.; Sabry, I.M. Predictors of severity and mortality in COVID-19 patients. Egypt J. Bronchol. 2022, 16, 18. [Google Scholar] [CrossRef]
- Ballerini, M.G.; Bergadá, I.; E Rodríguez, M.; Keselman, A.; Bengolea, V.S.; Pipman, V.; Domené, H.M.; Jasper, H.G.; Ropelato, M.G. Insulin level and insulin sensitivity indices among healthy children and adolescents. Arch. Argent. Pediatr. 2016, 114, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Jeyanathan, M.; Afkhami, S.; Smaill, F.; Miller, M.S.; Lichty, B.D.; Xing, Z. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 2020, 20, 615–632. [Google Scholar] [CrossRef]
- Sahin, U.; Muik, A.; Vogler, I.; Derhovanessian, E.; Kranz, L.M.; Vormehr, M.; Quandt, J.; Bidmon, N.; Ulges, A.; Baum, A.; et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 2021, 595, 572–577. [Google Scholar] [CrossRef]
- Frenck, R.W., Jr.; Klein, N.P.; Kitchin, N.; Gurtman, A.; Absalon, J.; Lockhart, S.; Perez, J.L.; Walter, E.B.; Senders, S.; Bailey, R.; et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 COVID-19 Vaccine in Adolescents. N. Engl. J. Med. 2021, 385, 239–250. [Google Scholar] [CrossRef]
- Ali, K.; Berman, G.; Zhou, H.; Deng, W.; Faughnan, V.; Coronado-Voges, M.; Ding, B.; Dooley, J.; Girard, B.; Hillebrand, W.; et al. Evaluation of mRNA-1273 SARS-CoV-2 Vaccine in Adolescents. N. Engl. J. Med. 2021, 385, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Padoan, A.; Dall’Olmo, L.; della Rocca, F.; Barbaro, F.; Cosma, C.; Basso, D.; Cattelan, A.; Cianci, V.; Plebani, M. Antibody response to first and second dose of BNT162b2 in a cohort of characterized healthcare workers. Clin. Chim. Acta 2021, 519, 60–63. [Google Scholar] [CrossRef]
- Krammer, F.; Srivastava, K.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-González, M.C.; Bielak, D.A.; Carreño, J.M.; Chernet, R.L.; et al. Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 mRNA Vaccine. N. Engl. J. Med. 2021, 384, 1372–1374. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Flight, K.E.; Higham, S.L.; Wang, Z.; Pierce, B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021, 21, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Kurtovic, L.; Beeson, J.G. Complement Factors in COVID-19 Therapeutics and Vaccines. Trends Immunol. 2021, 42, 94–103. [Google Scholar] [CrossRef]
- Jay, C.; Adland, E.; Csala, A.; Lim, N.; Longet, S.; Ogbe, A.; Ratcliff, J.; Sampson, O.; Thompson, C.P.; Turtle, L.; et al. Age- and sex-specific differences in immune responses to BNT162b2 COVID-19 and live-attenuated influenza vaccines in UK adolescents. Front. Immunol. 2023, 14, 1248630. [Google Scholar] [CrossRef]
- Spinelli, A.; Buoncristiano, M.; Kovacs, V.A.; Yngve, A.; Spiroski, I.; Obreja, G.; Starc, G.; Pérez, N.; Rito, A.I.; Kunešová, M.; et al. Prevalence of Severe Obesity among Primary School Children in 21 European Countries. Obes. Facts 2019, 12, 244–258. [Google Scholar] [CrossRef]
- Brambilla, I.; Delle Cave, F.; Guarracino, C.; De Filippo, M.; Votto, M.; Licari, A.; Pistone, C.; Tondina, E. Obesity and COVID-19 in children and adolescents: A double pandemic. Acta Biomed. 2022, 93, e2022195. [Google Scholar] [CrossRef]
- Sheridan, P.A.; Paich, H.A.; Handy, J.; Karlsson, E.A.; Hudgens, M.G.; Sammon, A.B.; Holland, L.A.; Weir, S.; Noah, T.L.; Beck, M.A. Obesity is associated with impaired immune response to influenza vaccination in humans. Int. J. Obes. 2012, 36, 1072–1077. [Google Scholar] [CrossRef]
- Fan, W.; Chen, X.-F.; Shen, C.; Guo, Z.-R.; Dong, C. Hepatitis B vaccine response in obesity: A meta-analysis. Vaccine 2016, 34, 4835–4841. [Google Scholar] [CrossRef]
- Eliakim, A.; Swindt, C.; Zaldivar, F.; Casali, P.; Cooper, D.M. Reduced tetanus antibody titers in overweight children. Autoimmunity 2006, 39, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Pellini, R.; Venuti, A.; Pimpinelli, F.; Abril, E.; Blandino, G.; Campo, F.; Conti, L.; De Virgilio, A.; De Marco, F.; Di Domenico, E.G.; et al. Initial observations on age, gender, BMI and hypertension in antibody responses to SARS-CoV-2 BNT162b2 vaccine. EClinicalMedicine 2021, 36, 100928. [Google Scholar] [CrossRef]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [PubMed]
- Bakadia, B.M.; Boni, B.O.O.; Ahmed, A.A.Q.; Yang, G. The impact of oxidative stress damage induced by the environmental stressors on COVID-19. Life Sci. 2021, 264, 118653. [Google Scholar] [CrossRef]
- Sen, S.; Chakraborty, R.; Kalita, P.; Pathak, M.P. Diabetes mellitus and COVID-19: Understanding the association in light of current evidence. World J. Clin. Cases 2021, 9, 8327–8339. [Google Scholar] [CrossRef]
- Ruiz-Ramie, J.J.; Barber, J.L.; Sarzynski, M.A. Effects of exercise on HDL functionality. Curr. Opin. Infect. Dis. 2019, 30, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Tsushima, Y.; Nishizawa, H.; Tochino, Y.; Nakatsuji, H.; Sekimoto, R.; Nagao, H.; Shirakura, T.; Kato, K.; Imaizumi, K.; Takahashi, H.; et al. Uric acid secretion from adipose tissue and its increase in obesity. J. Biol. Chem. 2013, 288, 27138–27149. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.J.; Tzameli, I.; Pissios, P.; Rovira, I.; Gavrilova, O.; Ohtsubo, T.; Chen, Z.; Finkel, T.; Flier, J.S.; Friedman, J.M. Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab. 2007, 5, 115–128. [Google Scholar] [CrossRef]
- Baldwin, W.; McRae, S.; Marek, G.; Wymer, D.; Pannu, V.; Baylis, C.; Johnson, R.J.; Sautin, Y.Y. Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes 2011, 60, 1258–1269. [Google Scholar] [CrossRef]
- Morales, F.; Montserrat-de la Paz, S.; Leon, M.J.; Rivero-Pino, F. Effects of Malnutrition on the Immune System and Infection and the Role of Nutritional Strategies Regarding Improvements in Children’s Health Status: A Literature Review. Nutrients 2023, 16, 1. [Google Scholar] [CrossRef]
- Wilcox, W. Abnormal serum uric acid levels in children. J. Pediatr. 1996, 128, 731–741. [Google Scholar] [CrossRef]
- Kubota, M. Hyperuricemia in Children and Adolescents: Present Knowledge and Future Directions. J. Nutr. Metab. 2019, 2019, 3480718. [Google Scholar] [CrossRef]
- Carsetti, R.; Quintarelli, C.; Quinti, I.; Mortari, E.P.; Zumla, A.; Ippolito, G.; Locatelli, F. The immune system of children: The key to understanding SARS-CoV-2 susceptibility? Lancet Child Adolesc. Health 2020, 4, 414–416. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, M.M.; Zeitler, P.S. Insulin Resistance of Puberty. Curr. Diabetes Rep. 2016, 16, 64. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Marriott, I.; Fish, E.N. Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 9–15. [Google Scholar] [CrossRef]
- Srivastava, P.; Trinh, T.-A.; Hallam, K.T.; Karimi, L.; Hollingsworth, B. The links between parental smoking and childhood obesity: Data of the longitudinal study of Australian children. BMC Public Health 2024, 24, 68. [Google Scholar] [CrossRef]
- Ferrara, P.; Ponticelli, D.; Agüero, F.; Caci, G.; Vitale, A.; Borrelli, M.; Schiavone, B.; Antonazzo, I.; Mantovani, L.; Tomaselli, V.; et al. Does smoking have an impact on the immunological response to COVID-19 vaccines? Evidence from the VASCO study and need for further studies. Public Health 2022, 203, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.M.; Çolak, Y.; Ellervik, C.; Hasselbalch, H.C.; Bojesen, S.E.; Nordestgaard, B.G. Smoking and Increased White and Red Blood Cells. Arter. Thromb. Vasc. Biol. 2019, 39, 965–977. [Google Scholar] [CrossRef]
- Vardavas, C.I.; Plada, M.; Tzatzarakis, M.; Marcos, A.; Warnberg, J.; Gomez-Martinez, S.; Breidenassel, C.; Gonzalez-Gross, M.; Tsatsakis, A.M.; Saris, W.H.; et al. Passive smoking alters circulating naïve/memory lymphocyte T-cell subpopulations in children. Pediatr. Allergy Immunol. 2010, 21, 1171–1178. [Google Scholar] [CrossRef]
- Qiu, F.; Liang, C.-L.; Liu, H.; Zeng, Y.-Q.; Hou, S.; Huang, S.; Lai, X.; Dai, Z. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017, 8, 268–284. [Google Scholar] [CrossRef]
Number | Anti-SARS-CoV-2 IgG ELISA OD Ratio | SARS-CoV-2 Neutralizing AB (%) | |||
---|---|---|---|---|---|
Sampling | T0 Mean (95%CI) | T1 Mean (95%CI) | T0 Median (IQR) | T1 Median (IQR) | |
Negative disease history prior to immunization | |||||
BMI | |||||
Normalweight | 26 | 0.09 (0.06–0.12) | 2.55 (2.50–2.60) | 2.60 (1.67) | 97.51 (2.22) |
Overweight–obese | 20 | 0.08 (0.45–0.12) | 2.42 (2.31–2.52) | 2.43 (1.23) | 96.34 (2.28) |
p-value | 0.599 | 0.028 | 0.871 | 0.008 | |
Positive disease history prior to immunization | |||||
BMI | |||||
Normalweight | 17 | 1.50 (1.22–1.78) | 2.73 (2.66–2.80) | 50.92 (44.16) | 97.8 (1.55) |
Overweight–obese | 16 | 1.07 (0.79–1.36) | 2.57 (2.44–2.70) | 15.45 (36.86) | 96.93 (3.96) |
p-value | 0.026 | 0.032 | <0.001 | 0.067 |
BMI Group | p-Value | ||||
---|---|---|---|---|---|
Normal-Weight | Overweight–Obese | ||||
Gender | Female | Number (%) | 22 (55) | 18 (45) | 0.921 |
Age (years) | 5–11 | Number (%) | 15 (51.7) | 14 (48.3) | 0.713 |
12–18 | Number (%) | 28 (56) | 22 (44) | ||
Tanner I-II | Female | Number (%) | 8 (50) | 8 (50) | 0.604 |
Tanner III-V | Female | Number (%) | 14 (58.3) | 10 (41.7) | |
Tanner I-II | Male | Number (%) | 7 (53.8) | 6 (46.2) | 0.987 |
Tanner III-V | Male | Number (%) | 14 (53.8) | 12 (46.2) | |
Smoking Score a | 1 | Number (%) | 29 (72.5) | 11 (27.5) | <0.001 |
0 | Number (%) | 11 (28.2) | 28 (71.8) | ||
Exercise Score b | 0 | Number (%) | 14 (43.8) | 18 (56.3) | 0.212 |
1 | Number (%) | 29 (61.7) | 18 (38.3) | ||
Kidmed Score c | Poor (0–3) | Number (%) | 6 (50) | 6 (50) | 0.751 |
Moderate (4–7) | Number (%) | 24 (58.5) | 41 (41.5) | ||
Good (≥8) | Number (%) | 13 (50) | 13 (50) | ||
Hematological parameters | WBC (103/μL) median (IQR) | 6.70 (3) | 7.55 (2.75) | 0.509 | |
RBC (106/μL) median (IQR) | 4.58 (0.47) | 4.73 (0.46) | 0.817 | ||
HGB (g/dL) mean (95% CI) | 13.2 (12.9–13.5) | 13.4 (12.9–13.8) | 0.429 | ||
PLT (103/μL) mean (95% CI) | 261 (236–286) | 271 (246–296) | 0.574 | ||
ESR (mm/hr) median (IQR) | 8 (5) | 8 (6) | 0.350 | ||
Biochemical parameters | TCHOL (mg/dL) mean (95% CI) d | 150.19 (144.65–155.72) | 150.23 (142.41–158.05) | 0.924 | |
TG (mg/dL) mean rank d | 33.73 | 36.59 | 0.135 | ||
LDL (mg/dL) mean (95% CI) d | 81.82 (76.54–87.11) | 88.89 (81.57–96.20) | 0.269 | ||
HDL (mg/dL) mean (95% CI) d | 61.60 (57.87–65.34) | 54.29 (50.13–58.44) | 0.006 | ||
Lp(a) (mg/dL) mean rank d | 38.23 | 41.06 | 0.581 | ||
CRP (mg/l) mean rank e | 30.79 | 51.00 | <0.001 | ||
HBA1c (%) mean rank e | 33.36 | 46.67 | 0.006 | ||
Uric acid (mg/dL) mean (95% CI) f | 4.19 (3.91–4.47) | 4.85 (4.42–5.28) | 0.009 | ||
FGIR mean rank f | 50.51 | 26.65 | <0.001 |
COVID-19 Disease History Prior to Vaccination | ||||||
---|---|---|---|---|---|---|
Dependent Variables | Independent Variables | Negative | Independent Variables | Positive | ||
Beta (95% CI) | p-Value | Beta (95% CI) | p-Value | |||
T0 anti-SARS-CoV-2 IgG | - | - | - | Smoke exposure | −0.55 (−0.91;−0.20) | 0.004 (R2: 0.22) |
Τ0 SARS-CoV-2 Neutralizing (%) | - | - | - | Smoke exposure | −25.61(−42.77;−8.44) | 0.005 (R2: 0.21) |
T1 anti-SARS-CoV-2 IgG | BMI | −0.02 (−0.03; −0.01) | 0.002 (R2: 0.19) | BMI | −0.03 (−0.04; −0.02) | <0.001 (R2: 0.45) |
Uric acid | −0.06 (−0.114; −0.011) | 0.018 (R2: 0.11) | FGIR | −0.24 (−0.38; −0.11) | 0.001 (R2: 0.44) | |
HBA1c | −0.17 (−0.33; −0.02) | 0.027 (R2: 0.44) | ||||
Τ1 SARS-CoV-2 Neutralizing (%) | BMI | −0.17 (−0.25; −0.11) | <0.001 (R2: 0.30) | BMI | −0.15 (−0.26; −0.04) | 0.009 (R2: 0.30) |
FGIR | −1.52 (−2.62; −0.42) | 0.008 (R2: 0.35) | ||||
Uric acid | −0.59 (−0.95; −0.23) | 0.002 (R2: 0.19) | HBA1c | −1.36 (−2.63; −0.10) | 0.038 (R2: 0.35) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damianaki, A.; Marmarinos, A.; Avgeris, M.; Gourgiotis, D.; Vlachopapadopoulou, E.-A.; Charakida, M.; Tsolia, M.; Kossiva, L. Lifestyle and Biochemical Parameters That May Hamper Immune Responses in Pediatric Patients After Immunization with the BNT162b2 mRNA COVID-19 Vaccine. Diseases 2025, 13, 78. https://doi.org/10.3390/diseases13030078
Damianaki A, Marmarinos A, Avgeris M, Gourgiotis D, Vlachopapadopoulou E-A, Charakida M, Tsolia M, Kossiva L. Lifestyle and Biochemical Parameters That May Hamper Immune Responses in Pediatric Patients After Immunization with the BNT162b2 mRNA COVID-19 Vaccine. Diseases. 2025; 13(3):78. https://doi.org/10.3390/diseases13030078
Chicago/Turabian StyleDamianaki, Anthie, Antonios Marmarinos, Margaritis Avgeris, Dimitrios Gourgiotis, Elpis-Athina Vlachopapadopoulou, Marietta Charakida, Maria Tsolia, and Lydia Kossiva. 2025. "Lifestyle and Biochemical Parameters That May Hamper Immune Responses in Pediatric Patients After Immunization with the BNT162b2 mRNA COVID-19 Vaccine" Diseases 13, no. 3: 78. https://doi.org/10.3390/diseases13030078
APA StyleDamianaki, A., Marmarinos, A., Avgeris, M., Gourgiotis, D., Vlachopapadopoulou, E.-A., Charakida, M., Tsolia, M., & Kossiva, L. (2025). Lifestyle and Biochemical Parameters That May Hamper Immune Responses in Pediatric Patients After Immunization with the BNT162b2 mRNA COVID-19 Vaccine. Diseases, 13(3), 78. https://doi.org/10.3390/diseases13030078