Prevalence and Antimicrobial Resistance of Typhoid Fever in Ghana: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection Process
2.3. Eligibility Criteria
2.3.1. Inclusion Criteria
- Study design: Cross-sectional, cohort, or case-control studies reporting original data.
- Participants: Studies conducted among the general population or specific subgroups (e.g., children, communities, etc.) in Ghana.
- Outcome: Studies reporting the prevalence of typhoid fever.
- Diagnosis: Studies utilizing bacteriological culture (blood/stool sample) or serological Widal test to detect S. Typhi or S. Paratyphi.
- Language: Studies published in English.
- Date: Studies published between 1 January 2004 and 16 August 2024.
2.3.2. Exclusion Criteria
- Study design: Reviews, case reports, editorials, abstracts without full text
- Participants: Studies conducted outside Ghana and not involving human participants
- Outcome: Studies reporting outcomes such as AMR patterns without typhoid fever prevalence
- Diagnosis: Studies relying solely on clinical diagnosis or not differentiating typhoid from other fevers to ensure diagnostic accuracy and prevent overestimating prevalence due to misclassification
- Language: Non-English publications
- Date: Studies published before 1 January 2004
2.4. Data Extraction
- Bibliographic details: Author(s), publication year, title
- Study characteristics: Location, setting (urban/rural), period, design
- Population characteristics: Sample size, age groups
- Sampling and recruitment details
- Laboratory methods: Diagnostic test(s), case definition
- Outcomes of interest: Reported typhoid fever prevalence, incidence rates
- Antibiotics tested against Salmonella isolates
- Resistant/sensitive percentages for first-line drugs
- Multi drug-resistant (MDR)/Extensively drug-resistant (XDR) patterns
2.5. Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Search Results
3.2. Characteristics of the Included Studies
3.3. Pooled Prevalence of Typhoid Fever
3.4. Prevalence of Typhoid Fever Based on the Type of Study Participants
3.5. Prevalence of Typhoid Fever Based on Culture Diagnosis Method
3.6. Quality of Included Studies
3.7. Antimicrobial Susceptibility
3.8. Meta-Regression
3.9. Sensitivity Analysis
4. Discussion
Strengths and Limitations
5. Conclusions
Recommendation
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Antillón, M.; Warren, J.L.; Crawford, F.W.; Weinberger, D.M.; Kürüm, E.; Pak, G.D.; Marks, F.; Pitzer, V.E. The burden of typhoid fever in low- and middle-income countries: A meta-regression approach. PLoS Negl. Trop. Dis. 2017, 11, e0005376. [Google Scholar] [CrossRef] [PubMed]
- Gashaw, T.; Jambo, A. Typhoid in Less Developed Countries: A Major Public Health Concern. In Hygiene and Health in Developing Countries; Turk, S.Š., Rozman, U., Eds.; IntechOpen: Rijeka, Croatia, 2022; p. Ch.3. [Google Scholar] [CrossRef]
- Kim, C.L.; Cruz Espinoza, L.M.; Vannice, K.S.; Tadesse, B.T.; Owusu-Dabo, E.; Rakotozandrindrainy, R.; Jani, I.V.; Teferi, M.; Bassiahi Soura, A.; Lunguya, O.; et al. The Burden of Typhoid Fever in Sub-Saharan Africa: A Perspective. Res. Rep. Trop. Med. 2022, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zerfu, B.; Medhin, G.; Mamo, G.; Getahun, G.; Tschopp, R.; Legesse, M. Community-based prevalence of typhoid fever, typhus, brucellosis and malaria among symptomatic individuals in Afar Region, Ethiopia. PLoS Negl. Trop. Dis. 2018, 12, e0006749. [Google Scholar] [CrossRef]
- Khan, M.; Shamim, S. Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi. Microorganisms 2022, 10, 2006. [Google Scholar] [CrossRef]
- Hancuh, M.; Walldorf, J.; Minta, A.A.; Tevi-Benissan, C.; Christian, K.A.; Nedelec, Y.; Heitzinger, K.; Mikoleit, M.; Tiffany, A.; Bentsi-Enchill, A.D.; et al. Typhoid Fever Surveillance, Incidence Estimates, and Progress Toward Typhoid Conjugate Vaccine Introduction—Worldwide, 2018–2022. Morb. Mortal. Wkly. Rep. 2023, 72, 171. [Google Scholar] [CrossRef]
- Kim, J.-H.; Im, J.; Parajulee, P.; Holm, M.; Cruz Espinoza, L.M.; Poudyal, N.; Mogeni, O.D.; Marks, F. A Systematic Review of Typhoid Fever Occurrence in Africa. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 69 (Suppl. 6), S492–S498. [Google Scholar] [CrossRef]
- Brockett, S.; Wolfe, M.K.; Hamot, A.; Appiah, G.D.; Mintz, E.D.; Lantagne, D. Associations among Water, Sanitation, and Hygiene, and Food Exposures and Typhoid Fever in Case-Control Studies: A Systematic Review and Meta-Analysis. Am. J. Trop. Med. Hyg. 2020, 103, 1020–1031. [Google Scholar] [CrossRef]
- Saana, S.; Adu, F.; Gbedema, S.; Duredoh, F. Antibiotic Susceptibility Patterns of Salmonella Typhi Among Patients in Three Hospitals in Kumasi, Ghana. Int. J. Pharm. Sci. Res. 2014, 5, 855–860. [Google Scholar] [CrossRef]
- Fusheini, A.; Gyawu, S.K. Prevalence of Typhoid and Paratyphoid Fever in the Hohoe Municipality of the Volta Region, Ghana: A Five-Year Retrospective Trend Analysis. Ann. Glob. Health 2020, 86, 111. [Google Scholar] [CrossRef]
- Domfeh, S.A.; Amoah, M.; Sefa, L. Comparative study of Widal test to stool culture for the diagnosis of suspected typhoid fever: A study in a primary health centre, Ghana. Microbes Infect. Dis. 2023, 4, 1409–1415. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Acquah, S.E.K.; Quaye, L.; Sagoe, K.; Ziem, J.B.; Bromberger, P.I.; Amponsem, A.A. Susceptibility of bacterial etiological agents to commonly-used antimicrobial agents in children with sepsis at the Tamale Teaching Hospital. BMC Infect. Dis. 2013, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Al-Emran, H.; Krumkamp, R.; Dekker, D.; Eibach, D.; Aaby, P.; Adu-Sarkodie, Y.; Ali, M.; Rubach, M.; Bjerregaard-Andersen, M.; Crump, J.; et al. Validation and Identification of Invasive Salmonella Serotypes in Sub-Saharan Africa by Multiplex Polymerase Chain Reaction. Clin. Infect. Dis. 2016, 62, S80–S82. [Google Scholar] [CrossRef] [PubMed]
- Anabire, N.G.; Aryee, P.A.; Helegbe, G.K. Hematological abnormalities in patients with malaria and typhoid in Tamale Metropolis of Ghana. BMC Res. Notes 2018, 11, 353. [Google Scholar] [CrossRef] [PubMed]
- Birkhold, M.; Datta, S.; Pak, G.D.; Im, J.; Ogundoyin, O.O.; Olulana, D.I.; Lawal, T.A.; Afuwape, O.O.; Kehinde, A.; Phoba, M.-F.; et al. Characterization of Typhoid Intestinal Perforation in Africa: Results From the Severe Typhoid Fever Surveillance in Africa Program. Open Forum Infect. Dis. 2023, 10 (Suppl. 1), S67–S73. [Google Scholar] [CrossRef]
- Eibach, D.; Campos, C.; Krumkamp, R.; Al-Emran, H.; Dekker, D.; Boahen, K.; Kreuels, B.; Adu-Sarkodie, Y.; Aepfelbacher, M.; Park, S.; et al. Extended spectrum beta-lactamase producing Enterobacteriaceae causing bloodstream infections in rural Ghana, 2007–2012. Int. J. Med. Microbiol. 2016, 306, 249–254. [Google Scholar] [CrossRef]
- Eibach, D.; Al-Emran, H.; Dekker, D.; Krumkamp, R.; Adu-Sarkodie, Y.; Espinoza, L.; Ehmen, C.; Boahen, K.; Heisig, P.; Im, J.; et al. The Emergence of Reduced Ciprofloxacin Susceptibility in Salmonella enterica Causing Bloodstream Infections in Rural Ghana. Clin. Infect. Dis. 2016, 62, S32–S36. [Google Scholar] [CrossRef]
- Espinoza, L.; Nichols, C.; Adu-Sarkodie, Y.; Al-Emran, H.; Baker, S.; Clemens, J.; Dekker, D.; Eibach, D.; Krumkamp, R.; Boahen, K.; et al. Variations of Invasive Salmonella Infections by Population Size in Asante Akim North Municipal, Ghana. Clin. Infect. Dis. 2016, 62, S17–S22. [Google Scholar] [CrossRef]
- Feglo, P.K.; Frimpong, E.H.; Essel-Ahun, M. Salmonellae carrier status of food vendors in Kumasi, Ghana. East Afr. Med. J. 2004, 81, 358–361. [Google Scholar] [CrossRef]
- Gross, U.; Amuzu, S.K.; de Ciman, R.; Kassimova, I.; Gross, L.; Rabsch, W.; Rosenberg, U.; Schulze, M.; Stich, A.; Zimmermann, O. Bacteremia and antimicrobial drug resistance over time, Ghana. Emerg. Infect. Dis. 2011, 17, 1879–1882. [Google Scholar] [CrossRef]
- Koffuor, G.A.; Abruquah, A.A.; Audu, R.; Amoah, J.; Agwah, D. Patronage and perceived efficacy of herbal antityphoid preparations, and anti-salmonella activity of a herbal preparation used in Ghana. J. Appl. Pharm. Sci. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Labi, A.K.; Obeng-Nkrumah, N.; Addison, N.O.; Donkor, E.S. Salmonella blood stream infections in a tertiary care setting in Ghana. BMC Infect. Dis. 2014, 14, 3857. [Google Scholar] [CrossRef] [PubMed]
- Marks, F.; Adu-Sarkodie, Y.; Hünger, F.; Sarpong, N.; Ekuban, S.; Agyekum, A.; Nkrumah, B.; Schwarz, N.G.; Favorov, M.O.; Meyer, C.G.; et al. Typhoid fever among children, Ghana. Emerg. Infect. Dis. 2010, 16, 1796–1797. [Google Scholar] [CrossRef] [PubMed]
- Marks, F.; von Kalckreuth, V.; Aaby, P.; Adu-Sarkodie, Y.; El Tayeb, M.; Ali, M.; Aseffa, A.; Baker, S.; Biggs, H.; Bjerregaard-Andersen, M.; et al. Incidence of invasive salmonella disease in sub-Saharan Africa: A multicentre population-based surveillance study. Lancet Glob. Health 2017, 5, E310–E323. [Google Scholar] [CrossRef] [PubMed]
- Marks, F.; Im, J.; Park, S.E.; Pak, G.D.; Jeon, H.J.; Wandji Nana, L.R.; Phoba, M.-F.; Mbuyi-Kalonji, L.; Mogeni, O.D.; Yeshitela, B.; et al. Incidence of typhoid fever in Burkina Faso, Democratic Republic of the Congo, Ethiopia, Ghana, Madagascar, and Nigeria (the Severe Typhoid in Africa programme): A population-based study. Lancet Glob. Health 2024, 12, e599–e610. [Google Scholar] [CrossRef]
- Newman, M.J.; Frimpong, E.; Donkor, E.S.; Opintan, J.A.; Asamoah-Adu, A. Resistance to antimicrobial drugs in Ghana. Infect. Drug Resist. 2011, 4, 215–220. [Google Scholar] [CrossRef]
- Nielsen, M.V.; Sarpong, N.; Krumkamp, R.; Dekker, D.; Loag, W.; Amemasor, S.; Agyekum, A.; Marks, F.; Huenger, F.; Krefis, A.C.; et al. Incidence and characteristics of bacteremia among children in rural Ghana. PLoS ONE 2012, 7, e44063. [Google Scholar] [CrossRef]
- Panzner, U.; Mogeni, O.D.; Adu-Sarkodie, Y.; Toy, T.; Jeon, H.J.; Pak, G.D.; Park, S.E.; Enuameh, Y.; Owusu-Dabo, E.; Van Tan, T.; et al. Detection of Salmonella Typhi nucleic acid by RT-PCR and anti-HlyE, -CdtB, -PilL, and -Vi IgM by ELISA at sites in Ghana, Madagascar and Ethiopia. BMC Infect. Dis. 2022, 22, 766. [Google Scholar] [CrossRef]
- Rufai, T.; Aninagyei, E.; Akuffo, K.O.; Ayin, C.T.-M.; Nortey, P.; Quansah, R.; Cudjoe, F.S.; Tei-Maya, E.; Osei Duah Junior, I.; Danso-Appiah, A. Malaria and typhoid fever among patients presenting with febrile illnesses in Ga West Municipality, Ghana. PLoS ONE 2023, 18, e0267528. [Google Scholar] [CrossRef]
- Sothmann, P.; Krumkamp, R.; Kreuels, B.; Sarpong, N.; Frank, C.; Ehlkes, L.; Fobil, J.; Gyau, K.; Jaeger, A.; Bosu, B.; et al. Urbanicity and Paediatric Bacteraemia in Ghana-A Case-Control Study within a Rural-Urban Transition Zone. PLoS ONE 2015, 10, e0139433. [Google Scholar] [CrossRef]
- Munn, Z.; Moola, S.; Lisy, K.; Riitano, D.; Tufanaru, C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. JBI Evid. Implement. 2015, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Lamy, B.; Dargère, S.; Arendrup, M.C.; Parienti, J.-J.; Tattevin, P. How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections? A State-of-the Art. Front. Microbiol. 2016, 7, 697. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Cho, S.Y.; Hwang, H.S.H.; Ryu, J.Y.; Lee, J.; Song, I.D.; Kim, B.J.; Kim, J.W.; Chang, S.K.; Choi, C.H. Diagnostic yield of stool culture and predictive factors for positive culture in patients with diarrheal illness. Medicine 2017, 96, e7641. [Google Scholar] [CrossRef] [PubMed]
- Adabara, N.U.; Ezugwu, B.U.; Momojimoh, A.; Madzu, A.; Hashiimu, Z.; Damisa, D. The Prevalence and Antibiotic Susceptibility Pattern of Salmonella typhi among Patients Attending a Military Hospital in Minna, Nigeria. Adv. Prev. Med. 2012, 2012, 875419. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S. Typhoid Fever: An Emerging Global Threat. Int. J. Prim. Crit. Care 2023, 1, 1–7. [Google Scholar] [CrossRef]
- Crump, J.A. Progress in Typhoid Fever Epidemiology. Clin. Infect. Dis. 2019, 68 (Suppl. 1), S4–S9. [Google Scholar] [CrossRef]
- Uzzell, C.B.; Abraham, D.; Rigby, J.; Troman, C.M.; Nair, S.; Elviss, N.; Kathiresan, L.; Srinivasan, R.; Balaji, V.; Zhou, N.A.; et al. Environmental Surveillance for Salmonella Typhi and its Association With Typhoid Fever Incidence in India and Malawi. J. Infect. Dis. 2024, 229, 979–987. [Google Scholar] [CrossRef]
- Teferi, M.Y.; El-Khatib, Z.; Alemayehu, E.A.; Adane, H.T.; Andualem, A.T.; Hailesilassie, Y.A.; Kebede, A.S.; Asamoah, B.O.; Boltena, M.T.; Shargie, M.B. Prevalence and antimicrobial susceptibility level of typhoid fever in Ethiopia: A systematic review and meta-analysis. Prev. Med. Rep. 2022, 25, 101670. [Google Scholar] [CrossRef]
- Achonduh-Atijegbe, O.A.; Mfuh, K.O.; Mbange, A.H.E.; Chedjou, J.P.; Taylor, D.W.; Nerurkar, V.R.; Mbacham, W.F.; Leke, R. Prevalence of malaria, typhoid, toxoplasmosis and rubella among febrile children in Cameroon. BMC Infect. Dis. 2016, 16, 658. [Google Scholar] [CrossRef]
- Akinyemi, K.O.; Oyefolu, A.O.B.; Mutiu, W.B.; Iwalokun, B.A.; Ayeni, E.S.; Ajose, S.O.; Obaro, S.K. Typhoid Fever: Tracking the Trend in Nigeria. Am. J. Trop. Med. Hyg. 2018, 99 (Suppl. 3), 41–47. [Google Scholar] [CrossRef]
- Muche, G.; Tesfaw, A.; Bayou, F.D. Prevalence of typhoid fever and its associated factors among febrile patients visiting Arerti Primary Hospital, Amhara Region, north east Ethiopia. Front. Public Health 2024, 12, 1357131. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.M.; Binnicker, M.J.; Campbell, S.; Carroll, K.C.; Chapin, K.C.; Gilligan, P.H.; Gonzalez, M.D.; Jerris, R.C.; Kehl, S.C.; Patel, R.; et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiologya. Clin. Infect. Dis. 2018, 67, e1–e94. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.R.; Ryan, E.T. Diagnostics for invasive Salmonella infections: Current challenges and future directions. Vaccine 2015, 33, C8–C15. [Google Scholar] [CrossRef] [PubMed]
- Gandra, S.; Alvarez-Uria, G.; Turner, P.; Joshi, J.; Limmathurotsakul, D.; van Doorn, H.R. Antimicrobial Resistance Surveillance in Low- and Middle-Income Countries: Progress and Challenges in Eight South Asian and Southeast Asian Countries. Clin. Microbiol. Rev. 2020, 33, 12–16. [Google Scholar] [CrossRef]
- Rani, U. Comparative study of efficacy of cefuroxime and ceftriaxone in enteric fever. IOSR J. Dent. Med. Sci. 2015, 14, 27–32. [Google Scholar]
- Patil, N.; Mule, P. Sensitivity Pattern of Salmonella typhi And Paratyphi A Isolates to Chloramphenicol and Other Anti-Typhoid Drugs: An In Vitro Study. Infect. Drug Resist. 2019, 12, 3217–3225. [Google Scholar] [CrossRef]
- Dyson, Z.A.; Klemm, E.J.; Palmer, S.; Dougan, G. Antibiotic Resistance and Typhoid. Clin. Infect. Dis. 2019, 68 (Suppl. 2), S165–S170. [Google Scholar] [CrossRef]
- Saragih, R.H.; Purba, G.C.F. Antimicrobial resistance problems in typhoid fever. IOP Conf. Ser. Earth Environ. Sci. 2018, 125, 012091. [Google Scholar] [CrossRef]
- Pokharel, S.; Raut, S.; Adhikari, B. Tackling antimicrobial resistance in low-income and middle-income countries. BMJ Glob. Health 2019, 4, e002104. [Google Scholar] [CrossRef]
- Mather, R.G.; Hopkins, H.; Parry, C.M.; Dittrich, S. Redefining typhoid diagnosis: What would an improved test need to look like? BMJ Glob. Health 2019, 4, e001831. [Google Scholar] [CrossRef]
- Peker, N.; Couto, N.; Sinha, B.; Rossen, J.W. Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: Recent developments in molecular approaches. Clin. Microbiol. Infect. 2018, 24, 944–955. [Google Scholar] [CrossRef] [PubMed]
- Mburu, C.M.; Bukachi, S.A.; Shilabukha, K.; Tokpa, K.H.; Ezekiel, M.; Fokou, G.; Bonfoh, B.; Kazwala, R. Determinants of treatment-seeking behavior during self-reported febrile illness episodes using the socio-ecological model in Kilombero District, Tanzania. BMC Public Health 2021, 21, 1075. [Google Scholar] [CrossRef] [PubMed]
- Ozakpo, E.O.; Olugasa, B.O. Socio-Environmental Factors Influencing Preferences for Typhoid Fever Treatment Among Secondary School Students in Ikenne, South-West, Nigeria. Pharmacology 2020, 1, 31–42. [Google Scholar]
- Khanam, F.; Darton, T.C.; Meiring, J.E.; Kumer Sarker, P.; Kumar Biswas, P.; Bhuiyan, M.A.I.; Hasan Rajib, N.; Tonks, S.; Pollard, A.J.; Clemens, J.D.; et al. Salmonella Typhi Stool Shedding by Patients with Enteric Fever and Asymptomatic Chronic Carriers in an Endemic Urban Setting. J. Infect. Dis. 2021, 224 (Suppl. 7), S759–S763. [Google Scholar] [CrossRef]
- Water Sector Strategic Development Plan; Ministry of Water Resources, Works and Housing: Accra, Ghana, 2014.
- Acosta-Alonzo, C.B.; Erovenko, I.V.; Lancaster, A.; Oh, H.; Rychtář, J.; Taylor, D. High endemic levels of typhoid fever in rural areas of Ghana may stem from optimal voluntary vaccination behaviour. Proc. Math. Phys. Eng. Sci. 2020, 476, 20200354. [Google Scholar] [CrossRef]
Authors | Study Design | Region | Type of Participants | Sample/Population Size | No. of Positive S. Typhi Isolates | Diagnostic Method |
---|---|---|---|---|---|---|
Acquah et al. (2013) [13] | Retrospective | Northern | Hospitalized Patients | 4184 | 6 | Blood Culture |
Al-Emran et al. (2016) [14] | Cross-sectional | Ashanti | Febrile | 110 | 47 | Blood Culture |
Anabire et al. (2018) [15] | Cross-sectional | Northern | Febrile | 150 | 20 | Blood Culture, Widal |
Birkhold et al. (2023) [16] | Prospective cohort | Ashanti | Hospitalized Patients | 73 | 6 | Blood Culture |
Domfeh et al. (2023) [11] | Cross-sectional | Ashanti | Typhoid Suspected | 178 | 11 | Blood Culture, Stool Culture, Widal |
Eibach et al. (2016) [17] | Cohort | Ashanti | Hospitalized Patients | 5211 | 89 | Blood Culture |
Eibach et al. (2016) [18] | Prospective cohort | Ashanti | Hospitalized Patients | 7172 | 110 | Blood Culture |
Espinoza et al. (2016) [19] | Cohort | Ashanti | Asymptomatic individuals | 2651 | 32 | Blood Culture |
Feglo et al. (2004) [20] | Cross-sectional | Ashanti | Asymptomatic individuals | 258 | 3 | Stool Culture, Widal |
Fusheini and Gyawu (2020) [10] | Longitudinal | Volta | Hospitalized Patients | 167,016 | 6282 | Blood Culture, Stool Culture |
Gross et al. (2011) [21] | Prospective cohort | Western, Central, Eastern | Febrile | 667 | 74 | Blood Culture |
Koffuor et al. (2016) [22] | Cross-sectional | Ashanti | Asymptomatic individuals | 700 | 65 | Not indicated |
Labi et al. (2014) [23] | Retrospective | Greater Accra | Hospitalized Patients | 23708 | 48 | Blood Culture |
Marks et al. (2010) [24] | Cohort | Ashanti | Hospitalized Patients | 1456 | 37 | Blood Culture |
Marks et al. (2017) [25] | Cohort | Febrile | 2651 | 30 | Blood Culture, Stool Culture | |
Marks et al. (2024) [26] | Cohort | Ashanti | Febrile | 2164 | 75 | Blood Culture |
Newman et al. (2011) [27] | Prospective cohort | Hospitalized Patients | 5099 | 109 | Blood Culture | |
Nielsen et al. (2012) [28] | Prospective Cohort | Ashanti | Hospitalized Patients | 1196 | 17 | Blood Culture |
Panzner et al. (2022) [29] | Cross-sectional | Bono East | Febrile | 100 | 1 | Blood Culture |
Rufai et al. (2023) [30] | Cross-sectional | Greater Accra | Febrile | 157 | 23 | Blood Culture, Widal |
Saana et al. (2014) [9] | Cross-sectional | Ashanti | Hospitalized Patients | 900 | 128 | Blood Culture, Stool Culture |
Sothmann et al. (2015) [31] | Case-control | Ashanti | Febrile | 2306 | 18 | Blood Culture |
Study | CTR | CHL | CIP | GM | AMP | AMC | TET | SXT | CXM | MDR |
---|---|---|---|---|---|---|---|---|---|---|
Eibach et al., 2016 [18] | 76 | 70 | 76 | 66 | ||||||
Gross et al., 2011 [21] | 91 | 95 | 89 | 1 | ||||||
Labi et al., 2014 [23] | 0 | 15 | ||||||||
Marks et al., 2010 [24] | 73 | 46 | 70 | 65 | 62 | 70 | ||||
Marks et al., 2017 [25] | 77 | 67 | 10 | 80 | 63 | |||||
Marks et al., 2024 [26] | 3 | 27 | 17 | 24 | 16 | 17 | 28 | 20 | ||
Newman et al., 2011 [27] | 62 | |||||||||
Nielsen et al., 2012 [28] | 71 | 65 | 24 | 53 | 71 | 65 | ||||
Rufai et al., 2023 [30] | 26 | 26 | 43 | 35 | 39 | 43 | ||||
Saana et al., 2014 [9] | 15 | 26 | 17 | 52 | 33 | 20 |
Covariates | Estimate | Standard Error | z-Value | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Type of Participants | ||||||
Asymptomatic Carriers (Intercept) | 0.1109 | 0.0797 | 1.3910 | 0.1642 | −0.0454 | 0.2672 |
Febrile | 0.1615 | 0.0855 | 1.8883 | 0.0590 | −0.0061 | 0.3292 |
Hospitalized patients | 0.0414 | 0.0844 | 0.4902 | 0.6240 | −0.1241 | 0.2069 |
Typhoid suspected | 0.1095 | 0.1290 | 0.8490 | 0.3959 | −0.1433 | 0.3623 |
Diagnostic Method | ||||||
Blood/Stool Culture | 0.0358 | 0.0511 | 0.7002 | 0.4838 | −0.0644 | 0.1359 |
Stool Culture | −0.1042 | 0.1323 | −0.7876 | 0.4310 | −0.3636 | 0.1551 |
Unspecified | 0.1997 | 0.1139 | 1.7529 | 0.0796 | −0.0236 | 0.4230 |
Excluded Study | Prevalence (%) | Lower CI | Upper CI |
---|---|---|---|
Acquah et al. (2013) [13] | 4.48 | 3.05 | 6.16 |
Al-Emran et al. (2016) [14] | 3.39 | 2.16 | 4.86 |
Anabire et al. (2018) [15] | 3.87 | 2.53 | 5.46 |
Birkhold et al. (2023) [16] | 4.04 | 2.67 | 5.66 |
Domfeh et al. (2023) [11] | 4.06 | 2.69 | 5.70 |
Eibach et al. (2016) [17] | 4.32 | 2.85 | 6.07 |
Eibach et al. (2016) [18] | 4.34 | 2.85 | 6.11 |
Espinoza et al. (2016) [19] | 4.35 | 2.90 | 6.07 |
Feglo et al. (2004) [20] | 4.32 | 2.89 | 6.00 |
Fusheini and Gyawu (2020) [10] | 4.16 | 2.77 | 5.80 |
Gross et al. (2011) [21] | 3.87 | 2.53 | 5.47 |
Koffuor et al. (2016) [22] | 3.93 | 2.58 | 5.55 |
Labi et al. (2014) [23] | 4.34 | 3.14 | 5.73 |
Marks et al. (2010) [24] | 4.24 | 2.81 | 5.93 |
Marks et al. (2017) [25] | 4.36 | 2.91 | 6.07 |
Marks et al. (2024) [26] | 4.19 | 2.76 | 5.88 |
Newman et al. (2011) [27] | 4.29 | 2.82 | 6.04 |
Nielsen et al. (2012) [28] | 4.32 | 2.89 | 6.02 |
Panzner et al. (2022) [29] | 4.29 | 2.88 | 5.96 |
Rufai et al. (2023) [30] | 3.83 | 2.50 | 5.42 |
Saana et al. (2014) [9] | 3.77 | 2.46 | 5.32 |
Sothmann et al. (2015) [31] | 4.39 | 2.94 | 6.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kungu, F.; Awere-Duodu, A.; Donkor, E.S. Prevalence and Antimicrobial Resistance of Typhoid Fever in Ghana: A Systematic Review and Meta-Analysis. Diseases 2025, 13, 113. https://doi.org/10.3390/diseases13040113
Kungu F, Awere-Duodu A, Donkor ES. Prevalence and Antimicrobial Resistance of Typhoid Fever in Ghana: A Systematic Review and Meta-Analysis. Diseases. 2025; 13(4):113. https://doi.org/10.3390/diseases13040113
Chicago/Turabian StyleKungu, Frederick, Aaron Awere-Duodu, and Eric S. Donkor. 2025. "Prevalence and Antimicrobial Resistance of Typhoid Fever in Ghana: A Systematic Review and Meta-Analysis" Diseases 13, no. 4: 113. https://doi.org/10.3390/diseases13040113
APA StyleKungu, F., Awere-Duodu, A., & Donkor, E. S. (2025). Prevalence and Antimicrobial Resistance of Typhoid Fever in Ghana: A Systematic Review and Meta-Analysis. Diseases, 13(4), 113. https://doi.org/10.3390/diseases13040113