Clinical Trial: Effects of Autologous Dendritic Cell Administration on Renal Hemodynamics and Inflammatory Biomarkers in Diabetic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Research Subject
2.3. Research Procedure
2.4. Autologous Dendritic Cell Generation
2.5. Safety Evaluation
2.6. Statistics
2.7. GenAi Disclosure
3. Results
3.1. Subject Characteristics
3.2. PSV and EDV Results
3.3. TGF-β and MMP-9 Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DKD | Diabetic kidney disease |
ESRD | End-Stage Renal Disease |
PSV | Peak Systolic Velocity |
EDV | End-Diastolic Velocity |
MMP-9 | Matrix Metalloproteinase-9 |
TGF-β | Transforming Growth Factor Beta |
ELISA | Enzyme-Linked Immunosorbent Assay |
GM-CSF | Granulocyte Macrophage Colony Stimulating Factor |
IL-4 | Interleukin-4 |
CTCAE | Common Terminology Criteria for Adverse Events |
eGFR | Estimated Glomerular Filtration Rate |
UACR | Urinary Albumin-to-Creatinine Ratio |
BMI | Body Mass Index |
HCT | Hydrochlorothiazide |
CCB | Calcium Channel Blocker |
ARB | Angiotensin II receptor blocker |
References
- Selby, N.M.; Taal, M.W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes. Metab. 2020, 22, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Li, N.; Wu, Y.; Wang, M.; Yang, S.; Zheng, Y.; Deng, X.; Xiang, D.; Zhu, Y.; Xu, P.; et al. Global, Regional, and National Burden of Diabetes-Related Chronic Kidney Disease From 1990 to 2019. Front. Endocrinol. 2021, 12, 672350. [Google Scholar] [CrossRef]
- Afkarian, M.; Sachs, M.C.; Kestenbaum, B.; Hirsch, I.B.; Tuttle, K.R.; Himmelfarb, J.; De Boer, I.H. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 2013, 24, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Donate-Correa, J.; Ferri, C.M.; Sánchez-Quintana, F.; Pérez-Castro, A.; González-Luis, A.; Martín-Núñez, E.; Mora-Fernández, C.; Navarro-González, J.F. Inflammatory Cytokines in Diabetic Kidney Disease: Pathophysiologic and Therapeutic Implications. Front. Med. 2021, 7, 628289. [Google Scholar] [CrossRef]
- Wang, B.; Ding, C.; Ding, X.; Tesch, G.H.; Zheng, J.; Tian, P.; Li, Y.; Ricardo, S.D.; Shen, H.-H.; Xue, W. WNT1-inducible signaling pathway protein 1 regulates kidney inflammation through the NF-κB pathway. Clin. Sci. 2022, 136, 29–44. [Google Scholar] [CrossRef]
- Collard, D.; van Brussel, P.M.; van de Velde, L.; Wijntjens, G.W.; Westerhof, B.E.; Karemaker, J.M.; Piek, J.J.; Reekers, J.A.; Vogt, L.; de Winter, R.J.; et al. Estimation of intraglomerular pressure using invasive renal arterial pressure and flow velocity measurements in humans. J. Am. Soc. Nephrol. 2020, 31, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Kim, H.; Liu, X.; Sugiura, H.; Kohyama, T.; Fang, Q.; Wen, F.-Q.; Abe, S.; Wang, X.; Atkinson, J.J.; et al. Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2014, 306, 1006–1015. [Google Scholar] [CrossRef]
- Jonny, J.; Sitepu, E.C.; Lister, I.N.E.; Chiuman, L.; Putranto, T.A. The Potential of Anti-Inflammatory DC Immunotherapy in Improving Proteinuria in Type 2 Diabetes Mellitus. Vaccines 2024, 12, 972. [Google Scholar] [CrossRef]
- Putranto, T.A.; Wibisono, D.; Astoro, N.W.; Yana, M.L.; Rantung, Y.; Manuaba, I.B.A.P. Introduction to dendritic cell vaccines immunotherapy for glioblastoma multiforme: A novel approach. Bali Med. J. 2019, 8, 371–375. [Google Scholar] [CrossRef]
- Dillman, R.O.; Nistor, G.I.; Jonny, J.; Yana, M.L.; Langford, J.L.; Putranto, T.A.; Keirstead, H.S. Prevention of Symptomatic COVID-19 Infection by Personal Dendritic Cell Vaccine. J. Vaccines Immunol. Immunopathol. 2023, 8, 189. [Google Scholar] [CrossRef]
- Jonny; Sitepu, E.C.; Nidom, C.A.; Wirjopranoto, S.; Sudiana, I.K.; Ansori, A.N.M.; Putranto, T.A. Ex Vivo-Generated Tolerogenic Dendritic Cells: Hope for a Definitive Therapy of Autoimmune Diseases. Curr. Issues Mol. Biol. 2024, 46, 4035–4048. [Google Scholar] [CrossRef]
- Jonny, J.; Putranto, T.A.; Sitepu, E.C.; Irfon, R. Dendritic cell vaccine as a potential strategy to end the COVID-19 pandemic. Why should it be Ex Vivo? Expert Rev. Vaccines 2022, 21, 1111–1120. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Sobenin, I.A.; Orekhov, A.N.; Bobryshev, Y.V. Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation. Immunobiology 2015, 220, 833–844. [Google Scholar] [CrossRef]
- Domogalla, M.P.; Rostan, P.V.; Raker, V.K.; Steinbrink, K. Tolerance through education: How tolerogenic dendritic cells shape immunity. Front. Immunol. 2017, 8, 315167. [Google Scholar] [CrossRef] [PubMed]
- Zoppini, G.; Targher, G.; Chonchol, M.; Ortalda, V.; Negri, C.; Stoico, V.; Bonora, E. Predictors of estimated GFR decline in patients with type 2 diabetes and preserved kidney function. Clin. J. Am. Soc. Nephrol. 2012, 7, 401–408. [Google Scholar] [CrossRef]
- Patel, D.M.; Bose, M.; Cooper, M.E. Glucose and Blood Pressure-Dependent Pathways–The Progression of Diabetic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 2218. [Google Scholar] [CrossRef]
- He, D.; Zhang, Y.; Zhang, W.; Xing, Y.; Guo, Y.; Wang, F.; Jia, J.; Yan, T.; Liu, Y.; Lin, S. Effects of ACE Inhibitors and Angiotensin Receptor Blockers in Normotensive Patients with Diabetic Kidney Disease. Horm. Metab. Res. 2020, 52, 289–297. [Google Scholar] [CrossRef]
- Luo, X.; Xu, J.; Zhou, S.; Xue, C.; Chen, Z.; Mao, Z. Influence of SGLT2i and RAASi and Their Combination on Risk of Hyperkalemia in DKD: A Network Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2023, 18, 1019–1030. [Google Scholar] [CrossRef]
- Adrian, G.; Mehedintu, A. Linking Ultrasound Assessment of Renal arteries to the Biological Profile of Inflammation and Coagulation at Hypertensive Patients With or Without Diabetes Mellitus. J. Hypertens. 2024, 42, e145–e146. [Google Scholar] [CrossRef]
- Spatola, L.; Andrulli, S. Doppler ultrasound in kidney diseases: A key parameter in clinical long-term follow-up. J. Ultrasound 2016, 19, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, M.; Puchades, M.J.; Garofalo, C.; Jongs, N.; D’Marco, L.; Andreucci, M.; De Nicola, L.; Gorriz, J.L.; Heerspink, H.J.L.; ROTATE-3 study group; et al. Albuminuria-Lowering Effect of Dapagliflozin, Eplerenone, and their Combination in Patients with Chronic Kidney Disease: A Randomized Cross-over Clinical Trial. J. Am. Soc. Nephrol. 2022, 33, 1569–1580. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, S.; Xu, Y.; Lu, F.; You, L.; He, Z.; Zhan, S.; Ye, C.; Liu, M.; Fu, C.; et al. Evaluation of Renal Oxygenation and Hemodynamics in Patients with Chronic Kidney Disease by Blood Oxygenation Level-dependent Magnetic Resonance Imaging and Intrarenal Doppler Ultrasonography. Nephron 2021, 145, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Perlman, A.; Kalache, S.; Berman, N.; Seshan, S.; Salvatore, S.; Smith, L.; Wehrli, N.; Waldron, L.; Kodali, H.; et al. Multiparametric Quantitative Ultrasound Imaging in Assessment of Chronic Kidney Disease. J. Ultrasound Med. 2017, 36, 2245. [Google Scholar] [CrossRef]
- Norris, K.C.; Smoyer, K.E.; Rolland, C.; Van Der Vaart, J.; Grubb, E.B. Albuminuria, serum creatinine, and estimated glomerular filtration rate as predictors of cardio-renal outcomes in patients with type 2 diabetes mellitus and kidney disease: A systematic literature review. BMC Nephrol. 2018, 19, 36. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.; Mitra, N.; Kanetsky, P.A.; Devaney, J.; Wing, M.R.; Reilly, M.; Shah, V.O.; Balakrishnan, V.S.; Guzman, N.J.; Girndt, M.; et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol. 2012, 7, 1938–1946. [Google Scholar] [CrossRef]
- Korte, W.; Buljan, M.; Rösslein, M.; Wick, P.; Golubov, V.; Jentsch, J.; Reut, M.; Peier, K.; Nohynek, B.; Fischer, A.; et al. SARS-CoV-2 IgG and IgA antibody response is gender dependent; and IgG antibodies rapidly decline early on. J. Infect. 2021, 82, e11-4. [Google Scholar] [CrossRef]
- Costagliola, G.; Spada, E.; Consolini, R. Age-related differences in the immune response could contribute to determine the spectrum of severity of COVID-19. Immun. Inflamm. Dis. 2021, 9, 331. [Google Scholar] [CrossRef]
- Weinstein, J.R.; Anderson, S. The Aging Kidney: Physiological Changes. Adv. Chronic Kidney Dis. 2010, 17, 302. [Google Scholar] [CrossRef]
- Rani, P.K.; Raman, R.; Gupta, A.; Pal, S.S.; Kulothungan, V.; Sharma, T. Albuminuria and diabetic retinopathy in type 2 diabetes mellitus sankara nethralaya diabetic retinopathy epidemiology and molecular genetic study (SN-DREAMS, report 12). Diabetol. Metab. Syndr. 2011, 3, 9. [Google Scholar] [CrossRef]
- Suzuki, A.; Moriya, T.; Hayashi, A.; Matsubara, M.; Miyatsuka, T. Arteriolar Hyalinosis Predicts the Onset of Both Macroalbuminuria and Impaired Renal Function in Patients with Type 2 Diabetes. Nephron 2024, 148, 390–398. [Google Scholar] [CrossRef]
- Kundu, S.; Pushpakumar, S.B.; Tyagi, A.; Coley, D.; Sen, U. Hydrogen sulfide deficiency and diabetic renal remodeling: Role of matrix metalloproteinase-9. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E1365–E1378. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Shi, Y.; Ding, Y.; Liu, X.; Zou, H. Dramatic early event in chronic allograft nephropathy: Increased but not decreased expression of MMP-9 gene. Diagn. Pathol. 2013, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Muscella, A.; Vetrugno, C.; Cossa, L.G.; Marsigliante, S. TGF-β1 activates RSC96 Schwann cells migration and invasion through MMP-2 and MMP-9 activities. J. Neurochem. 2020, 153, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Fan, C.; Cai, D.; Zhang, Y.; Zuo, R.; Zhu, L.; Cao, Y.; Zhang, J.; Liu, C.; Chen, Y.; et al. Contribution of TGF-Beta-Mediated NLRP3-HMGB1 Activation to Tubulointerstitial Fibrosis in Rat With Angiotensin II-Induced Chronic Kidney Disease. Front. Cell Dev. Biol. 2020, 8, 496359. [Google Scholar] [CrossRef]
- Feng, J.; Xie, L.; Kong, R.; Zhang, Y.; Shi, K.; Lu, W.; Jiang, H. RACK1 silencing attenuates renal fibrosis by inhibiting TGF-β signaling. Int. J. Mol. Med. 2017, 40, 1965–1970. [Google Scholar] [CrossRef]
Count | Table N % | ||
---|---|---|---|
Gender | Women | 16 | 55.2% |
Men | 13 | 44.8% | |
Age | <60 | 9 | 31.0% |
≥60 | 20 | 69.0% | |
BMI | Underweight | 2 | 6.9% |
Normal weight | 6 | 20.7% | |
Overweight | 0 | 0.0% | |
Obesity I | 13 | 44.8% | |
Obesity II | 8 | 27.6% | |
Hypertension | No | 1 | 3.4% |
Yes | 28 | 96.6% | |
Stroke | No | 24 | 82.8% |
Infarction | 5 | 17.2% | |
Hemorrhagic | 0 | 0.0% | |
Heart disease | No | 19 | 65.5% |
Yes | 10 | 34.5% | |
Retinopathy | No | 25 | 86.2% |
Yes | 4 | 13.8% | |
Neuropathy | No | 13 | 44.8% |
Yes | 16 | 55.2% | |
Biguanid | No | 20 | 69.0% |
Yes | 9 | 31.0% | |
Thiazolidinedione | No | 29 | 100.0% |
Yes | 0 | 0.0% | |
Glinid | No | 29 | 100.0% |
Yes | 0 | 0.0% | |
α glucosidase inhibitor | No | 26 | 89.7% |
Yes | 3 | 10.3% | |
Insulin | No | 9 | 31.0% |
Yes | 20 | 69.0% | |
Gliptin | No | 23 | 79.3% |
Yes | 6 | 20.7% | |
SGLT2 | No | 26 | 89.7% |
Yes | 3 | 10.3% | |
Sulphonylurea | No | 17 | 58.6% |
Yes | 12 | 41.4% | |
Central alpha agonist | No | 29 | 100.0% |
Yes | 0 | 0.0% | |
Diuretics | No | 27 | 93.1% |
HCT | 2 | 6.9% | |
Spironolacton | 0 | 0.0% | |
Alpha blockers | No | 28 | 96.6% |
Yes | 1 | 3.4% | |
CCB | No | 9 | 31.0% |
Dihydropyridine | 15 | 51.7% | |
Non-Dihydropyridine | 5 | 17.2% | |
DHP and non-DHP | 0 | 0.0% | |
β blockers | No | 21 | 72.4% |
Yes | 8 | 27.6% | |
ARB | No | 8 | 27.6% |
Yes | 21 | 72.4% |
Before (cm/s) | After (cm/s) | p-Value | |
---|---|---|---|
PSV (Median ± IQR) | 47.1 ± 23.87 | 27.85 ± 20.53 | 0.044 |
EDV (Median ± IQR) | 13 ± 5.32 | 15.7 ± 12.55 | 0.039 |
PSV Before (cm/s) | PSV After (cm/s) | p-Value | ||
---|---|---|---|---|
Gender * | Men | 47.1 ±23.3 | 27.05 ±42.38 | 0.422 |
Women | 51.65 ±24.8 | 31.72 ±18.31 | 0.03 | |
Age † | <60 | 52.56 ±18.41 | 42.32 ±24.80 | 0.225 |
≥60 | 47.02 ±24.97 | 29 ±20.43 | 0.121 | |
UACR * | Microalbuminuria | 54.6 ±23.46 | 27.65 ±16.74 | 0.011 |
Macroalbuminuria | 47.05 ±32.3 | 35.7 ±32.28 | 0.834 |
EDV Before (cm/s) | EDV After (cm/s) | p-Value | ||
---|---|---|---|---|
Gender * | Men | 12.55 ±6.97 | 15.7 ±21.9 | 0.249 |
Women | 13.27 ±6.8 | 15.04 ±11.08 | 0.044 | |
Age † | <60 | 15.53 ±6.10 | 23.03 ±14.93 | 0.137 |
≥60 | 4.11 ±6.08 | 12.64 ±11.08 | 0.126 | |
UACR * | Microalbuminuria | 13.8 ±5.36 | 14.19 ±11.18 | 0.234 |
Macroalbuminuria | 11.15 ±6.28 | 16.4 ±17.75 | 0.087 |
Variables | Coefficient (β) | p-Value |
---|---|---|
MMP-9 Before | 13.112 | 0.058 |
Dependent Variable TGF-β Before | ||
MMP-9 After | 7.622 | 0.066 |
Dependent Variable TGF-β After |
Variables | MMP-9 (r, p) | PSV (r, p) | EDV (r, p) |
---|---|---|---|
TGF-β | 0.413, 0.001 ** | −0.101, 0.452 | −0.071, 0.598 |
MMP-9 | - | −0.015, 0.909 | −0.048, 0.721 |
PSV | −0.015, 0.909 | - | 0.675, 0.000 ** |
EDV | −0.048, 0.721 | 0.675, 0.000 ** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drajat, E.; Icksan, A.G.; Jonny, J.; Lokeswara, A.P.; Hernowo, B.A.; Daulay, E.R.; Putranto, T.A. Clinical Trial: Effects of Autologous Dendritic Cell Administration on Renal Hemodynamics and Inflammatory Biomarkers in Diabetic Kidney Disease. Diseases 2025, 13, 122. https://doi.org/10.3390/diseases13040122
Drajat E, Icksan AG, Jonny J, Lokeswara AP, Hernowo BA, Daulay ER, Putranto TA. Clinical Trial: Effects of Autologous Dendritic Cell Administration on Renal Hemodynamics and Inflammatory Biomarkers in Diabetic Kidney Disease. Diseases. 2025; 13(4):122. https://doi.org/10.3390/diseases13040122
Chicago/Turabian StyleDrajat, Endang, Aziza Ghanie Icksan, Jonny Jonny, Aditya Pratama Lokeswara, Bhimo Aji Hernowo, Elvita Rahmi Daulay, and Terawan Agus Putranto. 2025. "Clinical Trial: Effects of Autologous Dendritic Cell Administration on Renal Hemodynamics and Inflammatory Biomarkers in Diabetic Kidney Disease" Diseases 13, no. 4: 122. https://doi.org/10.3390/diseases13040122
APA StyleDrajat, E., Icksan, A. G., Jonny, J., Lokeswara, A. P., Hernowo, B. A., Daulay, E. R., & Putranto, T. A. (2025). Clinical Trial: Effects of Autologous Dendritic Cell Administration on Renal Hemodynamics and Inflammatory Biomarkers in Diabetic Kidney Disease. Diseases, 13(4), 122. https://doi.org/10.3390/diseases13040122