Targeting Metabolic Modulation and Mitochondrial Dysfunction in the Treatment of Heart Failure
Abstract
:1. Introduction
2. Metabolism in Heart Failure
Metabolism in Diabetic Cardiomyopathy
3. Metabolic Modulating Therapeutics
3.1. Trimetazidine
3.2. Ranolazine
3.3. Perhexiline
3.4. Etoximir
3.5. Malonyl CoA Decarboxylase Inhibition
3.6. Dichloroacetate
4. Mitochondrial Dysfunction
5. Treatments Targeting Mitochondrial Dysfunction
Elamipretide
6. Conclusions
References
- Vasan, R.S.; Wilson, P.W. Epidemiology and causes of heart failure. Available online: http://www.uptodate.com/contents/epidemiology-and-causes-of-heart-failure (accessed on 31 May 2016).
- Fragasso, G.; Salerno, A.; Spoladore, R.; Bassanelli, G.; Arioli, F.; Margonato, A. Metabolic Therapy of Heart Failure. Curr. Pharm. Des. 2008, 14, 2582–2591. [Google Scholar] [CrossRef] [PubMed]
- Beadle, R.M.; Williams, L.K.; Abozguia, K.; Pater, K.; Leon, F.L.; Yousef, Z.; Wagenmakers, A.; Frenneaux. Metabolic manipulation in chronic heart failure: Study protocol for a randomised controlled trial. Trials 2011, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; Ferranti, S; Després, J-P.; Fullerton, H.J.; et al. Executive Summary: Heart Disease and Stroke Statistics—2016 Update: A Report From the American Heart Association. Circulation 2016, 133, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.C.; Struthers, A.D. Targeting the renin–angiotensin–aldosterone system in heart failure. Nat. Rev. Cardiol. 2013, 10, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Doenst, T.; Nguyen, T.D.; Abel, E.D. Cardiac Metabolism in Heart Failure: Implications Beyond ATP Production. Circ. Res. 2013, 113, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.D.; Chirkov, Y.Y.; Kennedy, J.A.; Sverdlov, A.L. Modulation of myocardial metabolism: an emerging therapeutic principle. Curr. Opin. Cardiol. 2010, 25, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Loudon, B.L.; Noordali, H.; Gollop, N.D.; Frenneaux, M.P.; Madhani, M. Present and future pharmacotherapeutic agents in heart failure: An evolving paradigm. Br. J. Pharmacol. 2016, 173, 1911–1924. [Google Scholar] [CrossRef] [PubMed]
- Marquez, J.; Lee, S.R.; Kim, N.; Han, J. Rescue of heart failure by mitochondrial recovery. Int. Neurourol. J. 2016, 20, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Rosca, M.G.; Hoppel, C.L. Mitochondrial dysfunction in heart failure. Heart Fail. Reviews 2013, 18, 607–622. [Google Scholar] [CrossRef] [PubMed]
- Rosca, M.G.; Tandler, B.; Hoppel, C.L. Mitochondria in cardiac hypertrophy and heart failure. J. Mol. Cell. Cardiol. 2013, 55, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Jaswal, J.S.; Keung, W.; Wang, W.; Ussher, J.R.; Lopaschuk, G.D. Targeting fatty acid and carbohydrate oxidation—A novel therapeutic intervention in the ischemic and failing heart. Biochim. Biophys. Acta (BBA) 2011, 1813, 1333–1350. [Google Scholar] [CrossRef] [PubMed]
- Ardehali, H.; Sabbah, H.N.; Burke, M.A.; Sarma, S.; Liu, P.P.; Cleland, J.G.F.; Maggioni, A.; Fonarow, G.C.; Abel, E.D.; Campia, U.; et al. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur. J. Heart Fail. 2012, 14, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Dolinsky, V.W.; Cole, L.K.; Sparagna, G.C.; Hatch, G.M. Cardiac mitochondrial energy metabolism in heart failure: Role of cardiolipin and sirtuins. Biochim. Biophys. Acta (BBA) 2016, 1861, 1544–1554. [Google Scholar] [CrossRef] [PubMed]
- Witteles, R.M.; Fowler, M.B. Insulin-Resistant CardiomyopathyClinical Evidence, Mechanisms, and Treatment Options. J. Am. Coll. Cardiol. 2008, 51, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Isfort, M.; Stevens, S.C.W.; Schaffer, S.; Jong, C.J.; Wold, L.E. Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail. Rev. 2014, 19, 35–48. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Rodrigues, B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H1489–H1506. [Google Scholar] [CrossRef] [PubMed]
- Avogaro, A.; Vigili de Kreutzenberg, S.; Negut, C.; Tiengo, A.; Scognamiglio, R. Diabetic cardiomyopathy: A metabolic perspective. Am. J. Cardiol. 2004, 93, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Battiprolu, P.K.; Lopez-Crisosto, C.; Wang, Z.V.; Nemchenko, A.; Lavandero, S.; Hill, J.A. Diabetic cardiomyopathy and metabolic remodeling of the heart. Life Sci. 2013, 92, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Battiprolu, P.K.; Hojayev, B.; Jiang, N.; Wang, Z.V.; Luo, X.; Iglrwski, M.; Shelton, J.M.; Gerard, R.D.; Rothermel, B.A.; Gillette, T.G.; et al. Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J. Clin. Investig. 2012, 122, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.; Adamopoulos, S.; Anker, S.D.; Auricchio, A.; BÖhm, M.; Dickstein, K.; Falk, V.; Filippatos, G.; Fonseca, C.; Gomez-Sanchez, M.A.; et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Eur. J. Heart Fail. 2012, 14, 803–869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, Y.; Jiang, H.; Zhang, L.; Sun, A.; Zou, Y.; Ge, J. Additional Use of Trimetazidine in Patients With Chronic Heart FailureA Meta-Analysis. J. Am. Coll. Cardiol. 2012, 59, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Dézsi, C.A. Trimetazidine in Practice: Review of the Clinical and Experimental Evidence. Am. J. Ther. 2016, 23, e871–e879. [Google Scholar] [CrossRef] [PubMed]
- Lopatin, Y.M.; Rosano, G.M.C.; Fragasso, G.; Lopaschuk, G.D.; Seferovic, P.M.; Gowdak, L.H.W.; Vinereanu, D.; Hamid, M.L.; Jourdain, P.; Ponikowski, P. Rationale and benefits of trimetazidine by acting on cardiac metabolism in heart failure. Int. J. Cardiol. 2016, 203, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Chrusciel, P.; Rysz, J.; Banach, M. Defining the role of trimetazidine in the treatment of cardiovascular disorders: Some insights on its role in heart failure and peripheral artery disease. Drugs 2014, 74, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.W. Metabolic approach in heart failure: Rethinking how we translate from theory to clinical practice. J. Am. Coll. Cardiol. 2006, 48, 999–1000. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Cheng, Y. Analysis on the treatment of trimetazidine jointed with metoprolol in the coronary heart disease with the heart failure. In Proceedings of the International Forum on Bioinformatics and Medical Engineering (BME 2015), Qingdao, China, 4–5 September 2015. [Google Scholar]
- Li, P.; Li, Y.-M. Efficacy of trimetazidine combining with metoprolol on plasma BNP in coronary heart disease patients with heart failure. J. Hainan Med. Univ. 2016, 22, 25–27. [Google Scholar]
- Grajek, S.; Michalak, M. The Effect of Trimetazidine Added to Pharmacological Treatment on All-Cause Mortality in Patients with Systolic Heart Failure. Cardiology 2015, 131, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, J. Is Treatment with Trimetazidine Beneficial in Patients with Chronic Heart Failure? PLoS ONE 2014, 9, e94660. [Google Scholar] [CrossRef] [PubMed]
- Fragasso, G.; Rosano, G.; Baek, S.H.; Sisakian, H.; DiNapoli, P.; Alberti, L.; Calori, G.; Kang, S-M.; Sahakyan, L.; Sanosyan, A.; et al. Effect of partial fatty acid oxidation inhibition with trimetazidine on mortality and morbidity in heart failure: Results from an international multicentre retrospective cohort study. Int. J. Cardiol. 2013, 163, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Ning, N.; Niu, X.; Hao, G.; Meng, Z. Trimetazidine: A meta-analysis of randomised controlled trials in heart failure. Heart 2011, 97, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Morrow, D.A.; Scirica, B.M.; Sabatine, M.S.; de Lemos, J.A.; Murphy, S.L.; Jarolim, P.; Theroux, P.; Bode, C.; Braunwald, E. B-Type Natriuretic Peptide and the Effect of Ranolazine in Patients With Non–ST-Segment Elevation Acute Coronary SyndromesObservations From the MERLIN–TIMI 36 (Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST Elevation Acute Coronary–Thrombolysis In Myocardial Infarction 36) Trial. J. Am. Coll. Cardiol. 2010, 55, 1189–1196. [Google Scholar] [PubMed]
- Maier, L.S.; Layug, B.; Karwatowska-Prokopczuk, E.; Belardinelli, L.; Lee, S.; Sander, J.; Lang, C.; Wachter, R.; Edelmann, F.; Hasenfuss, G.; et al. RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: The RALI-DHF proof-of-concept study. JACC: Heart Fail. 2013, 1, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Hawwa, N.; Menon, V. Ranolazine: Clinical applications and therapeutic basis. Am. J. Cardiovasc. Drugs 2013, 13, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.L.; Colombo, J. Ranolazine preserves and improves left ventricular ejection fraction and autonomic measures when added to guideline-driven therapy in chronic heart failure. Heart Int. 2014, 9, 66–73. [Google Scholar] [PubMed]
- Barnard, D. The Effects of Ranolazine on Exercise Capacity in Patients With Heart Failure With Preserved Ejection Fraction (RAZE). Available online: https://clinicaltrials.gov/ct2/show/NCT01505179 (accessed on 9 March 2017).
- Sossalla, S.; Maier, L.S. Role of ranolazine in angina, heart failure, arrhythmias, and diabetes. Pharmacol. Ther. 2012, 133, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Sossalla, S.; Wagner, S.; Rasenack, E.C.; Ruff, H.; Weber, S.L.; SchÖndube, F.A.; Tirilomis, T.; Tenderich, G.; Hasenfuss, G.; Belardinelli, L.; et al. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts—role of late sodium current and intracellular ion accumulation. J. Mol. Cell. Cardiol. 2008, 45, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Undrovinas, A.I.; Belardinelli, L.; Undrovinas, N.A.; Sabbah, H.N. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J. Cardiovasc. Electrophysiol. 2006, 17, S169–S177. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, H.N.; Chandler, M.P.; Mishima, T.; Suzuki, G.; Chaudhry, P.; Nass, O.; Biesiadecki, B.J.; Blackbum, B.; Wolff, A.; Stanley, W.C. Ranolazine, a partial fatty acid oxidation (pFOX) inhibitor, improves left ventricular function in dogs with chronic heart failure. J. Card. Fail. 2002, 8, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, S.; Sharov, V.G.; Mishra, S.; Gupta, R.C.; Blackburm, B.; Belardinelli, L; Stanley, W.C.; Sabbah, H.N. Ranolazine combined with enalapril or metoprolol prevents progressive LV dysfunction and remodeling in dogs with moderate heart failure. Am. J. Physiol. - Heart Circ. Physiol. 2008, 295, H2149–H2155. [Google Scholar] [CrossRef] [PubMed]
- Ashrafian, H.; Horowitz, J.D.; Frenneaux, M.P. Perhexiline. Cardiovasc. Drug Rev. 2007, 25, 76–97. [Google Scholar] [CrossRef] [PubMed]
- Chong, C-R.; Sallustio, B.; Horowitz, J.D. Drugs that Affect Cardiac Metabolism: Focus on Perhexiline. Cardiovasc. Drugs Ther. 2016, 30, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, F.M.H.; Alvarez, L.; Diczku, V.; Sherry, D.; Malloy, C.R. Direct evidence that perhexiline modifies myocardial substrate utilization from fatty acids to lactate. J. Cardiovasc. Pharmacol. 1995, 25, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.A.; Unger, S.A.; Horowitz, J.D. Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem. Pharmacol. 1996, 52, 273–280. [Google Scholar] [CrossRef]
- Cappola, T.P. Perhexiline: Lessons for Heart Failure Therapeutics. JACC: Heart Fail. 2015, 3, 212–213. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.A.; Kiosoglous, A.J.; Murphy, G.A.; Pelle, M.A.; Horowitz, J.D. Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart. J. Cardiovasc. Pharmacol. 2000, 36, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Lionetti, V.; Stanley, W.C.; Recchia, F.A. Modulating fatty acid oxidation in heart failure. Cardiovasc. Res. 2011, 90, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Beadle, R.M.; Williams, L.K.; Kuehl, M.; Bowater, S.; Abozguia, K.; Leyva, F.; Yousef, Z.; Wagenmakers, A.J.; Thies, F.; Horowitz, J.; et al. Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy. JACC: Heart Fail. 2015, 3, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Abozguia, K.; Elliott, P.; McKenna, W.; Phan, T.T.; Nallur-Shivu, G.; Ahmed, I.; Maher, A.R.; Kaur, K.; Taylor, J.; Henning, A.; et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 2010, 122, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.T.; Shivu, G.N.; Choudhury, A.; Khalid, A.; Davies, C.; Naidoo, U.; Ahmed, I.; Yousef, Z.; Horowitz, J.; Frenneaux, M. Multi-centre experience on the use of perhexiline in chronic heart failure and refractory angina: Old drug, new hope. Eur. J. Heart Fail. 2009, 11, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Campbell, R.; Scheuermann-Freestone, M.; Taylor, R.; Gunaruwan, P.; Williams, L.; Ashrafian, H.; Horowitz, J.; Fraser, A.G.; Clarke, K.; et al. Metabolic modulation with perhexiline in chronic heart failure a randomized, controlled trial of short-term use of a novel treatment. Circulation 2005, 112, 3280–3288. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, F.J.; Rosen, P.; Reinauer, H. Improvement of myocardial function and metabolism in diabetic rats by the carnitine palmitoyl transferase inhibitor Etomoxir. Horm. Metab. Res. 1995, 27, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Holubarsch, C.J.; Rohrbach, M.; Karrasch, M.; Boehm, E.; Polonski, L.; Ponikowski, P.; Rhein, S. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: The ERGO (etomoxir for the recovery of glucose oxidation) study. Clin. Sci. (Lond) 2007, 113, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Dyck, J.R.; Cheng, J.F.; Stanley, W.C.; Barr, R.; Chander, M.P.; Brown, S.; Wallace, D.; Arrhenius, T.; Harmon, C.; Yang, G.; et al. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ. Res. 2004, 94, e78–e84. [Google Scholar] [CrossRef] [PubMed]
- Dyck, J.R.; Hopkins, T.A.; Bonnet, S.; Michelakis, E.D.; Young, M.E.; Watanabe, M.; Kawase, Y.; Jishage, K.; Lopaschuk, G.D. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury. Circulation 2006, 114, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Ussher, J.R.; Wang, W.; Gandhi, M.; Keung, W.; Samokhvalov, V.; Oka, T.; Wagg, C.S.; Jaswal, J.S.; Harris, R.A.; Clanachan, A.S.; et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc. Res. 2012, 94, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Niizuma, S.; Inuzuka, Y.; Kawashima, T.; Okuda, J.; Tamaki, Y.; Iwanaga, Y.; Narazaki, M.; Matsuda, T.; Soga, T.; et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ. Heart Fail. 2010, 3, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.R.; Mancini, D.M.; Ferraro, N.; Egler, J. Effect of dichloroacetate on the exercise performance of patients with heart failure. J. Am. Coll. Cardiol. 1988, 12, 1464–1469. [Google Scholar] [CrossRef]
- Lewis, J.F.; DaCosta, M.; Wargowich, T.; Stacpoole, P. Effects of dichloroacetate in patients with congestive heart failure. Clin. Cardiol. 1998, 21, 888–892. [Google Scholar] [CrossRef] [PubMed]
- Bayeva, M.; Gheorghiade, M.; Ardehali, H. Mitochondria as a therapeutic target in heart failure. J. Am. Coll. Cardiol. 2013, 61, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Maack, C.; Böhm, M. Targeting mitochondrial oxidative stress in heart failure: throttling the afterburner. J. Am. Coll. Cardiol. 2011, 58, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Sam, F.; Kerstetter, D.L.; Pimental, D.R.; Mulukutla, S.; Tabaee, A.; Bristow, M.R.; Colucci, W.S.; Sawyer, D.B. Increased Reactive Oxygen Species Production and Functional Alterations in Antioxidant Enzymes in Human Failing Myocardium. J. Cardiac. Fail. 2005, 11, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Shah, A.M. Reactive oxygen species in heart failure. In Acute Heart Failure; Springer: Berlin, Germany, 2008; pp. 118–123. [Google Scholar]
- Bayeva, M.; Ardehali, H. Mitochondrial dysfunction and oxidative damage to sarcomeric proteins. Curr. Hypertens. Rep. 2010, 12, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Marín-García, J.; Akhmedov, A.T.; Moe, G.W. Mitochondria in heart failure: The emerging role of mitochondrial dynamics. Heart Fail. Rev. 2013, 18, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Birk, A.V.; Liu, S.; Soong, Y.; Mills, W.; Singh, P.; Warren, J.D.; Seshan, S.V.; Pardee, J.D.; Szeto, H.H. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol. 2013, 24, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Sparagna, G.C.; Chicco, A.J.; Murphy, R.C.; Bristow, M.R.; Johnson, C.A.; Rees, M.; Maxey, M.L.; McCune, S.A.; Moore, R.L. Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure. J. Lipid Res. 2007, 48, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Szeto, H.H.; Birk, A.V. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin. Pharmacol. Ther. 2014, 96, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, H.N.; Gupta, R.C.; Kohli, S.; Wang, M.; Hachem, S.; Zhang, K. Chronic Therapy With Elamipretide (MTP-131), a Novel Mitochondria-Targeting Peptide, Improves Left Ventricular and Mitochondrial Function in Dogs With Advanced Heart Failure. Circ. Heart Fail. 2016, 9, e002206. [Google Scholar]
- Shi, J.; Dai, W.; Hale, S.L.; Brown, D.A.; Wang, M.; Han, X.; Kloner, R.A. Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart. Life Sci. 2015, 141, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Dai, D-F.; Hsieh, E.J.; Chen, T.; Menendez, L.G.; Basisty, N.B.; Tsai, L.; Beyer, R.P.; Crispin, D.A.; Shulman, N.J.; Szeto, H.H.; et al. Global proteomics and pathway analysis of pressure-overload–induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ. Heart Fail. 2013, 6, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Birk, A.; Chao, W.; Bracken, C.; Warren, J.; Szeto, H. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br. J. Pharmacol. 2014, 171, 2017–2028. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.A.; Hale, S.L.; Baines, C.P.; del Rio, C.L.; Hamlin, R.L.; Yueyama, Y.; Kijtawornrat, A.; Yeh, S.T.; Frasier, C.R.; Stewart, L.M.; et al. Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia. J. Cardiovasc. Pharmacol. Ther. 2014, 19, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zhao, G-M.; Wu, D.; Soong, Y.; Birk, A.V.; Schiller, P.W.; Szeto, H.H. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J. Biol. Chem. 2004, 279, 34682–34690. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Shi, J.; Gupta, R.C.; Sabbah, H.N.; Hale, S.L.; Kloner, R.A. Bendavia, a Mitochondria-targeting Peptide, Improves Postinfarction Cardiac Function, Prevents Adverse Left Ventricular Remodeling, and Restores Mitochondria-related Gene Expression in Rats. J. Cardiovasc. Pharmacol. 2014, 64, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C.; Sing-Gupta, V.; Sabbah, H.N. Bendavia (Elamipretide) restores phosphorylation of cardiac myosin binding protein C on serine 282 and improves left ventricular diastolic function in dogs with heart failure. J. Am. Coll. Cardiol. 2016, 67, 1443. [Google Scholar] [CrossRef]
- Daubert, M.A.; Yow, E.; Dunn, G.; Barnhart, H.; Douglas, P.; Udelson, J.; O’Connor, C.; Goldstein, S.; Sabbah, H. Effects of a Novel Tetrapeptide in Heart Failure with Reduced Ejection Fraction (HFREF): A Phase I Randomized, Placebo-Controlled Trial of Elampiretide. J. Am. Coll. Cardiol. 2016, 67, 1283. [Google Scholar] [CrossRef]
- Sabbah, H.N.; Gupta, R.C.; Rastogi, S.; Wang, M.; Zhang, K.; Mohyi, P.; Szekely, K. Bendavia (MTP-131), a novel mitochondria-targeting peptide, normalizes expression of cardiolipin remodeling genes and proteins in left ventricular myocardium of dogs with advanced heart failure. J. Am. Coll. Cardiol. 2014, 63, A758. [Google Scholar] [CrossRef]
- Mann, J. The Effect of Multiple Injections of Elamipretide on Various Measures of Heart Function in Patients With Chronic Heart Failure With a Reduced Ejection Fraction. BioPortfolio 2016, NCT02788747. [Google Scholar]
Study | Year | Study Design | No. of Patients | Patient Cohort | Results |
---|---|---|---|---|---|
Li, Li [28] | 2016 | RCT with follow up period of 12 weeks | 140 | Patients with coronary heart disease and heart failure | Treatment with trimetazidine and metoprolol in addition to conventional treatment compared to standard treatment alone resulted in: Greater improvement in BNP (t = 19.41 pg/mL, <0.01) Improved LVEF (t = 1.683%, p < 0.05) |
Grajek, Michalak [29] | 2015 | Meta-analysis of 3 RCTs | 326 | Patients with heart failure of various aetiologies and stages | Treatment with trimetazidine compared to placebo resulted in a reduction of all-cause mortality (RR 0.283, p < 0.0001) |
Zhou, Chen [30] | 2014 | Meta-analysis of 19 RCTs | 1042 | Patients with heart failure of various aetiologies and stages | Treatment with trimetazidine compared to conventional treatment alone resulted in: LVEF improvement (WMD 7.29%, p < 0.01) Improved NYHA classification (WMD −0.55, 95% CI −0.81–−0.28; p < 0.01) No difference in exercise tolerance (WMD 18.58, p = 0.15) No difference in all-cause mortality (RR 0.47; 95% CI 0.12–1.78; p = 0.27) Reduction in BNP (WMD −157.08 pg/mL; CI −176.55–−137.62; p < 0.01) |
Zhang et al. [22] | 2012 | Meta-analysis of 16 RCTs | 884 | Patients with heart failure of various aetiologies and stages | Treatment with trimetazidine compared to placebo resulted in: No difference in all-cause mortality (RR 0.47, p = 0.27) Improved LVEF (WMD 6.46%, p < 0.0001) Reduced NYHA functional class (WMD −0.57, p = 0.0003) Improved exercise tolerance (WMD 63.75 s, p < 0.0001) Downregulation of BNP (WMD −203.4 pg/mL, p = 0.0002) |
Fragasso et al. [31] | 2012 | Multi-centre retrospective cohort study | 669 | Patients with systolic-diastolic heart failure with EF < 45% and NYHA Class II–IV | Treatment with trimetazidine compared to conventional treatment alone (after propensity score was performed) resulted in: Mortality risk reduction (HR 0.189; 95% CI 0.079–0.454; p = 0.0002) Reduction in CVD death (HR 0.072; 95% CI 0.019–0.286; p = 0.0001) 10.4% reduction in hospitalization (p < 0.0005) |
Gao et al. [32] | 2011 | Meta-analysis of 17 randomised studies | 955 | Patients with heart failure of various aetiologies and stages | Treatment with trimetazidine compared to placebo resulted in: Improved LVEF (WMD 7.49%, p < 0.01) Reduced NHYA classification (WMD −0.41, p < 0.01) Increased exercise tolerance (WMD 30.26 s, p < 0.01) Reduced mortality (RR 0.29; 95% CI 0.17–0.49; p < 0.01) Reduced cardiovascular events and hospitalisations (RR 0.42; 95% CI 0.30–0.58; p < 0.01) |
Study | Year | Study Design | No. of Patients | Patient Cohort | Results |
---|---|---|---|---|---|
Murray, Colombo [36] | 2014 | Unblinded, non-randomised trial | 109 | Systolic or diastolic heart failure patients with NYHA Class II–IV | Treatment with ranolazine compared to standard heart failure therapy alone resulted in: Increased LVEF (>7 EFU, p < 0.001) Cardiovascular event rate reduction |
Maier et al. [34] | 2013 | Prospective, randomised, double-blind, placebo-controlled proof-of-concept study | 20 | Patients with diastolic heart failure with preserved ejection fraction (EF > 45%) | In comparison to placebo, treatment with ranolazine in heart failure resulted in: Reduced left ventricular end-diastolic pressure (2.2 mmHg, p = 0.04) Reduction in cardiac out (0.3 l/min) and stroke volume (3.3 mL) (p = 0.04) No difference in exercise tolerance No difference in BNP levels |
Morrow et al. [33] | 2010 | Randomised, double-blind, placebo-controlled trial | 4543 | Non-ST-segment elevation ACS patients | Treatment with ranolazine compared to placebo resulted in: 13% reduction in the rate of recurrent ischemia (HR 0.87; 95% CI 0.76–0.99; p = 0.03) No difference in incidence of new or worsening heart failure No difference in exercise performance No change in BNP concentration |
Study | Year | Study Design | Results |
---|---|---|---|
Sossalla et al. [39] | 2008 | Treatment of myocytes of 10 isolated failing human hearts with ranolazine | Treatment with ranolazine resulted in a reduction of the diastolic tension (3.9 mN/mm2 reduction, p < 0.05) |
Rastogi et al. [42] | 2008 | Canine study of 28 dogs with induced heart failure with a randomised, blinded, placebo-controlled design | Treatment with ranolazine alone in heart failure resulted compared to placebo in: Improved EF by 2% (p ≤ 0.05) Reduction of EDWS by 14 gm/cm2 Treatment with combination of ranolazine and enalapril compared to placebo resulted in: Improved EF by 5% (p ≤ 0.05) Reduction of EDWS by 13 gm/cm2 Treatment with combination of ranolazine and metoprolol compared to placebo resulted in: Improved EF by 7% (p ≤ 0.05) Reduction of EDWS by 20 gm/cm2 |
Undrovinas et al. [40] | 2006 | Treatment of 26 isolated canine hearts post induction of heart failure | Ranolazine treatment of isolated canine hearts with induced heart failure resulted in: Restoration of normal myocyte relaxation Reduction in the resting tension of the myocytes |
Sabbah et al. [41] | 2002 | Canine study of 21 dogs with induced heart failure | Treatment of dogs with heart failure with ranolazine resulted in: Reduction of LVEDP by 3 mmHg (p = 0.001) Increased cardiac output of 0.39 L/min (p = 0.01) |
Study | Year | Study Design | No. of Patients | Patient Cohort | Results |
---|---|---|---|---|---|
Beadle et al. [50] | 2015 | Randomised double-blind placebo-controlled trial, parallel-group study | 47 | Patients with systolic heart failure of non-ischemic etiology with NYHA class of II–IV | Treatment of with perhexiline compared to placebo in heart failure resulted in: 30% increase in PCr/ATP ratio (p < 0.001) (no change in placebo group) 52% of treated patients improved by 1 NHYA class compared to 20% improving in the placebo group (p = 0.02) No change in LVEF (p = 0.68) No change in BNP levels |
Abozguia et al. [51] | 2010 | Randomised, double-blind, placebo-controlled, parallel-group trial | 46 | Patients with symptomatic exercise limitation caused by non-obstructive hypertrophic cardiomyopathy | Treatment of patients with hypertrophic cardiomyopathy with perhexiline compared to placebo resulted in: Improved exercise capacity (VO2 increased by 2.1 mL/kg/min, p = 0.003) Reportedly less symptoms (MLHFQ score improved by 8, p < 0.001) Improved NYHA classification in more patients (67% of treated patients compared to 30% of control) No significant difference in ejection fraction |
Phan et al. [52] | 2009 | 151 | Patients with chronic heart failure (LVEF < 40% with NYHA class > IIb) or refractory angina | Treatment of patients with angina or heart failure with perhexiline resulted in the majority of patients reporting subjective symptom reduction (58.9%) | |
Lee et al. [53] | 2005 | Randomised double-blind placebo-controlled trial | 56 | Patient with chronic heart failure with EF < 40% and NYHA Class II or III already on optimal treatment | Treatment of with perhexiline compared to placebo in heart failure resulted in: Increased VO2 max by 17% (p < 0.001) (no change in placebo group) Increased LVEF by 10% (p < 0.001) with no change in the placebo group Reduced symptoms of heart failure (MLHFQ score reduced by 24%, p = 0.04) while placebo group score was unchanged Mean NYHA classification improved by 21% (p = 0.02) with no change in the placebo group |
Study | Year | Study Design | No. of Patients | Results |
---|---|---|---|---|
Daubert et al. [79] | 2016 | Phase I randomised, placebo-controlled trial | 36 patients with stable heart failure (EF < 45% and NYHA Class II–III) | Heart failure treated with elamipretide compared to placebo resulted in: Reduced left ventricular end-systolic volume (between-group difference −13.7; 95% CI −22.7–−4.8; p = 0.005) and end-diastolic volume (between-group difference −17.9 mL; 95% CI −30.6–−5.2; p = 0.009) Elamipretide was well tolerated with no influence on blood and pressure and heart rate |
Sabbah et al. [71] | 2016 | Canine experiment | 14 dogs | Treatment of dogs with heart failure with elamipretide compared to intravenous saline resulted in: Improved EF (6% increase compared to pretreatment, p < 0.05) with no change in control Reduced end-systolic LV volume (3 mL, p < 0.05) compared to increased volume in the control group Increased maximum rate of ATP synthesis and increased ATP/ADP ratio (p < 0.05) No effect on heart rate, mean aortic pressure, systemic vascular resistance or LV end-diastolic volume |
Gupta et al. [78] | 2016 | Canine experiment | 14 dogs | Treatment of dogs with heart failure with elamipretide resulted in restoration of near normal levels of cMyBPC-S282 in the left ventricle (p < 0.05) |
Shi et al. [72] | 2015 | Murine experiment | 24 rats | Treatment of post-MI rats with elamipretide showed: Restored gene expression of mitochondrial energy metabolism Promotion of mitochondrial biogenesis Regulation of glucose and fatty acid oxidation related gene expression Preserved SERCA2a expression Reduction in cardiac fibrosis |
Dai et al. [77] | 2014 | Murine experiment | 56 rats | Rats treated with elamipretide compared to water after acute MI showed improved LV function and prevention of adverse left ventricle remodelling. |
Sabbah et al. [80] | 2014 | Canine experiment | 12 dogs | Dogs with heart failure treated with elamipretide compared to normal saline resulted in normalised expression of cardiolipin-remodelling genes and proteins (p < 0.05) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steggall, A.; Mordi, I.R.; Lang, C.C. Targeting Metabolic Modulation and Mitochondrial Dysfunction in the Treatment of Heart Failure. Diseases 2017, 5, 14. https://doi.org/10.3390/diseases5020014
Steggall A, Mordi IR, Lang CC. Targeting Metabolic Modulation and Mitochondrial Dysfunction in the Treatment of Heart Failure. Diseases. 2017; 5(2):14. https://doi.org/10.3390/diseases5020014
Chicago/Turabian StyleSteggall, Abbey, Ify R. Mordi, and Chim C. Lang. 2017. "Targeting Metabolic Modulation and Mitochondrial Dysfunction in the Treatment of Heart Failure" Diseases 5, no. 2: 14. https://doi.org/10.3390/diseases5020014
APA StyleSteggall, A., Mordi, I. R., & Lang, C. C. (2017). Targeting Metabolic Modulation and Mitochondrial Dysfunction in the Treatment of Heart Failure. Diseases, 5(2), 14. https://doi.org/10.3390/diseases5020014