p53 Gene (NY-CO-13) Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of Assessment of Serum p53 Concentration
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Xu, J.; Wu, Z.S.; Shen, W.; Le, J.; Zheng, T.; Li, H.; Jia, L. Programmable nanoassembly consisting of two hairpin-DNAs for p53 gene determination. Biosens. Bioelectron. 2017, 94, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zeng, S.X.; Lu, H. Targeting p53-MDM2-MDMX loop for cancer therapy. In Mutant p53 and MDM2 in Cancer; Springer: Dordrecht, The Netherlands, 2014; pp. 281–319. [Google Scholar]
- Mor, E.; He, L.; Torchinsky, A.; Shomron, N. MicroRNA-34a is dispensable for p53 function as teratogenesis inducer. Arch. Toxicol. 2014, 88, 1749–1763. [Google Scholar] [CrossRef] [PubMed]
- Canon, J.; Osgood, T.; Olson, S.H.; Saiki, A.Y.; Robertson, R.; Yu, D.; John, E.; Qiuping, Y.; Lixia, J.; Ada, C.; et al. The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of p53-Inducing Cytotoxic Agents. Mol. Cancer Ther. 2015, 14, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. p53 regulation: Teamwork between RING domains of Mdm2 and MdmX. Cell Cycle 2011, 10, 4225–4229. [Google Scholar] [CrossRef] [PubMed]
- Daks, A.; Petukhov, A.; Fedorova, O.; Shuvalov, O.; Merkulov, V.; Vasileva, E.; Antonov, A.; Nikolai, A.B. E3 ubiquitin ligase Pirh2 enhances tumorigenic properties of human non-small cell lung carcinoma cells. Genes Cancer 2016, 7, 383–393. [Google Scholar] [PubMed]
- Merkel, C.A.; da Silva Soares, R.B.; de Carvalho, A.C.; Zanatta, D.B.; Bajgelman, M.C.; Fratini, P.; Eugenia, C.-S.; Bryan, E.S. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6. BMC Cancer 2010, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Sazawal, S.; Chikkara, S.; Singh, K.; Chaubey, R.; Chandra, D.; Mishra, P.; Mahapatra, M.; Tulika, S.; Renu, S. Chronic myeloid leukemia with a rare fusion transcript, e19a2 BCR-ABL1: A report of three cases from India. Ann. Diagn. Pathol. 2017, 27, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.; Travis, D.; Whitby, L.; Bainbridge, J.; Cross, N.C.; Barnett, D. Measurement of BCR-ABL1 by RT-qPCR in chronic myeloid leukemia: Findings from an International EQA Programme. Br. J. Haematol. 2017, 177, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Rajala, H.L.; Missiry, M.E.; Ruusila, A.; Koskenvesa, P.; Brümmendorf, T.H.; Gjertsen, B.T. Tyrosine kinase inhibitor therapy-induced changes in humoral immunity in patients with chronic myeloid leukemia. J. Cancer Res. Clin. Oncol. 2017, 143, 1543–1554. [Google Scholar] [CrossRef] [PubMed]
- Haque, R.; Shi, J.; Chung, J.; Xu, X.; Avila, C.; Campbell, C.; Syed, A.A.; Lei, C.; Joanne, E.S. Medication adherence, molecular monitoring and clinical outcomes in patients with chronic myelogenous leukemia in a large HMO. J. Am. Pharm. Assoc. 2017, 57, 303–310. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- Sahu, K.K.; Malhotra, P.; Uthamalingam, P.; Prakash, G.; Bal, A.; Varma, N. Chronic Myeloid Leukemia with Extramedullary Blast Crisis: Two Unusual Sites with Review of Literature. Indian J. Hematol. Blood Transfus. 2016, 32 (Suppl. S1), 89–95. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.A.; Tefferi, A. Chronicneutrophilicleukemia 2016: Update on diagnosis, molecular genetics, prognosis, and management. Am. J. Hematol. 2016, 91, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Koiso, H.; Tsukamoto, N.; Shimano, S.; Karasawa, M.; Murakami, H.; Nojima, Y. Chronic myelogenous leukemia accompanied by megaloblastic anemia showing atypical clinical features. Rinsho Ketsueki 2011, 52, 1772–1776. [Google Scholar] [PubMed]
- Nakamura, Y.; Arakawa, H. Discovery of Mieap-regulated mitochondrial quality control as a new function of tumor suppressor p53. Cancer Sci. 2017, 21. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Cao, Y.; Han, G.; Zhang, Y.; You, Q.; Wang, Y.; Pan, Y. p53/microRNA-374b/AKT1 regulates colorectal cancer cell apoptosis in response to DNA damage. Int. J. Oncol. 2017, 50, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- Etti, I.C.; Rasedee, A.; Hashim, N.M.; Abdul, A.B.; Kadir, A.; Yeap, S.K.; Peter, W.; Ibrahim, M.; Kian, L.L.; Christopher, J.E. Artonin E induces p53-independent G1 cell cycle arrest and apoptosis through the ROS-mediated mitochondrial pathway and livin suppression in MCF-7 cells. Drug Des. Devel. Ther. 2017, 11, 865–879. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.M.; Choi, Y.K.; Kim, A.J.; Cho, S.G.; Ko, S.G. p53causesbutein-mediated apoptosis of chronic myeloid leukemia cells. Mol. Med. Rep. 2016, 13, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Choi, H.C.; Choe, Y.J.; Shin, S.J.; Lee, S.H.; Kim, H.S. Nutlin-3 induces BCL2A1 expression by activating ELK1 through the mitochondrial p53-ROS-ERK1/2 pathway. Int. J. Oncol. 2014, 45, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.J.; Cortes, J.E.; Kantarjian, H.M. Tyrosine kinase inhibition: A therapeutic target for the management of chronic-phase chronic myeloid leukemia. Expert Rev. Anticancer Ther. 2013, 13, 1433–1452. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, L.; Li, L.; Wang, Z.; Ho, Y.; McDonald, T.; Tessa, L.H.; WenYong, C.; Ravi, B. Activation of p53 by SIRT1inhibitionenhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 2012, 21, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.Y.; Kim, C.; Kim, W.S.; Lee, S.G.; Lee, J.H.; Shim, B.S.; Sung-Hoon, K.; Kyoo, S.A.; Kwang, S.A.; Korean, R.G. Extract Enhances the Anticancer Effects of imatinib mesylate Through Abrogation p38 and STAT5 Activation in KBM-5 Cells. Phytother. Res. 2015, 29, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.Z.; Mak, P.Y.; Mak, D.H.; Ruvolo, V.R.; Schober, W.; McQueen, T.; Jorge, C.; Hagop, M.K.; Richard, E.C.; Marina, K.; et al. Synergistic effects of p53activation via MDM2 inhibition in combination with inhibition of Bcl-2 or Bcr-Abl in CD34+ proliferating and quiescent chronic myeloid leukemia blast crisis cells. Oncotarget 2015, 6, 30487–30499. [Google Scholar] [CrossRef] [PubMed]
- Henze, J.; Mühlenberg, T.; Simon, S.; Grabellus, F.; Rubin, B.; Taeger, G.; Schuler, M.; Juergen, T.; Maria, D.-R.; Takahiro, T.; et al. p53 modulation as a therapeutic strategy in gastrointestinal stromal tumors. PLoS ONE 2012, 7, e37776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.H.; Liu, C.C.; Yen, C.C.; Gau, J.P.; Wang, W.S.; Tzeng, C.H. Pml and TAp73 interacting with nuclear body mediate imatinib-inducedp53-independent apoptosis of chronic myeloid leukemia cells. Int. J. Cancer 2009, 125, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Hochhaus, A.; Saglio, G.; Hughes, T.P.; Larson, R.A.; Kim, D.W.; Issaragrisil, S.; le, C.; Etienne, G.; Dorlhiac-Llacer, P.E.; Clark, R.E.; et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: A 5-year update of the randomized ENESTnd trial. Leukemia 2016, 30, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; Hochhaus, A.; Saglio, G.; De, S.C.; Flinn, I.W.; Stenke, L.; Goh, Y.T.; Rosti, G.; Hirohisa, N.; Neil, J.G.; et al. Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukemia: 24-month minimum follow-up of phase 3 randomisedENESTnd trial. Lancet Oncol. 2011, 12, 841–851. [Google Scholar] [CrossRef]
- Milojkovic, D.; Apperley, J. Mechanisms of Resistance to Imatinib and Second-Generation Tyrosine Inhibitors in chronic myeloid leukemia. Clin. Cancer Res. 2009, 15, 7519–7527. [Google Scholar] [CrossRef] [PubMed]
- James, A.R.; Unnikrishnan, B.S.; Priya, R.; Joseph, M.M.; Manojkumar, T.K.; Raveendran, P.K. Computational and mechanistic studies on the effect of galactoxyloglucan: Imatinibnanoconjugate in imatinib-resistant K562 cells. Tumour Biol. 2017, 39. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.F.; Lo, M.C.; Liu, Y.; Giannola, D.; Mitrikeska, E. Induction of p53 suppresses chronic myeloid leukemia. Leuk. Lymphoma 2017, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Mean ± SD, N, % |
---|---|
Age (years) | 52.67 ± 5.12 |
Gender (male: female ratio) | 33:27:00 |
Number | 88 |
Patients | 60 (68.18) |
Control | 28 (31.18) |
Duration of disease (years) | 2.1 ± 1.33 |
Current chemotherapy | 60 (100) |
Imatinib | 29 (48.33) |
Nilotinib | 31 (51.67) |
Other pharmacotherapy | |
Analgesic | 43 (71.66) |
Antibiotics | 51 (85.00) |
Antihypertensive drugs | 12 (35.00) |
Hepatosplenomegaly | |
Mild | 31 (51.67) |
Moderate | 22 (36.67) |
Huge | 9 (15.00) |
Smokers | 10 (16.66) |
Philadelphia chromosome | |
Positive | 11 (18.33) |
Negative | 49 (81.67) |
Variables | Control (n = 28) | Patients (n = 60) | p |
---|---|---|---|
Hb (g/L) | 14.8 ± 2.63 | 11.38 ± 3.29 | 0.21 |
WBC (×109/L) | 6.532 ± 2.4 | 88.93 ± 18.21 | 0.000 ** |
Platelet count (×109/L) | 338.68 ± 84.39 | 101.48 ± 22.57 | 0.000 ** |
Plateletcrit (%) | 0.24 ± 0.06 | 0.17 ± 0.04 | 0.000 ** |
MPV (fL) | 8.4 ± 3.55 | 14.84 ± 4.94 | 0.06 |
RDW (%) | 12.72 ± 2.52 | 11.43 ± 2.99 | 0.33 |
RDWCV (%) | 15.44 ± 1.78 | 16.44 ± 2.56 | 0.04 * |
MCH (pg/cell) | 29.53 ± 2.64 | 22.8 ± 3.11 | 0.35 |
MCV (fL) | 88.31 ± 18.27 | 86.29 ± 18.39 | 0.99 |
MCHC (g/dL) | 35.36 ± 1.59 | 29.86 ± 2.75 | 0.002 ** |
P53 (ng/mL) | 0.142 ± 0.11 | 2.135 ± 1.44 | 0.000 ** |
Variables | Imatinib (n = 29) | Nilotinib (n = 31) | t | p |
---|---|---|---|---|
Hb (g/L) | 11.5 ± 3.69 | 10.44 ± 3.38 | 1.15 | 0.63 |
WBC (×10 9/L) | 87.53 ± 17.4 | 88.11 ± 18.21 | 0.126 | 0.91 |
Platelet count (×10 9/L) | 100.55 ± 22.29 | 101.99 ± 22.54 | −0.24 | 0.95 |
Plateletcrit (%) | 0.16 ± 0.06 | 0.17 ± 0.02 | −0.85 | 0.39 |
MPV (fL) | 13.4 ± 3.22 | 15.52 ± 3.92 | −2.29 | 0.025 * |
RDW (%) | 11.66 ± 2.92 | 11.11 ± 2.75 | 0.75 | 0.45 |
RDWCV (%) | 15.82 ± 1.74 | 16.49 ± 2.21 | −1.30 | 0.19 |
MCH (pg/cell) | 19.33 ± 2.74 | 21.8 ± 2.19 | −3.84 | 0.0002 ** |
MCV (fL) | 88.31 ± 18.13 | 86.29 ± 16.35 | 0.45 | 0.65 |
MCHC (g/dL) | 28.26 ± 1.59 | 29.11 ± 1.79 | −1.94 | 0.056 |
P53 (ng/mL) | 1.18 ± 0.19 | 3.22 ± 1.99 | −5.58 | 0.0001 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Al-Buhadilly, A.K. p53 Gene (NY-CO-13) Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib. Diseases 2018, 6, 13. https://doi.org/10.3390/diseases6010013
Al-kuraishy HM, Al-Gareeb AI, Al-Buhadilly AK. p53 Gene (NY-CO-13) Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib. Diseases. 2018; 6(1):13. https://doi.org/10.3390/diseases6010013
Chicago/Turabian StyleAl-kuraishy, Hayder M., Ali I. Al-Gareeb, and Ali K. Al-Buhadilly. 2018. "p53 Gene (NY-CO-13) Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib" Diseases 6, no. 1: 13. https://doi.org/10.3390/diseases6010013
APA StyleAl-kuraishy, H. M., Al-Gareeb, A. I., & Al-Buhadilly, A. K. (2018). p53 Gene (NY-CO-13) Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib. Diseases, 6(1), 13. https://doi.org/10.3390/diseases6010013