In-Hospital Surgery as a Risk Factor for Onset of AmpC-Producing Escherichia coli Blood Stream Infections
Abstract
:1. Introduction
2. Methods
Statistical Tests
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Availability of Data and Material
Declarations
Consent for Publication
References
- Jacoby, G. AmpC B-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [PubMed]
- Wozniak, T.; Paterson, D.; Halton, K. Review of the epidemiological data regarding antimicrobial resistance in Gram-negative bacteria in Australia. Infect. Dis. Health 2017, 22, 210–218. [Google Scholar] [CrossRef]
- Chavada, R.; Descallar, J.; Maley, M. Predictors of mortality in blood stream infections caused by extended spectrum beta lactamase producing enterobacteriaceae. Clin. Microbiol. Infect. Dis. 2017, 2, 1–5. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Li, Z.; Bai, C.; Li, D.; Zheng, S.; Zhang, P.; Zhang, S. Bacteraemia due to AmpC β-lactamase-producing Escherichia coli in hospitalized cancer patients: Risk factors, antibiotic therapy, and outcomes. Diagn. Microbiol. Infect. Dis. 2017, 88, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Linares, L.; Cervera, C.; Cofán, F.; Lizaso, D.; Marco, F.; Ricart, M.J.; Esforzado, N.; Oppenheimer, F.; Campistol, J.M.; Moreno, A. Risk factors for infection with extended-spectrum and AmpC beta-lactamase-producing gram-negative rods in renal transplantation. Am. J. Transpl. 2008, 8, 1000–1005. [Google Scholar] [CrossRef]
- Chavada, R.; Maley, M. Evaluation of a commercial multiplex PCR for rapid detection of multi drug resistant gram-negative infections. Open Microbiol. J. 2015, 9, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement CLSI Document M100; CLSI: Wayne, PA, USA, 2014. [Google Scholar]
- Pascual, V.; Ortiz, G.; Simo, M.; Alonso, N.; Garcia, M.C.; Xercavins, M.; Rivera, A.; Morera, M.A.; Miró, E.; Espejo, E.; et al. Epidemiology and risk factors for infections due to AmpC beta-lactamaseproducing Escherichia coli. J. Antimicrob. Chemther. 2015, 70, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Pascual, V.; Alonso, N.; Simo, M.; Ortiz, G.; Garcia, M.C.; Xercavins, M.; Rivera, A.; Morera, M.A.; Miró, E.; Espejo, E.; et al. Bloodstream infections caused by Escherichia coli producing AmpC beta-lactamases: Epidemiology and clinical features. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1997–2003. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, T.; Matsumura, Y.; Yamamoto, M.; Nagao, M.; Takakura, S.; Ichiyama, S. Clinical and microbiologic characteristics of cefotaxime-non-susceptible Enterobacteriaceae bacteremia: A case control study. BMC Infect. Dis. 2017, 17, 44. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Yoo, S.; Seo, M.-R.; Kim, J.Y.; Cho, Y.K.; Pai, H. Risk factors and clinical features of infections caused by plasmid-mediated AmpC beta-lactamase-producing Enterobacteriaceae. Int. J. Antimicrob. Agents 2009, 34, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Baño, J.; Miró, E.; Villar, M.; Coelho, A.; Gozalo, M.; Borrell, N.; Bou, G.; Conejo, M.C.; Pomar, V.; Aracil, B.; et al. Colonisation and infection due to Enterobacteriaceae producing plasmid-mediated AmpC β-lactamases. J. Infect. 2012, 64, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, V.P.; Pitout, J.D.D.; Dalton, B.; Gregson, D.B.; Ross, T.; Laupland, K.B. Clinical and microbiological characteristics of bloodstream infections due to AmpC β-lactamase producing Enterobacteriaceae: An active surveillance cohort in a large centralized Canadian region. BMC Infect Dis 2014, 14, 647. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Fernandez, A.; Chiaretto, G.; Bertini, A.; Villa, L.; Fortini, D.; Ricci, A.; Carattoli, A. Multilocus sequence typing of IncI1 plasmids carrying extended-spectrum beta-lactamases in Escherichia coli and Salmonella of human and animal origin. J. Antimicrob. Chemother. 2008, 61, 1229–1233. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, L.; Kuhn, K.G.; Hansen, F.; Skov, R.L.; Hammerum, A.M.; Littauer, P.J.; Thorlacius-Ussing, O.; Gebuhr, P.H.; Knudsen, J.D.; Schønheyder, H.C. Fecal carriage of extended-spectrum and AmpC β-lactamase-producing Enterobacteriaceae in surgical patients before and after antibiotic prophylaxis. Diagn. Microbiol. Infect. Dis. 2016, 86, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Rand, K.H.; Turner, B.; Seifert, H.; Hansen, C.; Johnson, J.A.; Zimmer, A. Clinical laboratory detection of AmpC beta-lactamase: Does it affect patient outcome? Am. J. Clin. Pathol. 2011, 135, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Yan, J.J.; Wu, J.J.; Chang, C.M.; Wu, C.J.; Lee, N.Y.; Ko, W.C. Clonal spread of Klebsiella pneumoniae producing CMY-2 AmpC-type β-lactamase in surgical intensive care units. J. Microbiol. Immunol. Infect. 2009, 42, 479–487. [Google Scholar]
- Drinković, D.; Morris, A.J.; Dyet, K.; Bakker, S.; Heffernan, H. Plasmid-mediated AmpC beta-lactamase-producing Escherichia coli causing urinary tract infection in the auckland community likely to be resistant to commonly prescribed antimicrobials. N. Z. Med. J. 2015, 128, 50–59. [Google Scholar] [PubMed]
- Harris, P.N.A. Clinical management of infections caused by enterobacteriaceae that express extended-spectrum β-Lactamase and AmpC enzymes. Semin. Respir. Crit. Care Med. 2015, 36, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Clinical Excellence Commission-Sepsis Kills. Available online: http://www.cec.health.nsw.gov.au/patient-safety-programs/adult-patient-safety/sepsis-kills/program-elements (accessed on 18 March 2018).
Variable | AmpC EC (n = 21) | Third-Generation Cephalosporin-Susceptible EC (n = 21) | p Value |
---|---|---|---|
Age | 73.3 ± 15.6 | 65.5 ± 13.1 | 0.53 |
Sex (male) | 13 | 13 | |
Mean length of stay (IQR) | 28 (3–187) | 23 (4–89) | 0.30 |
Mean duration of definitive antimicrobial therapy (days) | 14.3 | 10.4 | 0.08 |
Onset | 0.51 | ||
Hospital | 10 | 12 | |
Community | 11 | 9 | |
Infection type | 0.19 | ||
Urinary tract infection | 10 | 10 | |
Intraabdominal infection | 6 | 7 | |
Others | 5 | 4 | |
Recent antibiotic exposure | 7 | 3 | 0.14 |
Surgery in hospital | 11 | 4 | 0.024 * |
Intensive care unit admission | 9 | 5 | 0.19 |
Residence in aged care facility | 4 | 0 | 0.035 * |
Immunosuppression including chemotherapy | 0 | 3 | 0.07 |
Urological procedure | 3 | 3 | 0.98 |
Type 2 diabetes mellitus | 3 | 5 | 0.42 |
Renal failure | 0 | 1 | 0.31 |
Mean APACHE2 score | 18.5 ± 3.7 | 17.8 ± 3.6 | 0.043 * |
Outcome | 4 | 6 | 0.46 |
Variable | Odds Ratio | 95% CI | p Value | |
---|---|---|---|---|
Surgery in hospital | 4.78 | 1.12 | 20.31 | 0.034 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavada, R.; Tong, D.; Maley, M. In-Hospital Surgery as a Risk Factor for Onset of AmpC-Producing Escherichia coli Blood Stream Infections. Diseases 2018, 6, 71. https://doi.org/10.3390/diseases6030071
Chavada R, Tong D, Maley M. In-Hospital Surgery as a Risk Factor for Onset of AmpC-Producing Escherichia coli Blood Stream Infections. Diseases. 2018; 6(3):71. https://doi.org/10.3390/diseases6030071
Chicago/Turabian StyleChavada, Ruchir, Deborah Tong, and Michael Maley. 2018. "In-Hospital Surgery as a Risk Factor for Onset of AmpC-Producing Escherichia coli Blood Stream Infections" Diseases 6, no. 3: 71. https://doi.org/10.3390/diseases6030071
APA StyleChavada, R., Tong, D., & Maley, M. (2018). In-Hospital Surgery as a Risk Factor for Onset of AmpC-Producing Escherichia coli Blood Stream Infections. Diseases, 6(3), 71. https://doi.org/10.3390/diseases6030071