Cardiotoxicity Associated with Anti-CD19 Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Recognition, Risk Factors, and Management
Abstract
:1. Introduction
2. Cardiotoxicity
2.1. Cardiotoxicity in Pediatric and Young Adult Patients
2.2. Cardiotoxicity in Adult Patients
3. Risks for Developing Cardiotoxic Events
4. Management and Treatment
4.1. Pre-CAR-T Infusion Cardiovascular Considerations
4.2. Clinical Monitoring during and after CAR-T Infusion
4.3. Management of Cardiovascular Events
4.3.1. Supportive Care
4.3.2. IL-6 Inhibitor Therapy
4.3.3. Corticosteroid Therapy
4.3.4. The Role of IL-1 Therapy
4.3.5. The Role of TNF-α Therapy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Lulla, P.D.; Hill, L.C.; Ramos, C.A.; Heslop, H.E. The use of chimeric antigen receptor T cells in patients with non-Hodgkin lym-phoma. Clin. Adv. Hematol. Oncol. 2018, 16, 375–386. [Google Scholar] [PubMed]
- Zmievskaya, E.; Valiullina, A.; Ganeeva, I.; Petukhov, A.; Rizvanov, A.; Bulatov, E. Application of CAR-T Cell Therapy beyond Oncology: Autoimmune Diseases and Viral Infections. Biomedcines 2021, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Filin, I.Y.; Solovyeva, V.V.; Kitaeva, K.V.; Rutland, C.S.; Rizvanov, A.A. Current Trends in Cancer Immunotherapy. Biomedcines 2020, 8, 621. [Google Scholar] [CrossRef] [PubMed]
- Roberts, Z.J.; Better, M.; Bot, A.; Roberts, M.R.; Ribas, A. Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. Leuk. Lymphoma 2017, 59, 1785–1796. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Chen, D.H.; Guha, A.; MacKenzie, S.; Walker, J.M.; Roddie, C. CAR T Cell Therapy–Related Cardiovascular Outcomes and Management. JACC Cardio Oncol. 2020, 2, 97–109. [Google Scholar] [CrossRef]
- McHayleh, W.; Bedi, P.; Sehgal, R.; Solh, M. Chimeric Antigen Receptor T-Cells: The Future is Now. J. Clin. Med. 2019, 8, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Penack, O.; Koenecke, C. Complications after CD19+ CAR T-Cell Therapy. Cancers 2020, 12, 3445. [Google Scholar] [CrossRef]
- Porter, D.; Frey, N.; Wood, P.A.; Weng, Y.; Grupp, S.A. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J. Hematol. Oncol. 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Lee, D.W.; Gardner, R.A.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.C.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transpl. 2019, 25, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Stein-Merlob, A.F.; Rothberg, M.V.; Holman, P.; Yang, E.H. Immunotherapy-Associated Cardiotoxicity of Immune Checkpoint Inhibitors and Chimeric Antigen Receptor T Cell Therapy: Diagnostic and Management Challenges and Strategies. Curr. Cardiol. Rep. 2021, 23, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Oved, J.H.; Barrett, D.M.; Teachey, D.T. Cellular therapy: Immune-related complications. Immunol. Rev. 2019, 290, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta Mol. Cell Res. 2011, 1813, 878–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganatra, S.; Redd, R.; Hayek, S.S.; Parikh, R.; Azam, T.; Yanik, G.A.; Spendley, L.; Nikiforow, S.; Jacobson, C.; Nohria, A. Chimeric Antigen Receptor T-Cell Therapy–Associated Cardiomyopathy in Patients with Refractory or Relapsed Non-Hodgkin Lymphoma. Circulation 2020, 142, 1687–1690. [Google Scholar] [CrossRef]
- Pathan, N.; Hemingway, C.A.; Alizadeh, A.A.; Stephens, A.C.; Boldrick, J.C.; Oragui, E.E.; McCabe, C.; Welch, S.B.; Whitney, A.; O’Gara, P.; et al. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet 2004, 363, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Linette, G.P.; Stadtmauer, E.A.; Maus, M.V.; Rapoport, A.P.; Levine, B.L.; Emery, L.; Litzky, L.; Bagg, A.; Carreno, B.M.; Cimino, P.J.; et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 2013, 122, 863–871. [Google Scholar] [CrossRef]
- Yáñez, L.; Sánchez-Escamilla, M.; Perales, M.-A. CAR T Cell Toxicity: Current Management and Future Directions. HemaSphere 2019, 3, e186. [Google Scholar] [CrossRef] [PubMed]
- Kymriah-Epar-Product-Information. Available online: https://www.ema.europa.eu/documents/product-information/kymriah-epar-product-information_en.pdf (accessed on 1 March 2021).
- Yescarta-Epar-Product-Information. Available online: https://www.ema.europa.eu/documents/product-information/yescarta-epar-product-information_en.pdf (accessed on 1 March 2021).
- Kochenderfer, J.N.; Somerville, R.P.; Lu, T.; Shi, V.; Bot, A.; Rossi, J.; Xue, A.; Goff, S.L.; Yang, J.C.; Sherry, R.M.; et al. Lymphoma Remissions Caused by Anti-CD19 Chimeric Antigen Receptor T Cells Are Associated with High Serum Interleukin-15 Levels. J. Clin. Oncol. 2017, 35, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef]
- Davila, M.L.; Riviere, I.; Wang, X.; Bartido, S.; Park, J.; Curran, K.; Chung, S.S.; Stefanski, J.; Borquez-Ojeda, O.; Olszewska, M.; et al. Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Sci. Transl. Med. 2014, 6, 224ra25. [Google Scholar] [CrossRef] [Green Version]
- Shalabi, H.; Sachdev, V.; Kulshreshtha, A.; Cohen, J.W.; Yates, B.; Rosing, D.R.; Sidenko, S.; Delbrook, C.; Mackall, C.; Wiley, B.; et al. Impact of cytokine release syndrome on cardiac function following CD19 CAR-T cell therapy in children and young adults with hematological malignancies. J. Immunother. Cancer 2020, 8, e001159. [Google Scholar] [CrossRef]
- Burstein, D.S.; Maude, S.; Grupp, S.; Griffis, H.; Rossano, J.; Lin, K. Cardiac Profile of Chimeric Antigen Receptor T Cell Therapy in Children: A Single-Institution Experience. Biol. Blood Marrow Transpl. 2018, 24, 1590–1595. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, J.C.; Weiss, S.L.; Maude, S.L.; Barrett, D.M.; Lacey, S.F.; Melenhorst, J.J.; Shaw, P.; Berg, R.A.; June, C.H.; Porter, D.L.; et al. Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia. Crit. Care Med. 2017, 45, e124–e131. [Google Scholar] [CrossRef] [PubMed]
- Alvi, R.M.; Frigault, M.J.; Fradley, M.G.; Jain, M.D.; Mahmood, S.S.; Awadalla, M.; Lee, D.H.; Zlotoff, D.A.; Zhang, L.; Drobni, Z.D.; et al. Cardiovascular Events Among Adults Treated With Chimeric Antigen Receptor T-Cells (CAR-T). J. Am. Coll. Cardiol. 2019, 74, 3099–3108. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, B.; Kang, Y.; Smith, A.M.; Frey, N.V.; Carver, J.R.; Scherrer-Crosbie, M. Cardiovascular Effects of CAR T Cell Therapy. JACC Cardio Oncol. 2020, 2, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Ganatra, S.; Parikh, R.; Neilan, T.G. Cardiotoxicity of Immune Therapy. Cardiol. Clin. 2019, 37, 385–397. [Google Scholar] [CrossRef]
- Aldoss, I.; Khaled, S.K.; Budde, E.; Stein, A.S. Cytokine Release Syndrome with the Novel Treatments of Acute Lymphoblastic Leukemia: Pathophysiology, Prevention, and Treatment. Curr. Oncol. Rep. 2019, 21, 4. [Google Scholar] [CrossRef] [PubMed]
- Ganatra, S.; Carver, J.R.; Hayek, S.S.; Ky, B.; Leja, M.J.; Lenihan, D.J.; Lenneman, C.; Mousavi, N.; Park, J.H.; Perales, M.A.; et al. Chimeric Antigen Receptor T-Cell Therapy for Cancer and Heart. J. Am. Coll. Cardiol. 2019, 74, 3153–3163. [Google Scholar] [CrossRef] [PubMed]
- Jamal, F.A.; Khaled, S.K. The Cardiovascular Complications of Chimeric Antigen Receptor T Cell Therapy. Curr. Hematol. Malign-Rep. 2020, 15, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Dal’Bo, N.; Patel, R.; Parikh, R.; Shah, S.P.; Guha, A.; Dani, S.S.; Ganatra, S. Cardiotoxicity of Contemporary Anticancer Immunotherapy. Curr. Treat. Options Cardiovasc. Med. 2020, 22, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Asnani, A. Cardiotoxicity of Immunotherapy: Incidence, Diagnosis, and Management. Curr. Oncol. Rep. 2018, 20, 1–7. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric antigen receptor T-cell therapy—Assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef]
- Murthy, H.; Iqbal, M.; Chavez, J.C.; Kharfan-Dabaja, M.A. Cytokine Release Syndrome: Current Perspectives. ImmunoTargets Ther. 2019, 8, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Riegler, L.L.; Jones, G.P.; Lee, D.W. Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy. Ther. Clin. Risk Manag. 2019, 15, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Le, R.Q.; Li, L.; Yuan, W.; Shord, S.S.; Nie, L.; Habtemariam, B.A.; Przepiorka, D.; Farrell, A.T.; Pazdur, R. FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist 2018, 23, 943–947. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudjafari, Z.; Hawks, K.G.; Hsieh, A.A.; Plesca, D.; Gatwood, K.S.; Culos, K.A. American Society for Blood and Marrow Transplantation Pharmacy Special Interest Group Survey on Chimeric Antigen Receptor T Cell Therapy Administrative, Logistic, and Toxicity Management Practices in the United States. Biol. Blood Marrow Transpl. 2019, 25, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Lobenwein, D.; Kocher, F.; Dobner, S.; Gollmann-Tepeköylü, C.; Holfeld, J. Cardiotoxic mechanisms of cancer immunotherapy—A systematic review. Int. J. Cardiol. 2021, 323, 179–187. [Google Scholar] [CrossRef]
- Annane, D.; Maxime, V.; Ibrahim, F.; Alvarez, J.C.; Abe, E.; Boudou, P. Diagnosis of Adrenal Insufficiency in Severe Sepsis and Septic Shock. Am. J. Respir. Crit. Care Med. 2006, 174, 1319–1326. [Google Scholar] [CrossRef] [Green Version]
- Dellinger, R.P.; Levy, M.M.; Carlet, J.M.; Bion, J.; Parker, M.M.; Jaeschke, R.; Reinhart, K.; Angus, D.C.; Brun-Buisson, C.; Beale, R.; et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med. 2008, 36, 296–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bethin, K.E.; Vogt, S.K.; Muglia, L.J. Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc. Natl. Acad. Sci. USA 2000, 97, 9317–9322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, L.F.; Abbate, A. Interleukin-1 blockade in cardiovascular diseases: A clinical update. Eur. Hear. J. 2018, 39, 2063–2069. [Google Scholar] [CrossRef] [Green Version]
- Norelli, M.; Camisa, B.; Barbiera, G.; Falcone, L.; Purevdorj, A.; Genua, M.; Sanvito, F.; Ponzoni, M.; Doglioni, C.; Cristofori, P.; et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 2018, 24, 739–748. [Google Scholar] [CrossRef]
- Giavridis, T.; Van Der Stegen, S.J.C.; Eyquem, J.; Hamieh, M.; Piersigilli, A.; Sadelain, M. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 2018, 24, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Jatiani, S.S.; Aleman, A.; Madduri, D.; Chari, A.; Cho, H.J.; Richard, S.; Richter, J.; Brody, J.; Jagannath, S.; Parekh, S. Myeloma CAR-T CRS Management With IL-1R Antagonist Anakinra. Clin. Lymphoma Myeloma Leuk. 2020, 20, 632–636.e1. [Google Scholar] [CrossRef]
- Wang, J.; Mou, N.; Yang, Z.; Li, Q.; Jiang, Y.; Meng, J.; Liu, X.; Deng, Q. Efficacy and safety of humanized anti-CD19CAR-T therapy following intensive lymphodepleting chemotherapy for refractory/relapsed B acute lymphoblastic leukaemia. Br. J. Haematol. 2020, 191, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, S.; Xu, J.; Zhang, R.; Zhu, H.; Wu, Y.; Zhu, L.; Li, J.; Chen, L. Etanercept as a new therapeutic option for cytokine release syndrome following chimeric antigen receptor T cell therapy. Exp. Hematol. Oncol. 2021, 10, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Otero, P.; Prósper, F.; Alfonso, A.; Paiva, B.; Miguel, J.F.S.S. CAR T-Cells in Multiple Myeloma Are Ready for Prime Time. J. Clin. Med. 2020, 9, 3577. [Google Scholar] [CrossRef] [PubMed]
- Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; et al. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. N. Engl. J. Med. 2013, 368, 1509–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Penn Criteria [12] | ||||
---|---|---|---|---|
Grade 1 | Grade 2 | Grade 3 | Grade 4 | |
Mild reaction: Treated with supportive care, such as antipyretics, antiemetics | Moderate reaction: Some signs of organ dysfunction (grade 2 creatinine or grade 3 LFTs) related to CRS and not attributable to any other condition. Hospitalization for management of CRS-related symptoms, including neutropenic fever and need for i.v. therapies (not including fluid resuscitation for hypotension) | More severe reaction: Hospitalization required for management of symptoms related to organ dysfunction, including grade 4 LFTs or grade 3 creatinine, related to CRS and not attributable to any other condition. Hypotension treated with multiple fluid boluses or low-dose vasopressors. Coagulopathy requiring fresh frozen plasma, cryoprecipitate, or fibrinogen concentrate. Hypoxia requiring supplemental oxygen (nasal cannula oxygen, high-flow oxygen, CPAP, or BiPAP) | Life-threatening complications such as hypotension requiring high-dose vasopressors. Hypoxia requiring mechanical ventilation | |
Lee Criteria [13] | ||||
Grade 1 | Grade 2 | Grade 3 | Grade 4 | |
Symptoms are not life-threatening and require symptomatic treatment only (fever, nausea, fatigue, headache, myalgias, malaise) | Symptoms require and respond to moderate intervention: Oxygen requirement < 40% FiO2, OR hypotension responsive to i.v. fluids or low dose of one vasopressor, OR grade 2 organ toxicity * | Symptoms require and respond to aggressive intervention: Oxygen requirement ≥ 40% FiO2, OR Hypotension requiring high-dose or multiple vasopressors, OR grade 3 organ toxicity, or grade 4 transaminitis | Life-threatening symptoms: Requirement for ventilator support, OR grade 4 organ toxicity (excluding transaminitis) | |
ASTCT Consensus Criteria [14] | ||||
Grade 1 | Grade 2 | Grade 3 | Grade 4 | |
Temperature ≥ 38 °C, no hypotension, no hypoxia | Temperature ≥ 38 °C, with hypotension not requiring vasopressors, and/or hypoxia requiring low flow nasal cannula | Temperature ≥ 38 °C, with hypotension requiring vasopressors with or without vasopressin, and/or hypoxia requiring high-flow nasal cannula, facemask, nonrebreather mask, or venturi mask | Temperature ≥ 38 °C, with hypotension requiring multiple vasopressors (excluding vasopressin), and/or hypoxia requiring positive pressure (CPAP, BiPAP, intubation, and mechanical ventilation) |
Reported Cardiotoxic Events with FDA Approved CD19 CAR-T |
---|
Tachycardia |
Hypotension |
Fluid refractory hypotension |
Pulmonary Edema |
Depressed left ventricular function |
Cardiac failure |
Cardiac failure requiring inotropic support |
Elevated troponin |
Arrhythmia |
ST-segment changes |
Cardiac arrest |
CD19-CAR-T Infusion | Tisagenlecleucel | Tisagenlecleucel | Axicabtagene Ciloleucel | Brexucabtagene Autoleucel |
---|---|---|---|---|
Trial | ELIANA [8] | JULIET [7] | ZUMA-1 [9] | ZUMA-2 [10] |
Pertinent cardiovascular trial exclusion criteria | -Left Ventricular systolic function ≤ 28% confirmed by echocardiogram -Left ventricular ejection fraction ≤ 45% confirmed by echocardiogram or multigated acquisition images within 7 days of screening | -Unstable Angina or MI within 6 months of planned infusion -Uncontrolled arrhythmia | -EF < 50% determined by transthoracic echocardiogram -Evidence of pericardial effusion -Presence of clinically significant ECG findings | -Cardiac ejection fraction < 50% -Evidence of pericardial effusion -Clinically significant electrocardiogram findings -Myocardial infarction, cardiac angioplasty or stenting, unstable angina, active arrhythmias, or other clinically significant cardiac disease within 12 months of enrollment -Cardiac atrial or cardiac ventricular lymphoma involvement |
FDA Approved CD19-CAR-T | Tisagenlecleucel | Tisagenlecleucel | Axicabtagene Ciloleucel | Brexucabtagene Autoleucel |
---|---|---|---|---|
Trial | JULIET [7] | ELIANA [8] | ZUMA-1 [9] | ZUMA-2 [10] |
Disease | Adult LBCL | Pediatric B-ALL | Adult LBCL | Adult MCL |
Study Phase | 2 | 1–2 | 2 | 2 |
Patients Studied in Efficacy Analysis | 93 | 75 | 101 | 68 |
Objective Response Rate | 50% | 83% | 82% | 93% |
Complete Response | 40% | 60% | 54% | 67% |
12 month RFS/PFS | 65% | 59% | 44% | 61% |
12 month OS | 49% (estimated) | 76% | 59% | 83% |
Patients Studied in Safety Analysis | 111 | 75 | 101 | 68 |
Percent with any Grade AE | 100% | 100% | 100% | 100% |
CRS | 64 (58%) | 58 (77%) | 94 (93%) | 61 (91%) |
CRS Grading System | Penn Criteria [12] | Penn Criteria [12] | Lee Criteria [13] | Lee Criteria [13] |
Tocilizumab Use | 16 (14%) | 36 (48%) | 49 (48.5%) | 42 (61.8%) |
Hypotension | 29 (26%) | 22(29%) | 60 (59%) | 35 (51%) |
Hypotension requiring inotropic support or shock | 8 (9%) | 13 (17%) | 14 (14%) | 15 (22%) |
Pulmonary Edema | NR | 5 (6.7%) | NR | NR |
Left Ventricular Dysfunction | NR | 3 (4.0%) | NR | NR |
Cardiac Arrest | NR | 3(4.0%) | NR | NR |
Cardiac Failure | NR | 2 (2.7%) | NR | NR |
Tachycardia | 12 (11%) | 3 (4.0%) | 39 (39%) | 21 (31%) |
CD19-CAR-T Cardiovascular Events | Shalabi et al. (2020) [28] | Burstein et al. (2018) [29] | Fitzgerald et al. (2017) [30] |
---|---|---|---|
Patient Population | Pediatric (n = 52) | Pediatric (n = 98) | Pediatric (n = 39) |
Treatment Indication | |||
B-ALL | 50 (96.1%) | 90 (97%) | 39 (100%) |
NHL | 2 (3.9%) | 1 (1%) | 0 |
Multiple Myeloma | 0 | 0 | 0 |
T-ALL | 0 | 1 (1%) | 0 |
PML | 0 | 1 (1%) | 0 |
CRS Grading System | Penn Criteria [12] ASTCT Consensus Criteria [14] | Penn Criteria [12] | Penn Criteria [12] |
Cardiotoxic Events | |||
Pre-existing Cardiomyopathy/Structural Disease/Arrhythmia | 6 (11.5%) | 10 (11%)/1(5%) | NR |
Hypotension Requiring Inotropic Support | 9 (24.3%) | 24 (24%) | 13 (33%) |
Troponemia | NR | NR | NR |
Ventricular Systolic Dysfunction | 6 (11.5%) | 10 (10%) | 1 (2%) |
Tachycardia | 36 (69.2%) | NR | NR * |
Arrhythmia | NR | NR | NR |
ST segment changes | NR | 6 (6%) | NR |
Cardiac Arrest/ Cardiac Death | 1 (2.7%) | 0 | NR |
Required Tocilizumab | 14 (37.8%) | 21 (21%) | 13 (33%) |
CD19-CAR-T Cardiovascular Events | Ganatra et al. (2020) [18] | Alvi et al. (2019) [31] | Lefebvre et al. (2020) [32] |
---|---|---|---|
Patient Population | Adults (n = 187) | Adult (n = 137) | Adult (n = 145) |
Treatment Indication | |||
B-ALL | 1 (0.5%) | 0 | 36 (25%) |
NHL | 185 (98.7%) | 119 (88%) | 43 (30%) |
Multiple Myeloma | 0 | 11 (8%) | 0 |
T-ALL | 0 | 0 | 0 |
PML | 1 (0.5%) | 0 | 0 |
CLL | 0 | 0 | 66 (46%) |
CRS Grading System | Lee Criteria [13] | Lee Criteria [13] | ASTCT consensus Criteria [14] |
Number with Cardiotoxic event | 12 (6.4%) | 17 (12%) | 31 (21.3%) |
Pre-existing Cardiomyopathy/Structural Disease/Arrhythmia | 1 (0.5%)/4 (2.1%)/3 (1.6%) | 5 (3.6%)/10 (7.3%)/18 (13%) | 1 (0.7%)/5 (3.4%)/5 (3.4%) |
Hypotension/shock Requiring Inotropic Support | 5 (2.6%) | 6 (4%) | 33 (22.7%) |
Troponemia | NR | 29 (21%) | NR |
CHF/Ventricular Systolic Dysfunction | 12 (6.4%) | 8 (6%) | 21 (14.5%) |
Sinus Tachycardia | NR | 6 (4.4%) | NR |
Arrhythmia | 5 (3.6%) | 13 (8.9%) | |
ST segment changes | NR | NR | NR |
Cardiac Arrest/ Cardiac Death | 3 (1.6%) | 6 (4.4%) | 2 (1.4%) |
Required Tocilizumab | 12 (6.4%) | 56 (40.9%) | 15 (10.3%) |
Predictive Risk Factors for CRS [25,27,34,35] | Risk Factors for Cardiotoxicity in Pediatric Patients [28,29] | Risk Factors for Cardiotoxicity in Adult Patients [18,31,32,35] |
---|---|---|
High disease burden | Pre-Treatment Blasts >25% on bone marrow biopsy | Concomitant CRS (grade 3 or 4 CRS) |
High CAR-T dose | Lower Pre-CAR-T Treatment baseline EF | Troponin elevation |
High intensity lymphodepleting regimen | Pre-existing diastolic dysfunction | Older Age |
Pre-existing endothelial activation | Higher Baseline Creatinine | |
Severe thrombocytopenia | Aspirin, statin, insulin, beta blocker, RAA medication use | |
Addition of fludarabine to cyclophosphamide during lymphodepletion | Hyperlipidemia | |
Higher peak of C reactive protein | CAD | |
Older patient age | Aortic Stenosis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burns, E.A.; Gentille, C.; Trachtenberg, B.; Pingali, S.R.; Anand, K. Cardiotoxicity Associated with Anti-CD19 Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Recognition, Risk Factors, and Management. Diseases 2021, 9, 20. https://doi.org/10.3390/diseases9010020
Burns EA, Gentille C, Trachtenberg B, Pingali SR, Anand K. Cardiotoxicity Associated with Anti-CD19 Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Recognition, Risk Factors, and Management. Diseases. 2021; 9(1):20. https://doi.org/10.3390/diseases9010020
Chicago/Turabian StyleBurns, Ethan A., Cesar Gentille, Barry Trachtenberg, Sai Ravi Pingali, and Kartik Anand. 2021. "Cardiotoxicity Associated with Anti-CD19 Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Recognition, Risk Factors, and Management" Diseases 9, no. 1: 20. https://doi.org/10.3390/diseases9010020
APA StyleBurns, E. A., Gentille, C., Trachtenberg, B., Pingali, S. R., & Anand, K. (2021). Cardiotoxicity Associated with Anti-CD19 Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Recognition, Risk Factors, and Management. Diseases, 9(1), 20. https://doi.org/10.3390/diseases9010020