Improved Differential Evolution Algorithm to Solve the Advertising Method Selection Problem
Abstract
:1. Introduction
- (1)
- Formulation of a mathematical model of the advertisement selection problem;
- (2)
- Proposal of a differential evolution algorithm (DE) to solve the problem; and
- (3)
- Formulation of the problem with the following attributes:
- (3.1)
- Individual products respond differently when different advertising methods are used (different efficiencies);
- (3.2)
- The possibility of a particular advertisement increasing the sales volume is uncertain;
- (3.3)
- There are budget limitations for advertising methods; and
- (3.4)
- There are resource limitations for all advertising methods.
2. Problem Definition and Mathematical Formulation
Mathematical Model Formulation
I | Maximum number of products |
J | Maximum number of advertising methods |
K | Maximum number of scenarios |
i | Number of products i = 1 … I |
j | Number of advertising methods j = 1 … J |
k | Number of products k = 1 … K |
Mj | Maximum available time for advertisement j (server) |
Vi | Minimum sales volume of product i |
Pi | Price of product i per unit |
N | Maximum budget of the company for the advertisement |
Rjk | Probability of the occurrence of scenario k while using advertisement j |
Tij | Time that is used to create the advertisement of product i using advertisement j |
Eij | Effective factor of product i using advertisement j mean percent to increase/decrease sales volume of product i using advertisement j; if the value is 1, then using advertisement j to advertise product i does not affect the sales volume. |
Lk | Factor to increase the sales volume using scenario k |
Cij | Advertisement cost of product i using advertisement j |
Oi | Total cost of producing product i |
Xij | |
Wi | Expected sales volume of product i |
3. The Improved Differential Evolution Algorithm (IDE)
3.1. Generating the Initial Solution
- Step 1:
- Sort the products and advertising methods according to increasing value.
- Step 2:
- Assign the product to the advertising method according to the orders in Step 1. The following conditions are applied:
- (a)
- For each advertising method, the total time used to develop the advertisement must be less than or equal to its limited time.
- (b)
- The assignment of products to advertising methods must remain within a budget that is less than or equal to the firm’s limited budget.
- Step 3:
- Calculate the expected sales volume.
- Step 4:
- Calculate the total profit.
3.2. Performing the Mutation Process
3.3. Performing the Recombination Process
3.4. Performing the Local Search
3.4.1. Iterated Local Search (ILS)
Algorithm 1. Iterated Local Search (ILS) |
Input: String of Vectors from DE (, Maximum Number of Iterations required (Tmax), Number of Positions of vector i (J), i = selected vector, G = current iteration, Z( = current solution Output: Expected Profit |
Begin |
Set T = 1; |
While (T ≤ T max) |
Set j = 1; |
While (j ≤ J) |
l = j + 1; |
while (l ≤ L) |
perform the exchange method: |
temp1 = ; |
temp2 = ; |
= temp2; |
= temp1; |
Calculate new solution (Z’()) using decoding method |
If (Z’() ≥ Z()) |
update Z()) = Z’() |
else |
set = temp1; |
= temp2; |
l = l + 1; |
end (while l) |
j = j + 1; |
end (while j) perform the perturbation method. |
T = T + 1; |
End Begin |
Exchange Method
The Perturbation Method
- (1)
- Randomly select three positions in a selected vector and set them as positions a–c.
- (2)
- Cyclically exchange the values in the positions as follows:
3.4.2. Adaptive Large Neighborhood Search (ALNS)
The Destroy Method
- -
- d-random removal (d-RR): d-RR comprises two steps:
- Step 1:
- Randomly select the value of d, d 1 to D/2, where D is the number of positions in a vector.
- Step 2:
- Randomly select the d position from D positions, and name it list Ed.
- -
- d-Highest removal (d-HR): d-HR comprises two steps:
- Step 1:
- Randomly select the value of d, d 1 to D/2, where D is the number of positions in a vector.
- Step 2:
- Sort the values of all positions in the vector; the d highest values will be removed and added to the list Ed.
- -
- d-Lowest removal (d-LR): d-LR comprises two steps:
- Step 1:
- Randomly select the value of d, d 1 to D/2, where D is the number of positions in a vector.
- Step 2:
- Sort the values of all positions in the vector; the d lowest values will be removed and added to the list Ed.
- -
- d-highest-lowest removal (d-HLR): d-HLR comprises three steps:
- Step 1:
- Randomly select the value of d, d 1 to D/2, where D is the number of positions in a vector.
- Step 2:
- Sort the values of all positions in the vector. The first removal will be from position that has the highest value, the next removal will be from position that has the lowest value. The removal continues to alternate between positions that have the highest and the lowest values until the number of removals is equal to d. The positions in the vectors that are removed are then added to the list Ed.
The Repair Method
- -
- Random insertion (RI) has the following steps:
- Step 1:
- Obtain list Ed from the destroy method.
- Step 2:
- Randomly select a pair of positions in list Ed and perform the exchange method.
- Step 3:
- Repeat step 2 d times.
- Step 4:
- Insert the value obtained from step 3 to the free position.
- Step 5:
- Perform the decoding method.
- Step 6:
- Update the required information.
- -
- Cyclic insertion (CI) has the following steps:
- Step 1:
- Obtain list Ed from the destroy method.
- Step 2:
- Insert the value in the position according to the order of Ed. For example, the second free position in the vector (after the destroy method) receives the value that is first in list Ed.
- Step 3:
- Perform the decoding method.
- Step 4:
- Update the required information.
- -
- Reverse insertion (RVI): The reverse insertion has the following steps:
- Step 1:
- Obtain list Ed from the destroy method.
- Step 2:
- Insert the value in the position according to the reverse order of Ed. For example, the second free position in the vector (after the destroy method) receives the value that is the third in list Ed.
- Step 3:
- Perform the decoding method.
- Step 4:
- Update the required information.
Acceptance of the New Generated Solution
The Destroy and Repair Methods Weight Updating
Algorithm 2. Procedure of the Adaptive Large Neighborhood Search |
Input: String of Vectors from DE (Ui,j,G), Maximum Number of Iterations required (Tmax), Number of Positions of vector i, i = selected vector, G = current iteration, Z(Ui,j,G) = current solution |
Output: Expected Profit |
Begins: Obtain the Vector String from DE () |
While termination condition is not met. |
Do Select and perform the destroy method |
Select the repair method. |
Update heuristics information. |
End do |
End. |
3.5. Performing the Selection Process
Algorithm 3. Procedure of the Improved Differential Evolution Algorithm |
Input: Number of vectors (NP); Maximum Number of Iterations required (Tmax), Number of Positions of vector i, i = selected vector, G = current iteration, Z(Ui,j,G) = current solution |
Output: Expected Profit |
Begins: Randomly generate initial vector and solution and Z() |
While termination condition is not met (t ≤ Tmax) |
Do Perform the mutation process Perform the recombination process Set n = 1 While (n ≤ NP) Randomly select local search heuristic (ALNS or ILS) with equal probability Perform the local search n = n + 1; end (while) |
Perform the selection process |
Update heuristics information. t = t + 1; |
End do End while |
End begin |
4. Computational Framework and Results
5. Conclusions and Outlooks
Author Contributions
Funding
Conflicts of Interest
References
- Manik, P.; Gupta, A.; Jha, P.C. A Goal Programming Model for Advertisement Selection on Online News Media. Adv. Intell. Syst. Comput. 2014, 236, 1401–1419. [Google Scholar]
- Drèze, X.; Zufryden, F. Testing web site design and promotional content. J. Advert. Res. 1997, 37, 77–91. [Google Scholar]
- Thornton, L.; Batterham, P.J.; Fassnacht, D.B.; Kay-Lambkin, F.; Calear, A.L.; Hunt, S. Recruiting for health, medical or psychosocial research using Facebook: Systematic review. Internet Interv. 2016, 4, 72–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, T.S.; Armin, J.; Gordon, J.S. Online recruitment methods for web-based and mobile health studies: A review of the literature. J. Med. Internet Res. 2015, 17, e183. [Google Scholar] [CrossRef] [PubMed]
- Batterham, P.J. Recruitment of mental health survey participants using Internet advertising: Content, characteristics and cost effectiveness. Int. J. Methods Psychiatr. Res. 2014, 23, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.J.; Hughes, J.; Oakes, J.M.; Pankow, J.S.; Kulasingam, S.L. Estimation of geographic variation in human Papillomavirus vaccine uptake in men and women: An online survey using Facebook recruitment. J. Med. Internet Res. 2014, 16, e198. [Google Scholar] [CrossRef] [PubMed]
- Fenner, Y.; Garland, S.M.; Moore, E.E.; Jayasinghe, Y.; Fletcher, A.; Tabrizi, S.N.; Gunasekaran, B.; Wark, J.D. Web-based recruiting for health research using a social networking site: An exploratory study. J. Med. Internet Res. 2012, 14, e20. [Google Scholar] [CrossRef] [PubMed]
- Ramo, D.E.; Prochaska, J.J. Broad reach and targeted recruitment using Facebook for an online survey of young adult substance use. J. Med. Internet Res. 2012, 14, e28. [Google Scholar] [CrossRef]
- Ramo, D.E.; Rodriguez, T.M.S.; Chavez, K.; Sommer, M.J.; Prochaska, J.J. Facebook recruitment of young adult smokers for a cessation trial: Methods, metrics, and lessons learned. Internet Interv. 2014, 1, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Toncar, M.; Munch, J. Consumer Responses to Tropes in Print Advertising. J. Advert. 2001, 30, 55–65. [Google Scholar] [CrossRef]
- Mehta, A. Advertising attitudes and advertising effectives. J. Advert. Res. 2000, 40, 67–72. [Google Scholar] [CrossRef]
- Latour, M.S.; Henthorne, T.L. Ethical Judgments of Sexual Appeals in Print Advertising. J. Advert. 1994, 23, 81–90. [Google Scholar] [CrossRef]
- Kassarjian, H.H. Content Analysis in Consumer Research. J. Consum. Res. 1977, 4, 8–18. [Google Scholar] [CrossRef]
- Moschis, G.P.; Moore, R.L. A Longitudinal Study of Television Advertising Effects. J. Consum. Res. 1982, 9, 279–286. [Google Scholar] [CrossRef]
- Chéron, E.; Perrien, J. An experimental study of the effects of commercial tv advertising and pro-consumer product test results on tv. In NA—Advances in Consumer Research; Kent, B., Monroe, A.A., Eds.; Association for Consumer Research: Ann Harbor, MI, USA, 1981; Volume 8, pp. 423–427. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems, 1st ed.; Cambridge University Press: London, UK, 1992. [Google Scholar]
- Kampelis, N.; Sifakis, N.; Kolokotsa, D.; Gobakis, K.; Kalaitzakis, K.; Isidori, D.; Cristalli, C. HVAC Optimization Genetic Algorithm for Industrial Near-Zero-Energy Building Demand Response. Energies 2019, 12, 2177. [Google Scholar] [CrossRef]
- Lara-Ramirez, J.E.; Garcia-Capulin, C.H.; Estudillo-Ayala, M.J.; Avina-Cervantes, J.G.; Sanchez-Yanez, R.E.; Rostro-Gonzalez, H. Parallel Hierarchical Genetic Algorithm for Scattered Data Fitting through B-Splines. Appl. Sci. 2019, 9, 2336. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Qiao, X.; Wang, W. An Efficient Memetic Algorithm for the Minimum Load Coloring Problem. Mathematics 2019, 7, 475. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Lai, C.M. Control Strategy Optimization for Parallel Hybrid Electric Vehicles Using a Memetic Algorithm. Energies 2017, 10, 305. [Google Scholar] [CrossRef]
- Ebadinezhad, S.; Dereboylu, Z.; Ever, E. Clustering-Based Modified Ant Colony Optimizer for Internet of Vehicles (CACOIOV). Sustainability 2019, 11, 2624. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, W.; Chen, Q. Monitoring of Cell Concentration during Saccharomyces cerevisiae Culture by a Color Sensor: Optimization of Feature Sensor Using ACO. Sensors 2019, 19, 2021. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, X.; Liu, A.; Meng, Q.; Zhang, R. An Iterated Hybrid Local Search Algorithm for Pick-and-Place Sequence Optimization. Symmetry 2018, 10, 633. [Google Scholar] [CrossRef]
- Hu, S.; Liu, H.; Wu, X.; Li, R.; Zhou, J.; Wang, J. A Hybrid Framework Combining Genetic Algorithm with Iterated Local Search for the Dominating Tree Problem. Mathematics 2019, 7, 359. [Google Scholar] [CrossRef]
- Liu, L.; Du, C.; Zhang, X.; Li, J.; Shi, S. Adaptive Synchronization Strategy between Two Autonomous Dissipative Chaotic Systems Using Fractional-Order Mittag–Leffler Stability. Entropy 2019, 21, 383. [Google Scholar] [CrossRef]
- Praseeratasang, N.; Pitakaso, R.; Sethanan, K.; Kaewman, S.; Golinska-Dawson, P. Adaptive Large Neighborhood Search for a Production Planning Problem Arising in Pig Farming. J. Open Innov. Technol. Mark. Complex. 2019, 5, 26. [Google Scholar] [CrossRef]
- Theeraviriya, C.; Pitakaso, R.; Sillapasa, K.; Kaewman, S. Location Decision Making and Transportation Route Planning Considering Fuel Consumption. J. Open Innov. Technol. Mark. Complex. 2019, 5, 27. [Google Scholar] [CrossRef]
- Kennedy, J. Swarm intelligence. In Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies; Zomaya, A.Y., Ed.; Springer US: Boston, MA, USA, 2006; pp. 187–219. [Google Scholar]
- Xu, X.; Ren, W. Application of a Hybrid Model Based on Echo State Network and Improved Particle Swarm Optimization in PM 2.5 Concentration Forecasting: A Case Study of Beijing, China. Sustainability 2019, 11, 3096. [Google Scholar] [CrossRef]
- Zhang, H.J.; Feng, Y.B.; Lin, K.P. Application of Multi-Species Differential Evolution Algorithm in Sustainable Microgrid Model. Sustainability 2018, 10, 2694. [Google Scholar] [CrossRef]
- Dechampai, D.; Tanwanichkul, L.; Sethanan, K.; Pitakaso, R. A differential evolution algorithm for the capacitated VRP with flexibility of mixing pickup and delivery services and the maximum duration of a route in poultry industry. J. Intell. Manuf. 2015, 28. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Akararungruangkul, R.; Chokanat, P.; Pitakaso, R.; Supakdee, K.; Sethanan, K. Solving Vehicle Routing Problem for Maintaining and Repairing Medical Equipment Using Differential Evolution Algorithm: A Case Study in Ubon Ratchathani Public Health Office. Int. J. Appl. Eng. Res. 2018, 13, 8035–8045. [Google Scholar]
- Sethanan, K.; Pitakaso, R. Differential Evolution Algorithms for Scheduling Raw Milk Transportation. Comput. Electron. Agric. 2016, 121, 245–259. [Google Scholar] [CrossRef]
- Srivarapongse, T.; Pijitbanjong, P. Solving a Special Case of the Generalized Assignment Problem Using the Modified Differential Evolution Algorithms: A Case Study in Sugarcane Harvesting. J. Open Innov. Technol. Mark. Complex. 2019, 5, 5. [Google Scholar] [CrossRef]
- Sethanan, K.; Pitakaso, R. Improved Differential Evolution Algorithms for solving Generalized Assignment Problem. Expert Syst. Appl. 2016, 45, 450–459. [Google Scholar] [CrossRef]
- Pitakaso, R. Differential Evolution algorithm for Simple Assembly Line Balancing. J. Ind. Prod. Eng. 2015, 32, 104–114. [Google Scholar]
- Pitakaso, R.; Sethanan, K. Modified Differential Evolution algorithm for Simple Assembly Line Balancing with limit on number of machines types. Eng. Optim. 2015, 48, 1–19. [Google Scholar] [CrossRef]
- Chomchalao, C.; Kaewman, S.; Pitakaso, R.; Sethanan, K. An Algorithm to Manage Transportation Logistics That Considers Sabotage Risk. Adm. Sci. 2018, 8, 39. [Google Scholar] [CrossRef]
- Thongdee, T.; Pitakaso, R. Differential Evolution Algorithms Solving a Multi-Objective, Source and Stage Location-Allocation Problem. Ind. Eng. Manag. Syst. 2015, 14, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Ketsripongsa, U.; Pitakaso, R.; Sethanan, K.; Srivarapongse, T. An Improved Differential Evolution Algorithm for Crop Planning in the Northeastern Region of Thailand. Math. Comput. Appl. 2018, 23, 40. [Google Scholar] [CrossRef]
- Pijitbanjong, P.; Akararungruangkul, R.; Pitakaso, R.; Sethanan, K. Improved Differential Evolution Algorithms for Solving Multi-stage Crop Planning Model in Southern Region of Thailand. Songklanakarin J. Sci. Technol. 2018, in press. [Google Scholar]
- Xin, B.; Chen, J.; Zhang, J.; Fang, H.; Peng, Z. Hybridizing Differential Evolution and Particle Swarm Optimization to Design Powerful Optimizers: A Review and Taxonomy. IEEE Trans. Syst. Man Cybern. C 2012, 42, 744–767. [Google Scholar] [CrossRef]
- Epitropakis, M.G.; Tasoulis, D.K.; Pavlidis, N.G.; Plagianakos, V.P.; Vrahatis, M.N. Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators. IEEE Trans Evol. Comput. 2011, 15, 99–119. [Google Scholar] [CrossRef]
- Miranda, V.; Alves, R. Differential Evolutionary Particle Swarm Optimization (DEEPSO): A successful hybrid. In Proceedings of the BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, Recife, Brazil, 8–11 September 2013; pp. 368–374. [Google Scholar]
- Elsayed, S.M.; Sarker, R.A.; Essam, D.L. GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems. In Proceedings of the 2011 IEEE Congress of Evolutionary Computation (CEC), New Orleans, LA, USA, 5–8 June 2011; pp. 1034–1040. [Google Scholar]
- Trivedi, A.; Srinivasan, D.; Biswas, S.; Reindl, T. Hybridizing genetic algorithm with differential evolution for solving the unit commitment scheduling problem. Swarm Evol. Comput. 2015, 23, 50–64. [Google Scholar] [CrossRef]
- Olenšek, J.; Tuma, T.; Puhan, J.; Bűrmen, Á. A new asynchronous parallel global optimization method based on simulated annealing and differential evolution. Appl. Soft Comput. 2011, 11, 1481–1489. [Google Scholar] [CrossRef]
- Reynoso-Meza, G.; Sanchis, J.; Blasco, X.; Herrero, J.M. Hybrid DE algorithm with adaptive crossover operator for solving real-world numerical optimization problems. In Proceedings of the 2011 IEEE Congress of Evolutionary Computation (CEC), New Orleans, LA, USA, 5–8 June 2011; pp. 1551–1556. [Google Scholar]
- Jia, D.; Zheng, G.; Khurram Khan, M. An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 2011, 181, 3175–3187. [Google Scholar] [CrossRef]
- Neri, F.; Iacca, G.; Mininno, E. Disturbed Exploitation compact Differential Evolution for limited memory optimization problems. Inf. Sci. 2011, 181, 2469–2487. [Google Scholar] [CrossRef]
- Zhan, Z.-H.; Zhang, J. Enhance differential evolution with random walk. In Proceedings of the 14th annual conference companion on Genetic and evolutionary computation, Philadelphia, PA, USA, 7–11 July 2012; pp. 1513–1514. [Google Scholar]
- Das, S.; Mullick, S.S.; Suganthan, P.N. Recent advances in differential evolution—An updated survey. Swarm Evol. Comput. 2016, 27, 1–30. [Google Scholar] [CrossRef]
NP | Product Vectors | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1 | 0.10 | 0.06 | 0.69 | 0.75 | 0.88 | 0.01 | 0.54 | 0.47 | 0.56 | 0.54 | 0.59 | 0.66 |
2 | 0.36 | 0.63 | 0.83 | 0.62 | 0.11 | 0.98 | 0.72 | 0.19 | 0.00 | 0.45 | 0.58 | 0.73 |
3 | 0.06 | 0.96 | 0.90 | 0.95 | 0.85 | 0.82 | 0.37 | 0.49 | 0.80 | 0.12 | 0.24 | 0.44 |
4 | 0.86 | 0.96 | 0.17 | 0.66 | 0.58 | 0.50 | 0.95 | 0.84 | 0.06 | 0.01 | 0.41 | 0.08 |
5 | 0.25 | 0.01 | 0.64 | 0.61 | 0.38 | 0.61 | 0.57 | 0.12 | 0.06 | 0.59 | 0.36 | 0.39 |
NP | Advertising Method Vectors | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1 | 0.10 | 0.37 | 0.94 | 0.96 | 0.82 | 0.24 | 0.22 |
2 | 0.58 | 0.54 | 0.12 | 0.98 | 0.45 | 0.44 | 0.89 |
3 | 0.61 | 0.54 | 0.01 | 0.91 | 0.90 | 0.60 | 0.92 |
4 | 0.10 | 0.66 | 0.02 | 0.13 | 0.96 | 0.92 | 0.43 |
5 | 0.91 | 0.73 | 0.05 | 0.74 | 0.22 | 0.98 | 0.84 |
Product Vectors | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before Sorting | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
0.10 | 0.06 | 0.69 | 0.75 | 0.88 | 0.01 | 0.54 | 0.47 | 0.56 | 0.54 | 0.59 | 0.66 |
After Sorting | |||||||||||
6 | 2 | 1 | 8 | 7 | 10 | 9 | 11 | 12 | 3 | 4 | 5 |
0.01 | 0.06 | 0.1 | 0.47 | 0.54 | 0.54 | 0.56 | 0.59 | 0.66 | 0.69 | 0.75 | 0.88 |
Advertising Method Vectors | ||||||
---|---|---|---|---|---|---|
Before Sorting | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
0.10 | 0.37 | 0.94 | 0.96 | 0.82 | 0.24 | 0.22 |
After Sorting | ||||||
1 | 7 | 6 | 2 | 5 | 3 | 4 |
0.1 | 0.22 | 0.24 | 0.37 | 0.82 | 0.94 | 0.96 |
Product Vectors | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before Exchange | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
0.10 | 0.06 | 0.69 | 0.75 | 0.88 | 0.01 | 0.54 | 0.47 | 0.56 | 0.54 | 0.59 | 0.66 |
After Exchange | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
0.10 | 0.06 | 0.69 | 0.54 | 0.88 | 0.01 | 0.54 | 0.47 | 0.56 | 0.75 | 0.59 | 0.66 |
Product Vectors | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before Three-Cyclic Move | |||||||||||
1 | 2 | 3(b) | 4 | 5 | 6(a) | 7 | 8 | 9 | 10 | 11(c) | 12 |
0.10 | 0.06 | 0.69 | 0.75 | 0.88 | 0.01 | 0.54 | 0.47 | 0.56 | 0.54 | 0.59 | 0.66 |
After Three-Cyclic Move | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
0.10 | 0.06 | 0.01 | 0.54 | 0.88 | 0.59 | 0.54 | 0.47 | 0.56 | 0.75 | 0.69 | 0.66 |
5 | When the destroy and repair methods q can find the new best solution | |
4 | When the destroy and repair methods q can find Z(S’) better than Z(S) | |
3 | When the destroy and repair methods q can find Z(S’) but not better than Z(S), yet the solution is accepted by using the formula in Section (8) | |
1 | When the destroy and repair methods q generates Z(S’) but it is not better than Z(S) |
Instances | Product | ad.Method | Instances | Product | ad.Method | Instances | Product | ad.Method |
---|---|---|---|---|---|---|---|---|
s-1 | 13 | 5 | m-1 | 45 | 15 | l-1 | 130 | 22 |
s-2 | 15 | 5 | m-2 | 45 | 14 | l-2 | 140 | 23 |
s-3 | 15 | 7 | m-3 | 45 | 15 | l-3 | 140 | 25 |
s-4 | 17 | 7 | m-4 | 55 | 14 | l-4 | 150 | 20 |
s-5 | 18 | 8 | m-5 | 55 | 16 | l-5 | 155 | 24 |
s-6 | 19 | 8 | m-6 | 55 | 18 | l-6 | 155 | 28 |
s-7 | 19 | 9 | m-7 | 62 | 18 | l-7 | 165 | 20 |
s-8 | 20 | 9 | m-8 | 62 | 18 | l-8 | 169 | 24 |
s-9 | 20 | 9 | m-9 | 62 | 20 | l-9 | 180 | 25 |
s-10 | 20 | 10 | m-10 | 62 | 20 | Case study | 204 | 7 |
Parameters | Minimum Value | Maximum Value |
---|---|---|
Price of product i per unit (Pi) | 50 Baht | 1000 Baht |
Total cost of producing product (Oi) | 20 Baht | 250 Baht (cost at least 40% less than selling price) |
Advertisement cost of product i using advertisement j (Cij) | 5000 Baht | 35,000 Baht |
Minimum sales volume of product i (Vi) | 200 Units | 5000 Units |
Maximum available time for advertisement j (Tij) | 150 min | 3000 min |
Maximum budget of the company for the advertisement (N) | 500,000 Baht | 5,000,000 Baht |
Test Instance | s-1 | s-2 | s-3 | s-4 | s-5 | s-6 | s-7 | s-8 | s-9 | s-10 | |
Lingo v.11 | Profit (baht) | 1,998,761 | 2,119,894 | 2,487,539 | 2,981,763 | 3,129,638 | 3,484,653 | 3,218,942 | 3,441,588 | 3,515,686 | 4,117,642 |
Com.time (min) | 1.81 | 2.24 | 2.45 | 3.87 | 10.47 | 11.85 | 15.92 | 20.43 | 24.81 | 36.94 | |
IDE | Profit (baht) | 1,998,761 | 2,119,894 | 2,487,539 | 2,981,763 | 3,129,638 | 3,484,653 | 3,218,942 | 3,441,588 | 3,515,686 | 4,114,715 |
Com.time (min) | 0.78 | 1.05 | 1.59 | 1.86 | 2.91 | 2.87 | 2.64 | 3.09 | 3.13 | 3.06 | |
DE | Profit (baht) | 1,998,761 | 2,119,894 | 2,487,539 | 2,981,763 | 3,008,945 | 3,484,653 | 3,138,896 | 3,438,941 | 3,488,458 | 4,057,867 |
Com.time (min) | 0.55 | 0.98 | 1.04 | 0.91 | 1.78 | 1.65 | 1.87 | 2.71 | 2.76 | 2.85 | |
ILS | Profit (baht) | 1,998,761 | 2,114,891 | 2,487,539 | 2,981,763 | 3,104,535 | 3,434,556 | 3,218,942 | 3,440,871 | 3,487,845 | 4,098,814 |
Com.time (min) | 0.67 | 0.87 | 1.89 | 1.54 | 1.98 | 1.67 | 2.04 | 2.98 | 2.61 | 2.48 | |
ALNS | Profit (baht) | 1,998,761 | 2,119,894 | 2,476,947 | 2,981,763 | 3,129,638 | 3,435,417 | 3,189,767 | 3,438,891 | 3,515,686 | 4,117,642 |
Com.time (min) | 0.87 | 0.68 | 1.78 | 1.87 | 1.76 | 1.88 | 1.56 | 2.67 | 2.60 | 2.85 |
IDE | DE | ILS | ALNS | |
---|---|---|---|---|
Lingo v.11 | 0.343 | 0.063 | 0.044 | 0.119 |
IDE | 0.064 | 0.047 | 0.134 | |
DE | 0.523 | 0.216 | ||
ILS | 0.523 |
Test Instance | Lingo Upper Bound (Million Baht) | IDE (Million Baht) | DE (Million Baht) | ILS (Million Baht) | ALNS (Million Baht) |
---|---|---|---|---|---|
m-1 | 13.94 | 13.15 | 12.46 | 12.31 | 12.39 |
m-2 | 14.75 | 14.52 | 13.87 | 13.37 | 13.85 |
m-3 | 13.67 | 12.65 | 11.93 | 11.57 | 12.01 |
m-4 | 16.38 | 15.89 | 14.93 | 15.01 | 14.78 |
m-5 | 15.98 | 15.17 | 14.31 | 14.68 | 14.75 |
m-6 | 16.23 | 15.33 | 14.75 | 14.81 | 14.56 |
m-7 | 17.81 | 16.12 | 15.47 | 15.83 | 15.55 |
m-8 | 17.64 | 17.27 | 16.51 | 16.48 | 16.73 |
m-9 | 18.07 | 16.83 | 16.09 | 15.93 | 15.28 |
m-10 | 17.89 | 16.38 | 14.81 | 15.07 | 15.41 |
l-1 | 32.45 | 32.29 | 30.57 | 30.17 | 30.84 |
l-2 | 33.41 | 33.17 | 31.69 | 31.87 | 31.15 |
l-3 | 34.76 | 32.98 | 31.74 | 31.17 | 32.76 |
l-4 | 47.85 | 45.87 | 44.48 | 44.59 | 44.64 |
l-5 | 46.89 | 46.31 | 45.21 | 45.27 | 45.75 |
l-6 | 47.47 | 46.94 | 45.18 | 45.31 | 45.24 |
l-7 | 46.89 | 46.11 | 45.84 | 45.38 | 45.76 |
l-8 | 49.38 | 48.35 | 47.96 | 47.02 | 48.37 |
l-9 | 52.73 | 51.54 | 49.89 | 50.18 | 50.38 |
Case study | 63.76 | 63.14 | 58.91 | 57.15 | 58.56 |
IDE | DE | ILS | ALNS | |
---|---|---|---|---|
Lingo v.11 | 0.00008 | 0.00008 | 0.00008 | 0.00008 |
IDE | 0.00008 | 0.00008 | 0.00008 | |
DE | 0.28941 | 0.22628 | ||
ILS | 0.07346 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongkham, M.; Srivarapongse, T. Improved Differential Evolution Algorithm to Solve the Advertising Method Selection Problem. J. Open Innov. Technol. Mark. Complex. 2019, 5, 61. https://doi.org/10.3390/joitmc5030061
Thongkham M, Srivarapongse T. Improved Differential Evolution Algorithm to Solve the Advertising Method Selection Problem. Journal of Open Innovation: Technology, Market, and Complexity. 2019; 5(3):61. https://doi.org/10.3390/joitmc5030061
Chicago/Turabian StyleThongkham, Malichan, and Tassin Srivarapongse. 2019. "Improved Differential Evolution Algorithm to Solve the Advertising Method Selection Problem" Journal of Open Innovation: Technology, Market, and Complexity 5, no. 3: 61. https://doi.org/10.3390/joitmc5030061
APA StyleThongkham, M., & Srivarapongse, T. (2019). Improved Differential Evolution Algorithm to Solve the Advertising Method Selection Problem. Journal of Open Innovation: Technology, Market, and Complexity, 5(3), 61. https://doi.org/10.3390/joitmc5030061