An Open Innovation Intraday Implied Volatility for Pricing Australian Dollar Options
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Description
3.2. Methodology
3.2.1. Implied Volatility Calculation
- = price of call in domestic currency at time t
- = price of put in domestic currency at time t
- = spot price at time t
- = exercise price in domestic currency at time t
- = interest rate of domestic currency at time t
- = foreign currency interest rate at time t
- = options expiration time
- = volatility of underlying currency
- = cumulative normal distribution function
3.2.2. Realised Volatility Calculation
3.2.3. Implied Volatility Forecasting Realised Volatility
3.2.4. Implied Volatility Estimating Options Model Price
3.2.5. Options Pricing Error Estimation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reserve Bank of Australia. Available online: https://www.rba.gov.au/media-releases/2019/mr-19-25-tables.html (accessed on 9 December 2020).
- Vohra, S.; Fabozzi, F.J. Effectiveness of developed and emerging market FX options in active currency risk management. J. Int. Money Financ. 2019, 96, 130–146. [Google Scholar] [CrossRef]
- Beer, S.; Fink, H. Dynamics of foreign exchange implied volatility and implied correlation surfaces. Quant. Financ. 2019, 19, 1293–1320. [Google Scholar] [CrossRef]
- Lai, Y.-W.; Lin, C.-F.; Tang, M.-L. Mispricing and trader positions in the S&P 500 index futures market. N. Am. J. Econ. Financ. 2017, 42, 250–265. [Google Scholar] [CrossRef]
- Becker, R.; Clements, A.E.; White, S.I. On the informational efficiency of S&P500 implied volatility. N. Am. J. Econ. Financ. 2006, 17, 139–153. [Google Scholar] [CrossRef]
- Black, F.; Scholes, M. The Pricing of Options and Corporate Liabilities. World Sci. Ref. Conting. Claims Anal. Corp. Financ. 2019, 83, 3–21. [Google Scholar] [CrossRef]
- Yang, S.-H.; Lee, J. Predicting a distribution of implied volatilities for option pricing. Expert Syst. Appl. 2011, 38, 1702–1708. [Google Scholar] [CrossRef]
- Fleming, J. The quality of market volatility forecasts implied by S&P 100 index option prices. J. Empir. Financ. 1998, 5, 317–345. [Google Scholar] [CrossRef]
- Nelson, D.B. Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica 1991, 59, 347. [Google Scholar] [CrossRef]
- Garvey, J.; Gallagher, L.A. The Realised-Implied Volatility Relationship: Recent Empirical Evidence from FTSE-100 Stocks. J. Forecast. 2011, 31, 639–660. [Google Scholar] [CrossRef]
- Kearney, F.; Cummins, M.; Murphy, F. Forecasting implied volatility in foreign exchange markets: A functional time series approach. Eur. J. Financ. 2017, 24, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Muzzioli, S. Option-based forecasts of volatility: An empirical study in the DAX-index options market. Eur. J. Financ. 2010, 16, 561–586. [Google Scholar] [CrossRef]
- Taylor, S.J.; Yadav, P.K.; Zhang, Y. The information content of implied volatilities and model-free volatility expectations: Evidence from options written on individual stocks. J. Bank. Financ. 2010, 34, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Corredor, P.; Santamaria, R. Forecasting volatility in the Spanish option market. Appl. Financ. Econ. 2004, 14, 1–11. [Google Scholar] [CrossRef]
- Merton, R.C. Theory of Rational Option Pricing. Bell J. Econ. Manag. Sci. 1973, 4, 141. [Google Scholar] [CrossRef] [Green Version]
- Cruz, M.G. Modeling, Measuring and Hedging Operational Risk, 1st ed.; John Wiley & Sons Ltd.: New York, NY, USA, 2008; pp. 1–346. [Google Scholar]
- Singh, S. Performance of Black-Scholes model with TSRV estimates. Manag. Financ. 2015, 41, 857–870. [Google Scholar] [CrossRef]
- Tu, A.H.; Hsieh, W.-L.G.; Wu, W.-S. Market uncertainty, expected volatility and the mispricing of S&P 500 index futures. J. Empir. Financ. 2016, 35, 78–98. [Google Scholar] [CrossRef]
- Byun, S.J.; Hyun, J.; Sung, W.J. Estimation of stochastic volatility and option prices. J. Futur. Mark. 2020, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Wang, Y.-Y. The Information Content of Intraday Implied Volatility for Volatility Forecasting. J. Forecast. 2015, 35, 167–178. [Google Scholar] [CrossRef]
- Beckers, S. Standard deviations implied in option prices as predictors of future stock price variability. J. Bank. Financ. 1981, 5, 363–381. [Google Scholar] [CrossRef]
- Brous, P.; Ince, U.; Popova, I. Volatility forecasting and liquidity: Evidence from individual stocks. J. Deriv. Hedge Funds 2010, 16, 144–159. [Google Scholar] [CrossRef]
- Busch, T.; Christensen, B.J.; Nielsen, M.Ø. The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets. J. Econ. 2011, 160, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Latane, H.A.; Rendleman, R.J. Standard Deviations of Stock Price Ratios Implied in Option Prices. J. Financ. 1976, 31, 369. [Google Scholar] [CrossRef]
- Schmalensee, R.; Trippi, R.R. Common stock volatility expectations implied by option premia. J. Financ. 1978, 33, 129–147. [Google Scholar] [CrossRef]
- Andersen, T.G.; Bollerslev, T.; Diebold, F.X.; Labys, P. Exchange Rate Returns Standardised by Realised Volatility Are (Nearly) Gaussian. Multinatl. Financ. J. 2000, 4, 159–179. [Google Scholar] [CrossRef] [Green Version]
- Scott, E.; Tucker, A.L. Predicting currency return volatility. J. Bank. Financ. 1989, 13, 839–851. [Google Scholar] [CrossRef]
- Goodhart, C.A.; O’Hara, M. High frequency data in financial markets: Issues and applications. J. Empir. Financ. 1997, 4, 73–114. [Google Scholar] [CrossRef]
- Cai, C.X.; Hudson, R.; Keasey, K. Intra Day Bid-Ask Spreads, Trading Volume and Volatility: Recent Empirical Evidence from the London Stock Exchange. J. Bus. Financ. Account. 2004, 31, 647–676. [Google Scholar] [CrossRef]
- Bank for International Settlements. Available online: https://www.bis.org/publ/bppdf/bispap109.pdf (accessed on 9 December 2020).
- Xu, X.; Taylor, S.J. The Term Structure of Volatility Implied by Foreign Exchange Options. J. Financ. Quant. Anal. 1994, 29, 57. [Google Scholar] [CrossRef]
- Jorion, P. Predicting Volatility in the Foreign Exchange Market. J. Financ. 1995, 50, 507–528. [Google Scholar] [CrossRef]
- Kazantzis, C.; Tessaromatis, N. Volatility in currency markets. Manag. Financ. 2001, 27, 1–22. [Google Scholar] [CrossRef]
- Kim, M.; Kim, M. Implied volatility dynamics in the foreign exchange markets. J. Int. Money Financ. 2003, 22, 511–528. [Google Scholar] [CrossRef]
- Chang, E.J.; Tabak, B.M. Are implied volatilities more informative? The Brazilian real exchange rate case. Appl. Financ. Econ. 2007, 17, 569–576. [Google Scholar] [CrossRef]
- Pılbeam, K.; Langeland, K.N. Forecasting exchange rate volatility: GARCH models versus implied volatility forecasts. Int. Econ. Econ. Policy 2014, 12, 127–142. [Google Scholar] [CrossRef]
- Sahoo, S.; Trivedi, P. The Interrelationship Between Implied and Realized Exchange Rate Volatility in India †. IUP J. Appl. Econ. 2018, 17, 7–26. [Google Scholar]
- Wong, A.H.-S.; Heaney, R. Volatility Smile and One-Month Foreign Currency Volatility Forecasts. J. Future Mark. 2016, 37, 286–312. [Google Scholar] [CrossRef]
- Covrig, V.; Low, B.S. The quality of volatility traded on the over-the-counter currency market: A multiple horizons study. J. Future Mark. 2003, 23, 261–285. [Google Scholar] [CrossRef]
- Pong, S.; Shackleton, M.B.; Taylor, S.J.; Xu, X. Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models. J. Bank. Financ. 2004, 28, 2541–2563. [Google Scholar] [CrossRef]
- Christoffersen, P.; Mazzotta, S. The Accuracy of Density Forecasts from Foreign Exchange Options. J. Financ. Econ. 2005, 3, 578–605. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.F. The Econometrics of Ultra-high-frequency Data. Econometrica 2000, 68, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Batten, J.A.; Lucey, B.; McGroarty, F.; Peat, M.; Urquhart, A. Stylized facts of intraday precious metals. PLoS ONE 2017, 12, e0174232. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.A.; McInish, T.H.; Ord, J.K. An Investigation of Transactions Data for NYSE Stocks. J. Financ. 1985, 40, 723–739. [Google Scholar] [CrossRef]
- Gerety, M.S.; Mulherin, J.H. Trading Halts and Market Activity: An Analysis of Volume at the Open and the Close. J. Financ. 1992, 47, 1765–1784. [Google Scholar] [CrossRef]
- Brock, W.A.; Kleidon, A.W. Periodic market closure and trading volume. J. Econ. Dyn. Control. 1992, 16, 451–489. [Google Scholar] [CrossRef]
- McInish, T.H.; Wood, R.A. An analysis of transactions data for the Toronto Stock Exchange. J. Bank. Financ. 1990, 14, 441–458. [Google Scholar] [CrossRef]
- Hamao, Y.; Hasbrouck, J. Securities Trading in the Absence of Dealers: Trades and Quotes on the Tokyo Stock Exchange. Rev. Financ. Stud. 1995, 8, 849–878. [Google Scholar] [CrossRef] [Green Version]
- Ellul, A.; Shin, H.S.; Tonks, I. Towards Deep and Liquid Markets: Lessons from Open and Close at the London Stock Exchange; LSE Financial Markets Group Working Paper: London, UK, 2002. [Google Scholar]
- Naik, N.Y.; Yadav, P.K. The Effects of Market Reform on Trading Costs of Public Investors: Evidence from the London Stock Exchange. Ssrn Electron. J. 1999. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.J.; Xu, X. The incremental volatility information in one million foreign exchange quotations. J. Empir. Financ. 1997, 4, 317–340. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E.; Shephard, N. Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models. Journal of the Royal Statistical Society. J. R. Stat. Soc. Ser. B Stat. Methodol. 2002, 64, 253–280. [Google Scholar] [CrossRef]
- Liu, L.Y.; Patton, A.J.; Sheppard, K. Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. J. Econ. 2015, 187, 293–311. [Google Scholar] [CrossRef] [Green Version]
- Hull, J.; White, A. The Pricing of Options on Assets with Stochastic Volatilities. J. Financ. 1987, 42, 281–300. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, X.; Zhao, R. What Does the Individual Option Volatility Smirk Tell Us About Future Equity Returns? J. Financ. Quant. Anal. 2010, 45, 641–662. [Google Scholar] [CrossRef]
- Blair, B.J.; Poon, S.-H.; Taylor, S.J. Forecasting S&P 100 volatility: The incremental information content of implied volatilities and high-frequency index returns. J. Econ. 2001, 105, 5–26. [Google Scholar] [CrossRef]
- Press, W.H.; Flannery, B.P.; Vetterling, W.T. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992; ISBN 0-521-43108-5. [Google Scholar]
- Andersen, T.G.; Bollerslev, T. Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts. Int. Econ. Rev. 1998, 39, 885. [Google Scholar] [CrossRef]
- Mincer, J.; Zarnowitz, V. The evaluation of economic forecasts. In Economic Forecasts and Expectations; Zarnowitz, J., Ed.; National Bureau of Economic Research: New York, NY, USA, 1969; pp. 3–46. [Google Scholar]
- Guler, K.; Ng, P.T.; Xiao, Z. Mincer-Zarnowitz quantile and expectile regressions for forecast evaluations under aysmmetric loss functions. J. Forecast. 2017, 36, 651–679. [Google Scholar] [CrossRef]
- Lerner, J.; Tufano, P. The Consequences of Financial Innovation: A Counterfactual Research Agenda. Annu. Rev. Financ. Econ. 2011, 3, 41–85. [Google Scholar] [CrossRef] [Green Version]
- Beck, T.; Chen, T.; Lin, C.; Song, F. Financial innovation: The bright and the dark sides. J. Bank. Financ. 2016, 72, 28–51. [Google Scholar] [CrossRef]
- Dalko, V.; Wang, M.H. High-frequency trading: Order-based innovation or manipulation? J. Bank. Regul. 2020, 21, 289–298. [Google Scholar] [CrossRef]
- De Spiegeleer, J.; Madan, D.B.; Reyners, S.; Schoutens, W. Machine learning for quantitative finance: Fast derivative pricing, hedging and fitting. Quant. Financ. 2018, 18, 1635–1643. [Google Scholar] [CrossRef]
- Ye, M.; Li, G. Internet big data and capital markets: A literature review. Financ. Innov. 2017, 3, 6. [Google Scholar] [CrossRef]
- Caporale, G.M.; Gil-Alana, L.; Plastun, A.; Makarenko, I. Intraday Anomalies and Market Efficiency: A Trading Robot Analysis. Comput. Econ. 2015, 47, 275–295. [Google Scholar] [CrossRef] [Green Version]
- Baillie, R.T.; Bollerslev, T. Intra-Day and Inter-Market Volatility in Foreign Exchange Rates. Rev. Econ. Stud. 1991, 58, 565–585. [Google Scholar] [CrossRef]
- Bates, D.S. U.S. stock market crash risk, 1926–2010. J. Financ. Econ. 2012, 105, 229–259. [Google Scholar] [CrossRef] [Green Version]
- Hilal, S.; Poon, S.-H.; Tawn, J.A. Hedging the black swan: Conditional heteroskedasticity and tail dependence in S&P500 and VIX. J. Bank. Financ. 2011, 35, 2374–2387. [Google Scholar] [CrossRef]
Time to Maturity | Within-Week Forecast | One-Week Forecast | One-Month Forecast | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mon to Fri | Tue to Fri | Wed to Fri | Thu to Fri | Mon to Mon | Tue to Tue | Wed to Wed | Thu to Thu | Fri to Fri | Mon to Mon | Tue to Tue | Wed to Wed | Thu to Thu | Fri to Fri | ||
Panel A: Opening period (9:30−10:00) | |||||||||||||||
1-month | Slope | 0.207 | 0.248 | 0.187 | 0.152 | 0.204 | 0.227 | 0.249 | 0.193 | 0.290 | 0.199 | 0.197 | 0.227 | 0.138 | 0.257 |
R2 | 0.133 | 0.1951 | 0.114 | 0.102 | 0.405 | 0.465 2 | 0.307 | 0.262 | 0.305 | 0.227 | 0.228 1 | 0.162 | 0.092 | 0.151 | |
2-month | Slope | 0.415 | 0.479 | 0.483 | 0.443 | 0.366 | 0.414 | 0.504 | 0.445 | 0.445 | 0.324 | 0.337 | 0.449 | 0.357 | 0.361 |
R2 | 0.294 | 0.228 | 0.335 2 | 0.300 | 0.308 | 0.3651 | 0.321 | 0.342 | 0.238 | 0.356 | 0.386 2 | 0.263 | 0.217 | 0.177 | |
3-month | Slope | 0.554 | 0.548 | 0.569 | 0.508 | 0.472 | 0.435 | 0.495 | 0.482 | 0.540 | 0.409 | 0.454 | 0.447 | 0.285 | 0.439 |
R2 | 0.221 | 0.336 2 | 0.288 | 0.270 | 0.253 | 0.284 1 | 0.161 | 0.183 | 0.212 | 0.249 | 0.295 1 | 0.162 | 0.202 | 0.170 | |
Panel B: Midday period (12:30−13:00) | |||||||||||||||
1-month | Slope | 0.248 | 0.245 | 0.207 | 0.253 | 0.216 | 0.217 | 0.227 | 0.310 | 0.260 | 0.194 | 0.196 | 0.205 | 0.215 | 0.224 |
R2 | 0.198 | 0.214 2 | 0.142 | 0.172 | 0.400 | 0.432 1 | 0.275 | 0.349 | 0.235 | 0.224 | 0.260 2 | 0.156 | 0.159 | 0.141 | |
2-month | Slope | 0.427 | 0.411 | 0.390 | 0.425 | 0.364 | 0.353 | 0.397 | 0.436 | 0.390 | 0.304 | 0.317 | 0.364 | 0.347 | 0.290 |
R2 | 0.246 | 0.280 1 | 0.244 | 0.257 | 0.356 | 0.375 2 | 0.274 | 0.347 | 0.218 | 0.261 | 0.332 1 | 0.241 | 0.232 | 0.135 | |
3-month | Slope | 0.470 | 0.486 | 0.465 | 0.479 | 0.396 | 0.419 | 0.473 | 0.513 | 0.479 | 0.332 | 0.385 | 0.413 | 0.415 | 0.362 |
R2 | 0.250 | 0.262 1 | 0.219 | 0.240 | 0.299 | 0.317 2 | 0.189 | 0.315 | 0.191 | 0.241 | 0.327 3 | 0.208 | 0.230 | 0.125 | |
Panel C: Closing period (15:30−16:00) | |||||||||||||||
1-month | Slope | 0.274 | 0.247 | 0.224 | 0.272 | 0.244 | 0.221 | 0.260 | 0.287 | 0.301 | 0.228 | 0.181 | 0.200 | 0.207 | 0.247 |
R2 | 0.313 3 | 0.207 | 0.160 | 0.213 | 0.472 3,* | 0.435 | 0.317 | 0.329 | 0.257 | 0.210 | 0.275 3 | 0.146 | 0.158 | 0.144 | |
2-month | Slope | 0.432 | 0.427 | 0.426 | 0.458 | 0.378 | 0.380 | 0.423 | 0.430 | 0.434 | 0.320 | 0.322 | 0.353 | 0.350 | 0.325 |
R2 | 0.379 3,* | 0.273 | 0.252 | 0.294 | 0.3963 | 0.379 | 0.298 | 0.353 | 0.251 | 0.285 | 0.393 3,* | 0.215 | 0.248 | 0.158 | |
3-month | Slope | 0.513 | 0.500 | 0.489 | 0.501 | 0.438 | 0.438 | 0.517 | 0.496 | 0.512 | 0.370 | 0.394 | 0.426 | 0.420 | 0.399 |
R2 | 0.352 3 | 0.258 | 0.248 | 0.292 | 0.335 3 | 0.310 | 0.240 | 0.290 | 0.228 | 0.284 | 0.310 2 | 0.207 | 0.238 | 0.146 |
Time to Maturity | Within-Week Forecast | One-Week Forecast | One-Month Forecast | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mon to Fri | Tue to Fri | Wed to Fri | Thu to Fri | Mon to Mon | Tue to Tue | Wed to Wed | Thu to Thu | Fri to Fri | Mon to Mon | Tue to Tue | Wed to Wed | Thu to Thu | Fri to Fri | ||
Panel A: OPE under MAE measure | |||||||||||||||
1-month | CALL | 0.137 3 | 0.143 | 0.154 | 0.155 | 0.142 3 | 0.151 | 0.187 | 0.156 | 0.146 | 0.158 | 0.146 2 | 0.185 | 0.160 | 0.165 |
PUT | 0.067 3 | 0.082 | 0.073 | 0.077 | 0.056 3 | 0.064 | 0.075 | 0.076 | 0.069 | 0.091 | 0.086 2 | 0.102 | 0.091 | 0.091 | |
2-month | CALL | 0.138 2 | 0.140 | 0.140 | 0.145 | 0.149 2 | 0.154 | 0.204 | 0.158 | 0.155 | 0.151 | 0.144 3 | 0.180 | 0.154 | 0.154 |
PUT | 0.068 2 | 0.072 | 0.077 | 0.071 | 0.061 2 | 0.071 | 0.082 | 0.083 | 0.075 | 0.077 | 0.077 3 | 0.097 | 0.087 | 0.078 | |
3-month | CALL | 0.139 1 | 0.149 | 0.141 | 0.149 | 0.155 1 | 0.163 | 0.195 | 0.259 | 0.255 | 0.154 | 0.152 1 | 0.189 | 0.163 | 0.172 |
PUT | 0.074 1 | 0.075 | 0.078 | 0.077 | 0.079 1 | 0.082 | 0.091 | 0.090 | 0.081 | 0.098 | 0.094 1 | 0.111 | 0.106 | 0.098 | |
Panel B: OPE under MSE measure | |||||||||||||||
1-month | CALL | 0.036 3 | 0.048 | 0.055 | 0.044 | 0.044 3 | 0.049 | 0.079 | 0.050 | 0.046 | 0.050 | 0.050 1 | 0.097 | 0.064 | 0.061 |
PUT | 0.009 3 | 0.040 | 0.011 | 0.032 | 0.007 3 | 0.009 | 0.015 | 0.013 | 0.010 | 0.028 | 0.020 1 | 0.040 | 0.021 | 0.020 | |
2-month | CALL | 0.038 2 | 0.041 | 0.037 | 0.041 | 0.050 1 | 0.064 | 0.096 | 0.054 | 0.054 | 0.045 | 0.043 3 | 0.077 | 0.048 | 0.050 |
PUT | 0.010 2 | 0.011 | 0.013 | 0.010 | 0.008 2 | 0.011 | 0.015 | 0.039 | 0.039 | 0.018 | 0.012 3 | 0.024 | 0.018 | 0.013 | |
3-month | CALL | 0.039 1 | 0.050 | 0.049 | 0.045 | 0.045 2 | 0.054 | 0.092 | 0.054 | 0.049 | 0.046 | 0.043 2 | 0.087 | 0.051 | 0.062 |
PUT | 0.012 1 | 0.021 | 0.021 | 0.023 | 0.017 1 | 0.023 | 0.026 | 0.018 | 0.024 | 0.022 | 0.017 2 | 0.027 | 0.026 | 0.020 | |
Panel C: OPE under RMSE measure | |||||||||||||||
1-month | CALL | 0.190 3 | 0.219 | 0.236 | 0.210 | 0.210 3 | 0.222 | 0.282 | 0.224 | 0.222 | 0.225 | 0.223 1 | 0.312 | 0.254 | 0.247 |
PUT | 0.095 3 | 0.201 | 0.106 | 0.180 | 0.085 3 | 0.098 | 0.125 | 0.115 | 0.098 | 0.169 | 0.141 1 | 0.200 | 0.145 | 0.142 | |
2-month | CALL | 0.195 2 | 0.204 | 0.192 | 0.203 | 0.213 2 | 0.254 | 0.310 | 0.233 | 0.254 | 0.212 | 0.207 3 | 0.278 | 0.219 | 0.224 |
PUT | 0.104 2 | 0.106 | 0.114 | 0.102 | 0.091 2 | 0.106 | 0.125 | 0.197 | 0.106 | 0.134 | 0.113 3 | 0.155 | 0.136 | 0.114 | |
3-month | CALL | 0.197 1 | 0.224 | 0.297 | 0.213 | 0.224 1 | 0.233 | 0.304 | 0.233 | 0.233 | 0.215 | 0.208 2 | 0.296 | 0.226 | 0.249 |
PUT | 0.110 1 | 0.207 | 0.209 | 0.214 | 0.117 1 | 0.127 | 0.129 | 0.135 | 0.120 | 0.148 | 0.130 2 | 0.167 | 0.162 | 0.143 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.; Hoque, A.; Hassan, K. An Open Innovation Intraday Implied Volatility for Pricing Australian Dollar Options. J. Open Innov. Technol. Mark. Complex. 2021, 7, 23. https://doi.org/10.3390/joitmc7010023
Le T, Hoque A, Hassan K. An Open Innovation Intraday Implied Volatility for Pricing Australian Dollar Options. Journal of Open Innovation: Technology, Market, and Complexity. 2021; 7(1):23. https://doi.org/10.3390/joitmc7010023
Chicago/Turabian StyleLe, Thi, Ariful Hoque, and Kamrul Hassan. 2021. "An Open Innovation Intraday Implied Volatility for Pricing Australian Dollar Options" Journal of Open Innovation: Technology, Market, and Complexity 7, no. 1: 23. https://doi.org/10.3390/joitmc7010023
APA StyleLe, T., Hoque, A., & Hassan, K. (2021). An Open Innovation Intraday Implied Volatility for Pricing Australian Dollar Options. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 23. https://doi.org/10.3390/joitmc7010023