Taxes, R&D Expenditures, and Open Innovation: Analyzing OECD Countries
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Descriptions and Sources
3.2. Data Analysis Methods
3.3. Model Specification
3.4. Data Analysis and Specification
4. Results
5. Discussion: Tax, R&D Expenditures, and Open Innovation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodrı, A.; Cataldo, M.D. Quality of government and innovative performance in the regions of Europe. J. Econ. Geogr. 2014, 15, 673–706. [Google Scholar] [CrossRef]
- Basova, A.V.; Nechaev, A.S. Taxation as an instrument of stimulation of innovation-active business entities. World Appl. Sci. J. 2013, 22, 1544–1549. [Google Scholar] [CrossRef]
- Mukherjee, A.; Singh, M.; Žaldokas, A. Do corporate taxes hinder innovation? J. Financ. Econ. 2017, 124, 195–221. [Google Scholar] [CrossRef]
- Pece, A.M.; Simona, O.E.O.; Salisteanu, F. Innovation and Economic Growth: An Empirical Analysis for CEE Countries. Procedia Econ. Financ. 2015, 26, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Keuschnigg, C.; Ribi, E. Profit Taxation, Innovation and the Financing of Heterogeneous Firms. CEPR Discussion Paper No. DP7626. 2011. Available online: https://ideas.repec.org/p/cpr/ceprdp/7626.html (accessed on 31 December 2020).
- Wu, J.; Wu, Z.; Zhuo, S. The effects of institutional quality and diversity of foreign markets on exporting firms’ innovation. Int. Bus. Rev. 2015, 24, 1095–1106. [Google Scholar] [CrossRef]
- Afolabi, L.O.; Bakar, N.A.A. Journal of Economics Library. J. Econ. Libr. 2016, 3, 100–110. [Google Scholar]
- Oanh, N.T. The Relationship between Innovation Capability, Innovation Type and Innovation Performance in FDI Enterprises in Vietnam. Int. J. Econ. Financ. 2019, 11, 1–28. [Google Scholar] [CrossRef]
- Dimitrova, L.; Eswar, S.K. Capital Gains Tax and Innovation. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Atanassov, J.; Liu, X. Corporate Income Taxes, Tax Avoidance and Innovation. Working Paper. 2014; unpublished work. [Google Scholar]
- Balsalobre-Lorente, D.; Shahbaz, M.; Jabbour, C.J.C.; Driha, O.M. The role of energy innovation and corruption in carbon emissions: Evidence based on the EKC hypothesis. In Energy and Environmental Strategies in the Era of Globalization; Springer: New York, NY, USA, 2019; pp. 271–304. [Google Scholar]
- Jia, J.; Ma, G. Do R&D tax incentives work? Firm-level evidence from China. China Econ. Rev. 2017, 46, 50–66. [Google Scholar] [CrossRef]
- Forteza, A.; Noboa, C. Perceptions of institutional quality and justification of tax evasion. Const. Polit. Econ. 2019, 30, 367–382. [Google Scholar] [CrossRef]
- Fischer, B.; Tello-Gamarra, J. Institutional quality as a driver of efficiency in laggard innovation systems. J. Glob. Compet. Gov. 2017, 11, 129–144. [Google Scholar] [CrossRef]
- Yao, Q.; Huang, L.; Li, M. The effects of tech and non-tech innovation on brand equity in China: The role of institutional environments. PLoS ONE 2019, 14, e0215634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akcigit, U.; Baslandze, S.; Stantcheva, S. Taxation and the international mobility of inventors. Am. Econ. Rev. 2016, 106, 2930–2981. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Jia, Z. Carbon tax, emission trading, or the mixed policy: Which is the most effective strategy for climate change mitigation in China? Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 973–992. [Google Scholar] [CrossRef]
- Liesegang, C.; Runkel, M. Equalizing tax bases or tax revenues under tax competition? The role of formula apportionment. J. Public Econ. Theory 2018, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Canh, N.P.; Schinckus, C.; Thanh, D.S. Do economic openness and institutional quality influence patents? Evidence from GMM systems estimates. Int. Econ. 2019, 157, 134–169. [Google Scholar] [CrossRef]
- Bekhet, H.A.; Latif, N.W.A. The impact of technological innovation and governance institution quality on Malaysia’s sustainable growth: Evidence from a dynamic relationship. Technol. Soc. 2018, 54, 27–40. [Google Scholar] [CrossRef]
- Tomizawa, A.; Zhao, L.; Bassellier, G.; Ahlstrom, D. Economic growth, innovation, institutions, and the Great Enrichment. Asia Pac. J. Manag. 2019, 35, 7–31. [Google Scholar] [CrossRef]
- Campodonico, L.A.B.; Bonfatti, R.; Pisano, L. Tax policy and the financing of innovation. J. Public Econ. 2016, 135, 32–46. [Google Scholar] [CrossRef]
- Jones, C.I.; Williams, J.C. Measuring the social return to R&D. Q. J. Econ. 1998, 113, 1119–1135. [Google Scholar] [CrossRef] [Green Version]
- Akcigit, U.; Grigsby, J.; Nicholas, T.; Stantcheva, S. Taxation and Innovation in the 20th Century. SSRN Electron. J. (Work. Pap. 24982) 2018. [Google Scholar] [CrossRef]
- Aghion, P.; Bloom, N.; Schankerman, M.; Van Reenen, J. Identifying Technology Spillovers and Product Market Rivalry. Econometrica 2013, 81, 1347–1393. [Google Scholar] [CrossRef] [Green Version]
- Akcigit, U.; Hanley, D.; Serrano-Velarde, N. Back to Basics: Basic Research Spillovers, Innovation Policy, and Growth; PIER Working Paper 13-051; National Bureau of Economic Research: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Olivares Olivares, B.D. Technological innovation within the Spanish tax administration and data subjects’ right to access: An opportunity knocks. Comput. Law Secur. Rev. 2018, 34, 628–639. [Google Scholar] [CrossRef]
- Barry, J.M. Taxation and Innovation: The Sharing Economy as a Case Study. In Nestor Davidson, Michèle Finck and John Infranca, Cambridge Handbook on Law and Regulation of the Sharing Economy; Cambridge University Press: Cambridge, UK, 2018; Volume 18, pp. 381–394. [Google Scholar]
- Hall, B.H. Tax Policy for Innovation. In Innovation and Public Policy; NBER Work. Pap. Ser., no. 506; University of Chicago Press: Chicago, IL, USA, 2019; pp. 1–24. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Bui, N.H.; Vo, D.H.; McAleer, M. Energy consumption and economic growth: Evidence from Vietnam. J. Rev. Glob. Econ. 2019, 8, 350–361. [Google Scholar] [CrossRef] [Green Version]
- Vacca, A.; Iazzi, A.; Maizza, A. 3.1. Corporate tax behaviors and firm value: The moderating role of audit characteristics. In Proceedings of the International Online Conference “Corporate Governance: Examining Key Challenges and Perspectives”, Lisbon, Portugal, 7–9 May 2020; p. 134. [Google Scholar]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 116–117. [Google Scholar] [CrossRef] [Green Version]
- Apergis, N.; Ozturk, I. Testing environmental Kuznets curve hypothesis in Asian countries. Ecol. Indic. 2015, 52, 16–22. [Google Scholar] [CrossRef]
- Saliminezhad, A.; Bahramian, P. Clean energy consumption and economic growth nexus: Asymmetric time and frequency domain causality testing in China. Energy Sources Part B Econ. Plan. Policy 2020, 15, 1–12. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Ganda, F. The environmental impacts of financial development in OECD countries: A panel GMM approach. Environ. Sci. Pollut. Res. 2019, 26, 6758–6772. [Google Scholar] [CrossRef]
- Oseni, I.O. Exchange rate volatility and private consumption in Sub-Saharan African countries: A system-GMM dynamic panel analysis. Future Bus. J. 2016, 2, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Gould, L.A. Exploring Gender-Based Disparities in Legal Protection, Education, Health, Political Empowerment, and Employment in Failing and Fragile States. Women Crim. Justice 2014, 24, 279–305. [Google Scholar] [CrossRef]
- Twerefou, D.K.; Danso-Mensah, K.; Bokpin, G.A. The environmental effects of economic growth and globalization in Sub-Saharan Africa: A panel general method of moments approach. Res. Int. Bus. Financ. 2017, 42, 939–949. [Google Scholar] [CrossRef]
- Leitao C., N.; Balslaobre-Lorente, D.B. The Linkage between Economic Growth, Renewable Energy, Tourism, CO 2 Emissions, and International Trade: The Evidence for the European Union. Energies 2020, 13, 4838. [Google Scholar] [CrossRef]
- Shehzad, K.; Xioxing, L.; Sarfraz, M.; Zulfiqar, M. Signifying the imperative nexus between climate change and information and communication technology development: A case from Pakista. Environ. Sci. Pollut. Res. 2020, 27, 30502–30517. [Google Scholar] [CrossRef]
- Leitão, N.C.; Balogh, J.M. The impact of intra-industry trade on carbon dioxide emissions: The case of the european union. Agric. Econ. (Czech Repub.) 2020, 66, 203–214. [Google Scholar] [CrossRef]
- Kate, F.T.; Milionis, P. Is capital taxation always harmful for economic growth? Int. Tax Public Financ. 2019, 26, 758–805. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Fan, W.; Chen, J.; Meng, F.; Liu, G.; Song, M.; Yang, Z. The impact of fiscal decentralization on CO2 emissions in China. Energy 2020, 192, 116685. [Google Scholar] [CrossRef]
- Davis, C.; Hashimoto, K.I. Corporate Tax Policy and Industry Location With Fully Endogenous Productivity Growth. Econ. Inq. 2018, 56, 1136–1148. [Google Scholar] [CrossRef] [Green Version]
- Herman, K.S.; Xiang, J. Environmental regulatory spillovers, institutions, and clean technology innovation: A panel of 32 countries over 16 years. Energy Res. Soc. Sci. 2020, 62, 101363. [Google Scholar] [CrossRef]
- Chambers, D.; Munemo, J. The Impact of Regulations and Institutional Quality on Entrepreneurship. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Upreti, B.N.; Dhakal, S.; Bhattarai, T.N.; Adhikari, B.R.; Bajracharya, S.R.; Yoshida, M. Climate change impact on glacier retreat and local community in the Langtang Valley, Central Nepal. J. Dev. Innov. 2017, 1, 45–59. [Google Scholar]
- Dechezlepr, A.; Eini, E.; Martin, R.; Nguyen, K.; van Reenen, J. Do Tax Incentives Increase Firm Innovation? An RD Design for R & D. No. 134057. 2020. Available online: https://as.nyu.edu/content/dam/nyu-as/econ/misc/Do%20tax%20incentives%20increase%20firm%20innovation.pdf (accessed on 31 December 2020).
- Halkos, G.; Paizanos, E. Fiscal Policy and Economic Performance: A Review of the Theoretical and Empirical Literature. Munich Pers. RePEc Arch. Fisc. 2015, 1–36. [Google Scholar] [CrossRef]
- Laplante, S.K.; Skaife, H.A.; Swenson, L.A.; Wangerin, D.D. Limits of tax regulation: Evidence from strategic R&D classification and the R&D tax credi. J. Account. Public Policy 2019, 38, 89–105. [Google Scholar] [CrossRef]
- Atanassov, J.; Liu, X. Corporate Income Taxes, Financial Constraints and Innovation. SSRN Electron. J. 2015. [Google Scholar] [CrossRef]
Variables | Measuring | Symbols | Unit Adopted | Source |
---|---|---|---|---|
Innovation | Innovation Index | LogIn | Points | The Global Economy (2020) |
Government Expenditure | Research and Development Expenditure | LogRDE | Government spending as percent of GDP | World Bank (2020) |
Taxes | Corporate Tax Rate | LogCT | Tax rate, percent of commercial profits | The Global Economy (2020) |
Taxes | Number of Taxes Paid by Businesses | LogTP | Number of Taxes | The Global Economy (2020) |
Governance | Rule of Law Index | LogRL | Points | The Global Economy (2020) |
LogIn | LogRL | LogCT | LogTP | LogRDE | |
---|---|---|---|---|---|
Mean | 3.9261 | 0.1101 | 3.6666 | 2.3160 | 0.5006 |
Median | 3.9646 | 0.3646 | 3.7062 | 2.1972 | 0.5247 |
Maximum | 4.2239 | 0.7419 | 4.2669 | 3.4657 | 1.5151 |
Minimum | 3.5293 | −4.6051 | 1.5040 | 1.3862 | −1.0498 |
Std. Dev. | 0.1549 | 0.7575 | 0.3355 | 0.4167 | 0.5501 |
LogIn | LogRL | Log RDE | LogCT | LogTP | |
---|---|---|---|---|---|
LogIn | 1.0000 | ||||
LogRL | 0.7376 | 1.0000 | |||
LogRDE | 0.7257 | 0.4659 | 1.0000 | ||
LogCT | −0.1593 | −0.0417 | 0.1324 | 1.0000 | |
LgoTP | −0.0305 | −0.0820 | 0.0821 | −0.1111 | 1.0000 |
Levin, Lin and Chu t * | |||||
At Level | At first Difference | ||||
Statistic | Prob. | Statistic | Prob. | ||
LogIn | −5.6531 *** | (0.0000) | ∆LogIn | −15.8990 *** | (0.0000) |
LogRL | −3.1488 *** | (0.0008) | ∆LogRL | −1.72575 ** | (0.0422) |
LogTP | −1.6324 ** | (0.0513) | ∆LogTP | −0.95526 * | (0.0697) |
LogCT | −95.337 *** | (0.0000) | ∆LogCT | −227.028 *** | (0.0000) |
LogRDE | −9.1304 *** | (0.0000) | ∆LogRDE | −18.2259 *** | (0.0000) |
Im, Pesaran And Shin W-Stat | |||||
At Level | At first Difference | ||||
Statistic | Prob. | Statistic | Prob. | ||
LogIn | −1.04127 | (0.1489) | ∆LogIn | −4.61309 | (0.0000) |
LogRL | 1.94442 | (0.9741) | ∆LogRL | 1.47487 | (0.0299) |
LogTP | −59971.1 *** | (0.0000) | ∆LogTP | −29065.9 | (0.0000) |
LogCT | −1.8 × 1014 *** | (0.0000) | ∆LogCT | −46.6347 | (0.0000) |
LogRDE | −2.53716 *** | (0.0056) | ∆LogRDE | −4.55159 | (0.0000) |
Augment Dickey-Fuller | |||||
At Level | At first Difference | ||||
Statistic | Prob. | Statistic | Prob. | ||
LogIn | 87.3449 ** | (0.0405) | ∆LogIn | 134.542 *** | (0.0000) |
LogRL | 52.9124 | (0.8373) | ∆LogRL | 52.7310 * | (0.0417) |
LogTP | 10.1459 | (0.9270) | ∆LogTP | 15.6750 *** | (0.0152) |
LogCT | 156.536 *** | (0.0000) | ∆LogCT | 190.201 *** | (0.0000) |
LogRDE | 105.012 *** | (0.0016) | ∆LogRDE | 134.626 *** | (0.0000) |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
OLS | Random Effects | Fixed Effects | FMOLS | DOLS | GMM | |
LogIn | 0.8540 *** | |||||
LogRL | 0.0965 *** | 0.04159 *** | −0.0464 *** | 0.2866 *** | 0.1375 *** | 0.0138 *** |
LogRDE | 0.1518 *** | 0.1158 *** | 0.0062834 | 0.029168 | 0.130642 *** | 0.0197 *** |
LogCT | −0.1005 *** | −0.0501 *** | 0.0179516 | −0.803093 ** | −0.059249 ** | −0.0077 *** |
LogTP | −0.0223 * | −0.0132 | −0.027002 * | −0.414572 *** | −0.0008 | −0.0065 *** |
_cons | 4.2597 *** | 4.0824 *** | 3.9249 *** | 4.1860 *** | 4.0630 ** | 15.0497 *** |
year | −0.0071 *** | |||||
sigma_u | 0.0652 | 0.1876 | ||||
sigma_e | 0.0342 | 0.0342 | ||||
Rho | 0.9677 | |||||
AR(1) | 0.000 | |||||
AR(2) | 0.066 | |||||
R-squared | 0.7754 | 0.6824 | 0.7169 | 0.7730 | 0.7334 | 0.61712 |
Adjusted R-Squared | 0.7021 | 0.6172 | 0.6451 | 0.7682 | 0.6152 | 0.5978 |
S.E. of Regression | 0.0104 | 0.0784 | 0.0874 | 0.07477 | 0.0672 | 0.0148 |
Long-Run Variance | 0.0687 | 0.0321 | 0.0158 | 0.0145 | 0.0127 | 0.0548 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balsalobre-Lorente, D.; Zeraibi, A.; Shehzad, K.; Cantos-Cantos, J.M. Taxes, R&D Expenditures, and Open Innovation: Analyzing OECD Countries. J. Open Innov. Technol. Mark. Complex. 2021, 7, 36. https://doi.org/10.3390/joitmc7010036
Balsalobre-Lorente D, Zeraibi A, Shehzad K, Cantos-Cantos JM. Taxes, R&D Expenditures, and Open Innovation: Analyzing OECD Countries. Journal of Open Innovation: Technology, Market, and Complexity. 2021; 7(1):36. https://doi.org/10.3390/joitmc7010036
Chicago/Turabian StyleBalsalobre-Lorente, Daniel, Ayoub Zeraibi, Khurram Shehzad, and José María Cantos-Cantos. 2021. "Taxes, R&D Expenditures, and Open Innovation: Analyzing OECD Countries" Journal of Open Innovation: Technology, Market, and Complexity 7, no. 1: 36. https://doi.org/10.3390/joitmc7010036
APA StyleBalsalobre-Lorente, D., Zeraibi, A., Shehzad, K., & Cantos-Cantos, J. M. (2021). Taxes, R&D Expenditures, and Open Innovation: Analyzing OECD Countries. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 36. https://doi.org/10.3390/joitmc7010036