A Model-Based Strategy for Developing Sustainable Cosmetics Small and Medium Industries with System Dynamics
Abstract
:1. Introduction
2. Literature Review
2.1. Sustainable Performance Criteria and Factors for Cosmetics Small and Medium Industries
2.2. Integrating Company Sustainability Development into Company Strategies
2.3. A Model-Based Decision Strategy Using System Dynamics
3. Materials and Methods
3.1. Developmental Methods
3.2. Conceptual Model of Sustainable Cosmetics Small and Medium Industries
3.3. Model-Based Strategy Development
4. Results
4.1. System Dynamics Model Development
4.2. Simulation Result
5. Discussion
5.1. Cosmetics, SMIs, and System Dynamics
5.2. System Dynamics and Open Innovation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Discussion Topic | Question |
---|---|
1. The sustainability goals and how stakeholders involved | a. Should cosmetics SMI managers and decision-makers consider the demands of customers, society, and government for a sustainable industry? Please explain your point of view. |
b. Do managers have the understanding and ability to achieve a sustainable SMI? | |
c. What are the current roles and interests of stakeholders to create sustainable SMIs? | |
2. The sustainability factors and inter-relationship between factors | a. The following are the factors and their relationships based on literature studies and previous research that affect the achievement of sustainable SMIs. Are there factors or relationships that have not been defined here? Are there any opinions or suggestions? |
b. Are the factors and relationships listed in the conceptual model enough to be a general model for cosmetics SMIs? | |
3. The sustainability performance criteria | These are the output criteria that we define according to the literature and previous research. Are they enough? Are there any other output criteria that might be used as a reference for sustainable Cosmetics SMIs performance indicators? |
4. The alternative strategies | a. Which input factors can be used as policy factors that managers and stakeholders can intervene in them? |
b. What are the possible strategies for cosmetics SMIs to achieve sustainability goals and consider the relationship loops in the conceptual model? |
Appendix B
Factor | Unit | Powersim Equation |
---|---|---|
AC Opr Hours | h/year | GRAPHSTEP(TIME;1;1;{1936;1960;1952;1960;1928;1928;1984//Min:1920;Max:1990//}<<h/year>>) |
AC power | kWh/year | ROUND(“No of AC” × “Power per AC” × “AC Opr Hr”) |
Actual environment impact | Pt/year | ROUND(“EI Single Score” × “Goods Produced”) |
Additional demand | kg/year | 0 |
Additive ratio | 1 − “Water Ratio” | |
Capacity standard | kg/year | 48000 |
Catch_up production | kg/year | ROUND(“Production Plan” − “Capacity Standard” + Rework) |
Change in environmental impact | Pt/year | “Reference Environmental Impact” − “Actual Environmental Impact” |
Change in productivity index | “Productivity Index” − “Last Year Productivity Index” | |
Comp_Opr_Hours | h/year | GRAPHSTEP(TIME;1;1;{1936;1960;1952;1960;1928;1928;1984//Min:1920;Max:1990//}<<h/year>>) |
Company cost | Rp/year | ROUND(“Production Cost” × (1 + “Material Price Fluctuation Factors”) + “Marketing Expense”) |
Company revenue | Rp/year | ROUND(“Production Revenue” × “Selling price Fluctuation Factors”*(1 − “Discount Ratio”)) |
Computer power | kWh/year | ROUND(“No of Computer” × “Power per Computer” × “Comp Opr Hr”) |
Defect | kg/year | “Defect Ratio” × Production |
Defect ratio | % | 3 |
Demand changing factors | kg/Pt | 1 |
Discount ratio | 0.1209 | |
EI single score | Pt/kg | 0.0449 |
EI target | Pt/kg | 0.0449 |
Energy consumption | kWh/year | ROUND(“Energy Waste” + “Normal Energy Consumption”) |
Energy cost | Rp/year | “Energy Consumption” × “Energy Price” |
Energy price | Rp/kWh | 1500 |
Energy waste | kWh/year | “Waste of Computer” + “Waste of AC Power” + “Waste of Machine Power” |
Fixed material price | Rp/kg | GRAPH(TIME;1;1;{17000;17000;21000;17000;17000;18000;18000;21000;23000;23000;25000;25000;25000;27000;27000;27000;29000;29000;29000;31000;31000;31000;33000;33000;33000//Min:17000;Max:30000//}<<Rp/kg>>) |
Flow of additional demand | kg/year | “Potential Demand Change” − “Additional demand” |
Goods produced | kg/year | Production − Defect + Rework |
Goods sold | kg/year | “Simulated Demand” |
Government subsidies | Rp | 0 |
HR add income | Rp/year | “Overtime Fee” + “Reward − Incentives” |
HR cost | Rp/year | (“No of HR” × “HR Rate”) + “HR add Income” |
HR rate | Rp/(person × year) | GRAPH(TIME;1;1;{37300000;38400000;38700000;43300000;44800000;46400000;50500000;50500000;50500000;52000000;53500000;55000000;56500000;58000000;59500000;61000000;62500000;64000000;65500000;67000000;68500000;70000000;71500000;73000000;74500000//Min:35000000;Max:80000000//}<<Rp/(person × year)>>) |
Human health damage | DALY/year | “Human Health Factor” × “Goods Produced” |
Human Health Factor | DALY/kg | 2.63333333333333 × 10−6 |
Inventory | kg/year | 3141 |
Lamp operation hours | h/year | GRAPHSTEP(TIME;1;1;{1936;1960;1952;1960;1928;1928;1984//Min:1920;Max:1990//}<<h/year>>) |
Last year productivity index | 0,95 | |
Lighting power | kWh/year | ROUND(“Power per Lamp” × “Number of Lamp” × “Lamp Opr Hr”) |
Mach opr. hour | h/year | GRAPHSTEP(TIME;1;1;{1936;1960;1952;1960;1928;1928;1984//Min:1920;Max:1990//}<<h/year>>) |
Mach opr. ratio | GRAPH(TIME;1;1;{62,5;62,5;62,5;62,5;62,5;62,5;62,5;62,5;31,3; //Min:30;Max:63//}<<%>>) | |
Machine power | kWh/year | “No of machine” × “Power per Mach” × “Mach Opr Hr” × Mach_Op_Ratio |
Maintenance cost | Rp/year | GRAPH(TIME;1;1;{6235000;6235000;6235000;5579000;7433000;7945000;9744000//Min:5000000;Max:10000000//}<<Rp/year>>) |
Marketing expenses | Rp/year | GRAPH(TIME;1;1;{352578000;273100000;352578000;337036000;284033000;291114000;280521000;293396000//Min:200000000;Max:400000000//}<<Rp/year>>) |
Material consumption | kg/year | “Normal Material Consumption” + “Material Waste” |
Material cost | Rp/year | ROUND(“Material Consumption” × “Fixed Material Price”) |
Material price fluctuation | % | GRAPH(TIME;1;1;{7;40;−13;13;41;31;20;40;28;28;23;23;23;20;20;20;17;17;17;15;15;15;14;14;14//Min:−15;Max:50//}<<%>>) |
Material waste | kg/year | ROUND(Rework × “Additive Ratio”) |
No of AC | pieces | GRAPHSTEP(TIME;1;1;{8;8;8;6;6;6;6;5//Min:1;Max:8//}<<pieces>>) |
No of Admin HR | people | GRAPH(TIME;1;1;{8;8;8;8;8;8;7;7;6;6;6;6;6;6;6;6;6;6;6;6;6;6;6;6;6//Min:5;Max:9//}<<person>>) |
No of Computer | pieces | 6 |
No of HR | people | “No of Prod_Log HR” + “No of Admin HR” |
No of machine | machines | 9 |
No of Prod_Log HR | people | GRAPH(TIME;1;1;{10;10;10;10;10;10;9;7;7;7//Min:5;Max:10//}<<person>>) |
No of waste machine | machines | GRAPHLINAS(TIME;1;1;{3;4;3;1;1;1;1//Min:0;Max:5//}<<mach>>) |
No of water pump | pieces | 2 |
Normal energy consumption | kWh/year | “AC Power” + “Computer Power” + “Lighting Power” + “Machine Power” + “Water Pump” |
Normal material consumption | kg/year | ROUND(“Additive Ratio” × (“Goods Produced” + Inventory)) |
Number of lamps | Pieces | 10 |
Ord_demand | kg/year | GRAPHCURVE(TIME;1;1;{72167;57792;73751;58655;46813;47750;50344;40275;41081;41902;42741;43595;44467;45357;46264;47189;48133;49095;50077;51079;52100;53142;55268//Min:40000;Max:75000//}<<kg/year>>) |
Order lead time | h/kg | 0.08 |
OT fraction | h/kg | 0.03 |
OT hours | h/year | ROUND(“OT Fraction” × “Catch_Up Production”) |
OT rate | Rp/hour | 17000 |
Other fixed costs | Rp/year | GRAPH(TIME;1;1;{395615000;301421000;319640000;241928000;302614000;366015000;330992000//Min:200000000;Max:400000000//}<<Rp/year>>) |
Overprocessing | h/year | “Waiting hours” + “Reprocess hours” |
Overtime fee | Rp/year | “OT Hours” × “OT Rate” |
Plan productivity index | IF(“Last Year Productivity Index”>1;0,97;”Last Year Productivity Index”) | |
Potential demand change | kg/year | “Change in Environmental Impact”*”Demand Changing Factors” |
Power per AC | kW/pieces | 0.75 |
Power per computer | kW/pieces | 0.1 |
Power per lamp | kW/pieces | 0.02 |
Power per machine | kWh/mach | 0.424 |
Power per water pump | kW/pieces | 0.25 |
Production | kg/year | “Production Plan” |
Production cost | Rp/year | “Material Cost” + “HR Cost” + “Maintenance Cost” + “Energy Cost” + “Other Fixed Cost” − “Government Subsidies” |
Production plan | kg/year | (“Simulated Demand”/“Plan Prod Index”) − Inventory |
Production revenue | Rp/year | “Goods Sold” × “Selling Price” |
Productivity ratio | “Production Revenue”/“Production Cost” | |
Profitability ratio | “Company Revenue”/“Company Cost” − 1 | |
Reference environmental impact | Pt/year | ROUND(“Goods Produced” × “EI target”) |
Reprocess hours | h/year | Rework × “Rework Time” |
Reward budget | Rp/year/person | 1000000 |
Reward-incentives | Rp/year | “No of HR” × “Reward Budget” |
Rework | kg/year | Defect |
Rework time | h/kg | 0.02 |
Selling price | Rp/kg | GRAPH(TIME;1;1;{25000;27000;27000;27000;32000;34000;34000;34000;35000;35000;35000;35000;35000;36000;36000;36000;36000;36000;37000;37000//Min:20000;Max:50000//}<<Rp/kg>>) |
Selling price fluctuation factors | GRAPHSTEP(TIME;1;1;{191;199;198;218;206;189;181;190;185;185;194;194;194;198;198;198;208;208;208;214;214;214;221;221;221//Min:175;Max:230//}<<%>>) | |
Simulated demand | kg/year | Ord_Demand + “Additional demand” |
Tax paid | Rp/year | IF(“Profitability Ratio”>0;”Tax Ratio” × “Company Revenue”) |
Tax ratio | % | GRAPHSTEP(TIME;1;1;{1;1;1;1;1;1;0,5;0,5;0,5;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1//Min:0;Max:1.5//}<<%>>) |
Waiting hours | h/year | Rework × “Order Lead Time” |
Waste AC | Pieces | 4 |
Waste computer | Pieces | 3 |
Waste of AC power | kWh/year | ROUND(“Waste AC” × “Power per AC” × Overprocessing) |
Waste of computer power | kWh/year | ROUND(“Waste Comp” × “Power per Computer” × Overprocessing) |
Waste of machine power | kWh/year | ROUND(“No of Waste Machine” × “Power per Mach” × Overprocessing) |
Water pump power | kWh/year | “No of Water_Pump” × “Power per Water Pump” × “Water Pump_Opr_Hours” |
Water pump opr hr | h/year | GRAPHSTEP(TIME;1;1;{1936;1960;1952;1960;1928;1928;1984//Min:1920;Max:1990//}<<h/year>>) |
Water ratio | 0.44 |
Appendix C
No | Year | Actual Data (A) | Simulation Result (S) | Absolute Mean Error (AME) |
---|---|---|---|---|
1 | 2013 | Rp. 3031.7 million | Rp. 3029.4 million | 0% |
2 | 2014 | Rp. 2765.8 million | Rp. 2729.4 million | 1% |
3 | 2015 | Rp. 3498.2 million | Rp. 3466.0 million | 1% |
4 | 2016 | Rp. 3150.7 million | Rp. 3035.0 million | 4% |
5 | 2017 | Rp. 2766.2 million | Rp. 2712.8 million | 2% |
6 | 2018 | Rp. 2719.6 million | Rp. 2697.4 million | 1% |
7 | 2019 | Rp. 2778.7 million | Rp. 2723.6 million | 2% |
8 | 2020 | Rp. 2222.5 million | Rp. 2287.2 million | 3% |
Absolute mean error (AME) | 1% |
References
- Villena, K. World Market for Beauty and Personal Care. Available online: https://www.euromonitor.com/article/world-market-for-beauty-and-personal-care-2 (accessed on 1 August 2021).
- Ramli, N.S. Green Marketing: A New Prospect in the Cosmetics Industry. In Sustainable Entrepreneurship and Investments in the Green Economy; Vasile, A.J., Nicolò, D., Eds.; IGI Global: Hershey, PA, USA, 2017; pp. 200–230. [Google Scholar] [CrossRef]
- Bilal, M.; Mehmood, S.; Iqbal, H.M.N. The beast of beauty: Environmental and health concerns of toxic components in cosmetics. Cosmetics 2020, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- UkoNaku, J.; Inah, B.; Mowang, D.; Ugosor, T. Health impact of toxic metals in facial cosmetics used in Calabar, Nigeria. Int. J. Pharmacol. Toxicol. 2020, 8, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Sugibayashi, K.; Yusuf, E.; Todo, H.; Dahlizar, S.; Sakdiset, P.; Arce, F., Jr.; See, G.L. Halal cosmetics: A review on ingredients, production, and testing methods. Cosmetics 2019, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Sahota, A. Sustainability: How the Cosmetics Industry Is Greening Up; Wiley Online Library: Hoboken, NJ, USA, 2014. [Google Scholar]
- Belhadi, A.; Sha′ri, Y.B.M.; Touriki, F.E.; El Fezazi, S. Lean production in SMEs: Literature review and reflection on future challenges. J. Ind. Prod. Eng. 2018, 35, 368–382. [Google Scholar] [CrossRef]
- Muñoz-Pascual, L.; Curado, C.; Galende, J. The triple bottom line on sustainable product innovation performance in SMEs: A mixed methods approach. Sustainability 2019, 11, 1689. [Google Scholar] [CrossRef] [Green Version]
- Yacob, P.; Wong, L.S.; Khor, S.C. An empirical investigation of green initiatives and environmental sustainability for manufacturing SMEs. J. Manuf. Technol. Manag. 2019, 30, 2–25. [Google Scholar] [CrossRef]
- Godfrey-Smith, P. The strategy of model-based science. Biol. Philos. 2007, 21, 725–740. [Google Scholar] [CrossRef]
- Hidayatno, A.; Rahman, I.; Muliadi, R. Understanding dynamics of green house gases impacts on Jakarta’s urban development using model-based policy simulator to support policy making. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Bali, Indonesia, 7–9 January 2014; pp. 1209–1214. [Google Scholar]
- Moisander, J.; Stenfors, S. Exploring the Edges of Theory-Practice Gap: Developers and Users of Strategy Tools. 2005. Available online: http://epub.lib.aalto.fi/pdf/diss/a297.pdf (accessed on 28 March 2007).
- Pilemalm, S.; Hallberg, N.; Sparf, M.; Niclason, T. Practical experiences of model-based development: Case studies from the Swedish Armed Forces. Syst. Eng. 2012, 15, 407–421. [Google Scholar] [CrossRef]
- Dey, P.K.; Yang, G.l.; Malesios, C.; De, D.; Evangelinos, K. Performance management of supply chain sustainability in small and medium-sized enterprises using a combined structural equation modelling and data envelopment analysis. Comp. Econ. 2019, 58, 573–613. [Google Scholar] [CrossRef] [Green Version]
- Thanki, S.; Govindan, K.; Thakkar, J. An investigation on lean-green implementation practices in Indian SMEs using analytical hierarchy process (AHP) approach. J. Clean. Prod. 2016, 135, 284–298. [Google Scholar] [CrossRef]
- Moldavska, A.; Welo, T. A Holistic approach to corporate sustainability assessment: Incorporating sustainable development goals into sustainable manufacturing performance evaluation. J. Manuf. Syst. 2019, 50, 53–68. [Google Scholar] [CrossRef]
- Jhud, M.A.; Alejandro, G.S.; Laurence, S.; Azapagic, A. An integrated sustainability assessment of synergistic supply of energy and water in remote communities. Sustain. Prod. Consum. 2020, 22, 1–21. [Google Scholar] [CrossRef]
- Amrina, U.; Zagloel, T.Y.M. The harmonious strategy of lean and green production: Future opportunities to achieve sustainable productivity and quality. In Proceedings of the 2019 6th International Conference on Industrial Engineering and Applications (ICIEA), Tokoyo, Japan, 26–29 April 2019; IEEE Publications: Tokoyo, Japan, 2019; pp. 187–192. [Google Scholar]
- Munasinghe, M.; Deraniyagala, Y.; Dassanayake, N.; Karunarathna, H. Economic, social, and environmental impacts and overall sustainability of the tea sector in Sri Lanka. Sustain. Prod. Consum. 2017, 12, 155–169. [Google Scholar] [CrossRef]
- Singh, S.; Olugu, E.U.; Musa, S.N. Development of sustainable manufacturing performance evaluation expert system for small and medium enterprises. Procedia CIRP 2016, 40, 608–613. [Google Scholar] [CrossRef] [Green Version]
- Thanki, S.; Thakkar, J.J. An investigation on lean–green performance of Indian manufacturing SMEs. Int. J. Prod. Perform. Manag. 2019, 69, 489–517. [Google Scholar] [CrossRef]
- Nallusamy, S.; Dinagaraj, G.B.; Balakannan, K.; Satheesh, S. Sustainable green lean manufacturing practices in small scale industries—A case study. Int. J. Appl. Eng. Res. 2015, 10, 143–146. [Google Scholar]
- Belhadi, A.; Touriki, F.E.; El Fezazi, S. Benefits of adopting lean production on green performance of SMEs: A case study. Prod. Plan. Control 2018, 29, 873–894. [Google Scholar] [CrossRef]
- Gandhi, N.S.; Thanki, S.J.; Thakkar, J.J. Ranking of drivers for integrated lean-green manufacturing for Indian Manufacturing SMEs. J. Clean. Prod. 2018, 171, 675–689. [Google Scholar] [CrossRef]
- Amrina, U.; Oktora, A. Analysis of lean and green drivers for sustainable cosmetics SMIs using interpretive structural modelling (ISM). Int. J. Eng. Res. Adv. Technol. 2020, 6, 8–16. [Google Scholar] [CrossRef]
- Amrina, U.; Hidayatno, A.; Zagloel, T.Y.M. Mapping challenges in developing sustainable small and medium industries: Integrating Lean and green principles. J. Ind. Eng. Manag. 2021, 14, 311–328. [Google Scholar] [CrossRef]
- Engert, S.; Rauter, R.; Baumgartner, R.J. Exploring the integration of corporate sustainability into strategic management: A literature review. J. Clean. Prod. 2016, 112, 2833–2850. [Google Scholar] [CrossRef]
- Baumgartner, R.J.; Rauter, R. Strategic perspectives of corporate sustainability management to develop a sustainable organization. J. Clean. Prod. 2017, 140, 81–92. [Google Scholar] [CrossRef]
- Falle, S.; Rauter, R.; Engert, S.; Baumgartner, R.J. Sustainability management with the sustainability balanced scorecard in SMEs: Findings from an Austrian case study. Sustainability 2016, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Yang, Y.; Zhang, X. Knowledge transfer efficiency measurement with application for open innovation networks. Int. J. Technol. Manag. 2019, 81, 118–142. [Google Scholar]
- Jian, J.; Wang, M.; Li, L.; Su, J.; Huang, T. A partner selection model for collaborative product innovation from the viewpoint of knowledge collaboration. Kybernetes 2019, 49, 1623–1644. [Google Scholar] [CrossRef]
- Rui, Z.; Guijie, Q. A system dynamics model for open innovation community. Int. J. Enterp. Inf. Syst. 2018, 14, 78–88. [Google Scholar] [CrossRef]
- Yang, J.; Su, J.; Song, L. Selection of manufacturing enterprise innovation design project based on consumer’s green preferences. Sustainability 2019, 11, 1375. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Gong, C. Impact of open innovation communities on enterprise innovation performance: A system dynamics perspective. Sustainability 2019, 11, 4794. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.; Whittington, R.; Scholes, K.; Angwin, D.; Regnér, P. Exploring Strategy, 9th ed.; Pearson Education: Harlow, UK, 2011. [Google Scholar]
- Geraili, A.; Salas, S.; Romagnoli, J.A. A decision support tool for optimal design of integrated biorefineries under strategic and operational level uncertainties. Ind. Eng. Chem. Res. 2016, 55, 1667–1676. [Google Scholar] [CrossRef]
- Schwaninger, M.; Grösser, S. System dynamics as model-based theory building. Syst. Res. Behav. Sci. 2008, 25, 447–465. [Google Scholar] [CrossRef]
- Mazzoletti, M.A.; Bossio, G.R.; De Angelo, C.H.; Espinoza-Trejo, D.R. A model-based strategy for interturn short-circuit fault diagnosis in PMSM. IEEE Trans. Ind. Electron. 2017, 64, 7218–7228. [Google Scholar] [CrossRef]
- Gunarsih, T.; Saleh, C.; Syukron, D.N.; Deros, B.M. A hybrid balanced scorecard and system dynamics for measuring public sector performance. J. Eng. Sci. Technol. 2016, 11, 65–86. [Google Scholar]
- Banaś, D.; Michnik, J.; Targiel, K.S. System modeling and control of organization business processes by use of balanced scorecard and system dynamics. Control Cybern. 2016, 45, 185–205. [Google Scholar]
- Arnold, R.D.; Wade, J.P. A definition of systems thinking: A systems approach. Procedia Comput. Sci. 2015, 44, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Kibira, D.; Jain, S.; McLean, C. A system dynamics modeling framework for sustainable manufacturing. In Proceedings of the 27th Annual System Dynamics Society Conference, Albuquerque, NM, USA, 26–30 July 2009; Volume 301, pp. 1–22. [Google Scholar]
- Sterman, J.D. System Dynamics: Systems Thinking and Modeling for A Complex World; Massachusetts Institute of Technology, Engineering System Division: Cambridge, MA, USA, 2003. [Google Scholar]
- Zhan, Z.; Yan, H.; Qi, J. What Do Chinese Entrepreneurs Think about Entrepreneurship: A Case Study of Popular Essays on Zhisland. J. Open Innov. Technol. Mark. Complex. 2020, 6, 86. [Google Scholar] [CrossRef]
- Sterman, J.D. Modeling managerial behavior: Misperceptions of feedback in A dynamic decision making experiment. Manag. Sci. 1989, 35, 321–339. [Google Scholar] [CrossRef] [Green Version]
- Setiawan, A.D.; Sutrisno, A.; Singh, R. Responsible innovation in practice with system dynamics modelling: The case of energy technology adoption. Int. J. Innov. Sustain. Dev. 2018, 12, 387–420. [Google Scholar] [CrossRef]
- Sterman, J. Business Dynamics: System Thinking and Modelling for a Complex Word; Irwin/McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Hidayatno, A.; Rahman, I.; Muliadi, R. A system dynamics sustainability model to visualize the interaction Between economic, social, and environmental aspects of Jakarta’s urban development. In Proceedings of the International Seminar on Science and Technology Innovation, Jakarta, Indonesia, 2–4 October 2012; pp. 179–183. [Google Scholar]
- Kim, D.H.; Anderson, V. Systems Archetype Basics; Pegasus Communication Inc.: Waltham, MA, USA, 1998. [Google Scholar]
- Barlas, Y. Formal aspects of model validity and validation in system dynamics. Syst. Dyn. Rev. 1996, 12, 183–210. [Google Scholar] [CrossRef]
- Martis, M.S. Validation of simulation based models: A theoretical outlook. Electron. J. Bus. Res. Methods 2006, 4, 39–46. [Google Scholar]
- Berawi, M.A.; Miraj, P.; Islamiah, E.R. Revenue analysis of port-city conceptual design. J. Phys. Conf. Ser. 2020, 1500, 012066. [Google Scholar] [CrossRef]
- Rusiawan, W.; Tjiptoherijanto, P.; Suganda, E.; Darmajanti, L. System dynamics modeling for urban economic growth and CO2 emission: A case study of Jakarta, Indonesia. Procedia Environ. Sci. 2015, 28, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Jain, V.K.; Jain, P.K.; Sidola, A.; Kumar, P.; Kumar, D. System dynamics investigation of information technology in small and medium enterprise supply chain. J. Adv. Manag. Res. 2012, 9, 199–207. [Google Scholar] [CrossRef]
- Hidayatno, A.; Destyanto, A.R.; Moeis, A.O.; Rizky, M.; Iman, N. Scenario planning using system dynamics for reducing uncertainty on managing employee turnover. In Proceedings of the 2nd Asia-Pacific Region System Dynamics Conference, Singapore, 19–22 February 2017. [Google Scholar]
- Hossain, M.S.; Ramirez, J.; Szabo, S.; Eigenbrod, F.; Johnson, F.A.; Speranza, C.I.; Dearing, J.A. Participatory modelling for conceptualizing social-ecological system dynamics in the Bangladesh delta. Reg. Environ. Chang. 2020, 20, 28. [Google Scholar] [CrossRef]
- Johnson, B.R.; D’Lauro, C.J. After brainstorming, groups select an early generated idea as their best idea. Small Group Res. 2018, 49, 177–194. [Google Scholar] [CrossRef]
- Vera, P.; Nikulin, C.; Lopez-Campos, M.; Gonzalez Ramirez, R.G.G. Prospective study using archetypes and system dynamics. Acad. Rev. Latinoam. Admin. 2019, 32, 181–202. [Google Scholar] [CrossRef]
- Hidayatno, A.; Rahman, I.; Muliadi, R. Policy analysis of the Jakarta carbon mitigation plan using system dynamics to support decision making in urban development–options for policymakers. Int. J. Technol. 2015, 6, 886–893. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Narayanamurthy, G.; Acharya, P. Can lean lead to green? Assessment of radial tyre manufacturing processes using system dynamics modelling. Comput. Oper. Res. 2018, 89, 284–306. [Google Scholar] [CrossRef]
- Peñarroya-Farell, M.; Miralles, F. Business model dynamics from interaction with open innovation. J. Open Innov. Technol. Mark. Complex. 2021, 7, 81. [Google Scholar] [CrossRef]
- Skordoulis, M.; Ntanos, S.; Kyriakopoulos, G.L.; Arabatzis, G.; Galatsidas, S.; Chalikias, M. Environmental innovation, open innovation dynamics and competitive advantage of medium and large-sized firms. J. Open Innov. Technol. Mark. Complex. 2020, 6, 195. [Google Scholar] [CrossRef]
- Yun, J.J.; Zhao, X.; Jung, K.H.; Yigitcanlar, T. The culture for open innovation dynamics. Sustainability 2020, 12, 5076. [Google Scholar] [CrossRef]
- Yun, J.J.; Park, K.B.; Hahm, S.D.; Kim, D. Basic income with high open innovation dynamics: The way to the entrepreneurial state. J. Open Innov. Technol. Mark. Complex. 2019, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Pichlak, M.; Szromek, A.R. Eco-Innovation, sustainability and business model innovation by open innovation dynamics. J. Open Innov. Technol. Mark. Complex. 2021, 7, 149. [Google Scholar] [CrossRef]
Strategy Alternatives | Factors | Loop | Strategy’s Influence on Factors | Simulation Setup | Impact to Loop |
---|---|---|---|---|---|
Self-Lean Improvement | Defect Ratio | R2 | Reduce defective products | 1% | Positive |
Production Workforce | R3 | Minimize production consumption | 6 people | Positive | |
Lean and green limited cooperation | Defect Ratio | R2 | Reduce defective products | 0% | Positive |
Production and nonproduction workforce | R3 | Minimize production consumption | 6 people | Positive | |
Electricity consumption | R3 R4 R5 | Minimize production consumption | computer power: 0.065 kWh/computer machine running hours: 2.5 h /day | Positive | |
Production fixed cost | R3 | Increase production costs (additional investment) | Rp. 12.1 million/year | Positive | |
Lean and green comprehensive collaboration | Defect Ratio | R2 | Reduce defective products | 0% | Positive |
Production and nonproduction workforce | R3 | Minimize production consumption | 6 people | Positive | |
Electricity consumption | R3 R4 R5 | Minimize production consumption | computer power: 0.065 kWh/computer machine running hours: 2.5 h/day | Positive | |
Production fixed cost | R3 | Increase production cost (additional investment) | Rp. 12.1 million/year | Positive | |
Nonproduction fixed cost | - | Increase total costs to company (additional expense for green certification) | Rp. 27.0 million/year | Positive | |
Government subsidies | R3 | Decrease costs to company (3%–10% savings in interest expenses per year) | Rp. 26.0 million/year | Negative |
Criteria Performance | Lean and Green Limited Cooperation Strategy | Lean and Green Comprehensive Collaboration Strategy |
---|---|---|
Additional depreciation and general expenses | ±Rp. 13 million/year (2% from general expenses) | ±Rp. 39 million/year (6% from general expenses) |
Cost-saving (raw material, human resource, and energy cost) | ±Rp. 233 million/year (8% from total cost) | ±Rp. 256 million/year (9% from total cost) |
Additional revenue (from the green product) | ±Rp. 37 million/year (+1%) | ±Rp. 114 million/year (+4%) |
Productivity ratio improvement | +10% (average) | +15% (average) |
Profitability ratio improvement | +12% (average) | +17% (average) |
Environmental and human health impact reduction | −33% (average) | −31% (average) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amrina, U.; Hidayatno, A.; Zagloel, T.Y.M. A Model-Based Strategy for Developing Sustainable Cosmetics Small and Medium Industries with System Dynamics. J. Open Innov. Technol. Mark. Complex. 2021, 7, 225. https://doi.org/10.3390/joitmc7040225
Amrina U, Hidayatno A, Zagloel TYM. A Model-Based Strategy for Developing Sustainable Cosmetics Small and Medium Industries with System Dynamics. Journal of Open Innovation: Technology, Market, and Complexity. 2021; 7(4):225. https://doi.org/10.3390/joitmc7040225
Chicago/Turabian StyleAmrina, Uly, Akhmad Hidayatno, and T. Yuri M. Zagloel. 2021. "A Model-Based Strategy for Developing Sustainable Cosmetics Small and Medium Industries with System Dynamics" Journal of Open Innovation: Technology, Market, and Complexity 7, no. 4: 225. https://doi.org/10.3390/joitmc7040225