18 pages, 2427 KiB  
Review
Role of the Cytokinin-Activated Type-B Response Regulators in Hormone Crosstalk
by Yan O. Zubo and G. Eric Schaller
Plants 2020, 9(2), 166; https://doi.org/10.3390/plants9020166 - 30 Jan 2020
Cited by 42 | Viewed by 6669
Abstract
Cytokinin is an important phytohormone that employs a multistep phosphorelay to transduce the signal from receptors to the nucleus, culminating in activation of type-B response regulators which function as transcription factors. Recent chromatin immunoprecipitation-sequencing (ChIP-seq) studies have identified targets of type-B ARABIDOPSIS RESPONSE [...] Read more.
Cytokinin is an important phytohormone that employs a multistep phosphorelay to transduce the signal from receptors to the nucleus, culminating in activation of type-B response regulators which function as transcription factors. Recent chromatin immunoprecipitation-sequencing (ChIP-seq) studies have identified targets of type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) and integrated these into the cytokinin-activated transcriptional network. Primary targets of the type-B ARRs are enriched for genes involved in hormonal regulation, emphasizing the extensive crosstalk that can occur between cytokinin, auxin, abscisic acid, brassinosteroids, gibberellic acid, ethylene, jasmonic acid, and salicylic acid. Examination of hormone-related targets reveals multiple regulatory points including biosynthesis, degradation/inactivation, transport, and signal transduction. Here, we consider this early response to cytokinin in terms of the hormones involved, points of regulatory crosstalk, and physiological significance. Full article
(This article belongs to the Special Issue The Plant Two-Component System)
Show Figures

Figure 1

13 pages, 2244 KiB  
Article
Sensitivity Analysis of Italian Lolium spp. to Glyphosate in Agricultural Environments
by Silvia Panozzo, Alberto Collavo and Maurizio Sattin
Plants 2020, 9(2), 165; https://doi.org/10.3390/plants9020165 - 30 Jan 2020
Cited by 8 | Viewed by 2359
Abstract
Empirical observations generally indicate a shifting and decreased Lolium spp. susceptibility to glyphosate in Italy. This is likely due to the long history of glyphosate use and to the sub-lethal doses commonly used. There is, therefore, a need to determine the variability of [...] Read more.
Empirical observations generally indicate a shifting and decreased Lolium spp. susceptibility to glyphosate in Italy. This is likely due to the long history of glyphosate use and to the sub-lethal doses commonly used. There is, therefore, a need to determine the variability of response of Lolium spp. to glyphosate and identify the optimum field dose. To perform a sensitivity analysis on Lolium spp. populations in an agriculture area, collection sites were mainly chosen where glyphosate had not been applied intensely. Known glyphosate-resistant or in-shifting populations were included. Two outdoor dose-response pot experiments, including eleven doses of glyphosate, were conducted. The dose to control at least 93%–95% of susceptible Lolium spp. was around 450 g a.e. ha−1. However, to preserve its efficacy in the long term, it would be desirable not to have survivors, and this was reached at a glyphosate dose of 560 ± 88 g a.e. ha−1. Taking into account the variability of response among populations, it was established that the optimal dose of glyphosate to control Lolium spp. in Italy up to the stage BBCH 21 has to be at least 700 g a.e. ha−1. As a consequence, it is recommended to increase the label recommended field rate for Lolium spp. control in Italy to a minimum of 720 g a.e. ha−1. Full article
(This article belongs to the Special Issue Herbicide Resistance in Plants)
Show Figures

Figure 1

22 pages, 751 KiB  
Article
Effect of Rhododendron arboreum Leaf Extract on the Antioxidant Defense System against Chromium (VI) Stress in Vigna radiata Plants
by Vandana Gautam, Pooja Sharma, Palak Bakshi, Saroj Arora, Renu Bhardwaj, Bilal Ahmad Paray, Mohammed Nasser Alyemeni and Parvaiz Ahmad
Plants 2020, 9(2), 164; https://doi.org/10.3390/plants9020164 - 29 Jan 2020
Cited by 24 | Viewed by 3700
Abstract
In the current investigation, we studied role of Rhododendron leaf extract in Vigna radiata grown under chromium metal stress. We observed that seed treatment with Rhododendron leaf extract resulted in the recuperation of seedling growth under chromium toxicity. Seed treatment with Rhododendron leaf [...] Read more.
In the current investigation, we studied role of Rhododendron leaf extract in Vigna radiata grown under chromium metal stress. We observed that seed treatment with Rhododendron leaf extract resulted in the recuperation of seedling growth under chromium toxicity. Seed treatment with Rhododendron leaf extract significantly improved the contents of anthocyanin and xanthophyll pigments under stress. The antioxidative defense system triggered after Rhododendron extract treatment, resulting in the increased actions of antioxidant enzymes. Oxidative stress induced by the assembly of reactive oxygen species was reduced after Rhododendron extract treatment under chromium toxicity as indicated by the enhanced contents of non-enzymatic antioxidants, namely ascorbic acid, tocopherol, and glutathione. Furthermore, Rhododendron leaf extract treatment under chromium metal stress also encouraged the biosynthesis of organic acids, polyphenols, as well as amino acids in Vigna radiata. Statistical analysis of the data with multiple linear regression also supported that Rhododendron leaf extract can effectively ease chromium metal-induced phytotoxicity in Vigna radiata. Full article
(This article belongs to the Special Issue Plant Responses and Tolerance to Metal/Metalloid Toxicity)
Show Figures

Figure 1

16 pages, 3854 KiB  
Article
SLIM1 Transcription Factor Promotes Sulfate Uptake and Distribution to Shoot, Along with Phytochelatin Accumulation, Under Cadmium Stress in Arabidopsis thaliana
by Chisato Yamaguchi, Soudthedlath Khamsalath, Yuki Takimoto, Akiko Suyama, Yuki Mori, Naoko Ohkama-Ohtsu and Akiko Maruyama-Nakashita
Plants 2020, 9(2), 163; https://doi.org/10.3390/plants9020163 - 29 Jan 2020
Cited by 25 | Viewed by 3755
Abstract
Sulfur (S) assimilation, which is initiated by sulfate uptake, generates cysteine, the substrate for glutathione (GSH) and phytochelatin (PC) synthesis. GSH and PC contribute to cadmium (Cd) detoxification by capturing it for sequestration. Although Cd exposure is known to induce the expression of [...] Read more.
Sulfur (S) assimilation, which is initiated by sulfate uptake, generates cysteine, the substrate for glutathione (GSH) and phytochelatin (PC) synthesis. GSH and PC contribute to cadmium (Cd) detoxification by capturing it for sequestration. Although Cd exposure is known to induce the expression of S-assimilating enzyme genes, including sulfate transporters (SULTRs), mechanisms of their transcriptional regulation are not well understood. Transcription factor SLIM1 controls transcriptional changes during S deficiency (−S) in Arabidopsis thaliana. We examined the potential involvement of SLIM1 in inducing the S assimilation pathway and PC accumulation. Cd treatment reduced the shoot fresh weight in the sulfur limitation1 (slim1) mutant but not in the parental line (1;2PGN). Cd-induced increases of sulfate uptake and SULTR1;2 expressions were diminished in the slim1 mutant, suggesting that SLIM1 is involved in inducing sulfate uptake during Cd exposure. The GSH and PC levels were lower in slim1 than in the parental line, indicating that SLIM1 was required for increasing PC during Cd treatment. Hence, SLIM1 indirectly contributes to Cd tolerance of plants by inducing −S responses in the cell caused by depleting the GSH pool, which is consumed by enhanced PC synthesis and sequestration to the vacuole. Full article
Show Figures

Figure 1

12 pages, 1800 KiB  
Article
Plant-Produced Recombinant Influenza A Virus Candidate Vaccine Based on Flagellin Linked to Conservative Fragments of M2 Protein and Hemagglutintin
by Elena A. Blokhina, Eugenia S. Mardanova, Liudmila A. Stepanova, Liudmila M. Tsybalova and Nikolai V. Ravin
Plants 2020, 9(2), 162; https://doi.org/10.3390/plants9020162 - 29 Jan 2020
Cited by 18 | Viewed by 3700
Abstract
The development of recombinant influenza vaccines with broad spectrum protection is an important task. The combination of conservative viral antigens, such as M2e, the extracellular domain of the transmembrane protein M2, and conserved regions of the second subunit of hemagglutinin (HA), provides an [...] Read more.
The development of recombinant influenza vaccines with broad spectrum protection is an important task. The combination of conservative viral antigens, such as M2e, the extracellular domain of the transmembrane protein M2, and conserved regions of the second subunit of hemagglutinin (HA), provides an opportunity for the development of universal influenza vaccines. Immunogenicity of the antigens could be enhanced by fusion to bacterial flagellin, the ligand for Toll-like receptor 5, acting as a powerful mucosal adjuvant. In this study, we report the transient expression in plants of a recombinant protein comprising flagellin of Salmonella typhimurium fused to the conserved region of the second subunit of HA (76–130 a.a.) of the first phylogenetic group of influenza A viruses and four tandem copies of the M2e peptide. The hybrid protein was expressed in Nicotiana benthamiana plants using the self-replicating potato virus X-based vector pEff up to 300 µg/g of fresh leaf tissue. The intranasal immunization of mice with purified fusion protein induced high levels of M2e-specific serum antibodies and provided protection against lethal challenge with influenza A virus strain A/Aichi/2/68(H3N2). Our results show that M2e and hemagglutinin-derived peptide can be used as important targets for the development of a plant-produced vaccine against influenza. Full article
(This article belongs to the Special Issue Plant Molecular Farming)
Show Figures

Figure 1

11 pages, 2535 KiB  
Article
Comparative Seed Morphology of Tropical and Temperate Orchid Species with Different Growth Habits
by Surya Diantina, Craig McGill, James Millner, Jayanthi Nadarajan, Hugh W. Pritchard and Andrea Clavijo McCormick
Plants 2020, 9(2), 161; https://doi.org/10.3390/plants9020161 - 29 Jan 2020
Cited by 16 | Viewed by 8813
Abstract
Seed morphology underpins many critical biological and ecological processes, such as seed dormancy and germination, dispersal, and persistence. It is also a valuable taxonomic trait that can provide information about plant evolution and adaptations to different ecological niches. This study characterised and compared [...] Read more.
Seed morphology underpins many critical biological and ecological processes, such as seed dormancy and germination, dispersal, and persistence. It is also a valuable taxonomic trait that can provide information about plant evolution and adaptations to different ecological niches. This study characterised and compared various seed morphological traits, i.e., seed and pod shape, seed colour and size, embryo size, and air volume for six orchid species; and explored whether taxonomy, biogeographical origin, or growth habit are important determinants of seed morphology. We investigated this on two tropical epiphytic orchid species from Indonesia (Dendrobium strebloceras and D. lineale), and four temperate species from New Zealand, terrestrial Gastrodia cunnninghamii, Pterostylis banksii and Thelymitra nervosa, and epiphytic D. cunninghamii. Our results show some similarities among related species in their pod shape and colour, and seed colouration. All the species studied have scobiform or fusiform seeds and prolate-spheroid embryos. Specifically, D. strebloceras, G. cunninghamii, and P. banksii have an elongated seed shape, while T. nervosa has truncated seeds. Interestingly, we observed high variability in the micro-morphological seed characteristics of these orchid species, unrelated to their taxonomy, biogeographical origin, or growth habit, suggesting different ecological adaptations possibly reflecting their modes of dispersal. Full article
Show Figures

Figure 1

19 pages, 2885 KiB  
Article
Assessment of Genetic Relationships between Streptocarpus x hybridus V. Parents and F1 Progenies Using SRAP Markers and FT-IR Spectroscopy
by Monica Hârţa, Orsolya Borsai, Cristina M. Muntean, Nicoleta E. Dina, Alexandra Fǎlǎmaş, Loredana Elena Olar, Katalin Szabo, Doru Pamfil and Răzvan Ştefan
Plants 2020, 9(2), 160; https://doi.org/10.3390/plants9020160 - 28 Jan 2020
Cited by 7 | Viewed by 3546
Abstract
The genetic relationship among three Streptocarpus parents and twelve F1 hybrids was assessed using sequence-related amplified polymorphism (SRAP) molecular markers and Fourier-transform infrared (FT-IR) spectroscopy. Both methods were able to discriminate F1 hybrids and parents as revealed by cluster analysis. For hybrid identification, [...] Read more.
The genetic relationship among three Streptocarpus parents and twelve F1 hybrids was assessed using sequence-related amplified polymorphism (SRAP) molecular markers and Fourier-transform infrared (FT-IR) spectroscopy. Both methods were able to discriminate F1 hybrids and parents as revealed by cluster analysis. For hybrid identification, the type III SRAP marker was the most effective due to the presence of male-specific bands in the hybrids. Different behaviors in the biochemical variability of DNA samples have been observed by FT-IR spectral analysis, which might be attributed to the inherent nature of the genomic DNA from parents and their F1 progenies. Mantel test was also carried out to compare morphological, SRAP, and FT-IR results based on genetic distances. The highest correlation coefficient was found between morphological and SRAP marker distances (R = 0.607; p ≤ 0.022). A lower correlation was observed between the morphological and FT-IR distance matrix (R = 0.231; p ≤0.008). Moreover, a positive correlation was found between the distances generated with SRAP and FT-IR analyses (R = 0.026) but was not statistically significant. These findings show that both SRAP and FT-IR techniques combined with morphological descriptions can be used effectively for nonconventional breeding programs for Streptocarpus to obtain new and valuable varieties. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

14 pages, 4774 KiB  
Article
Exogenous Isoprene Confers Physiological Benefits in a Negligible Isoprene Emitter (Acer monspessulanum L.) under Water Deficit
by Elena Ormeño, Justine Viros, Jean-Philippe Mévy, Alain Tonetto, Amélie Saunier, Anne Bousquet-Mélou and Catherine Fernandez
Plants 2020, 9(2), 159; https://doi.org/10.3390/plants9020159 - 28 Jan 2020
Cited by 12 | Viewed by 3220
Abstract
Isoprene, the main volatile released by plants, is known to protect the photosynthetic apparatus in isoprene emitters submitted to oxidative pressures caused by environmental constraints. Whether ambient isoprene contributes to protect negligible plant emitters under abiotic stress conditions is less clear, and no [...] Read more.
Isoprene, the main volatile released by plants, is known to protect the photosynthetic apparatus in isoprene emitters submitted to oxidative pressures caused by environmental constraints. Whether ambient isoprene contributes to protect negligible plant emitters under abiotic stress conditions is less clear, and no study has tested if ambient isoprene is beneficial during drought periods in plant species that naturally release negligible isoprene emissions. This study examines the effect of exogenous isoprene (20 ppbv) on net photosynthesis, stomatal conductance and production of H2O2 (a reactive oxygen species: ROS) in leaves of Acer monspessulanum (a negligible isoprene emitter) submitted to three watering treatments (optimal, moderate water stress and severe water stress). Results showed that A. monspessulanum exhibited a net photosynthesis increase (+30%) and a relative leaf H2O2 decrease when saplings were exposed to an enriched isoprene atmosphere compared to isoprene-free conditions under moderate water deficit. Such physiological improvement under isoprene exposure was not observed under optimal watering or severe water stress. These findings suggest that when negligible isoprene emitters are surrounded by a very high concentration of isoprene in the ambient air, some plant protection mechanism occurs under moderate water deficit probably related to protection against ROS damage eventually impeding photosynthesis drop. Full article
(This article belongs to the Special Issue Biosynthesis and Functions of Terpenoids in Plants)
Show Figures

Graphical abstract

14 pages, 2824 KiB  
Brief Report
Subcellular Targeting of Plant Sucrose Transporters Is Affected by Their Oligomeric State
by Varsha Garg, Aleksandra Hackel and Christina Kühn
Plants 2020, 9(2), 158; https://doi.org/10.3390/plants9020158 - 27 Jan 2020
Cited by 10 | Viewed by 3551
Abstract
Post-translational regulation of sucrose transporters represents one possibility to adapt transporter activity in a very short time frame. This can occur either via phosphorylation/dephosphorylation, oligomerization, protein–protein interactions, endocytosis/exocytosis, or degradation. It is also known that StSUT1 can change its compartmentalization at the plasma [...] Read more.
Post-translational regulation of sucrose transporters represents one possibility to adapt transporter activity in a very short time frame. This can occur either via phosphorylation/dephosphorylation, oligomerization, protein–protein interactions, endocytosis/exocytosis, or degradation. It is also known that StSUT1 can change its compartmentalization at the plasma membrane and concentrate in membrane microdomains in response to changing redox conditions. A systematic screen for protein–protein-interactions of plant sucrose transporters revealed that the interactome of all three known sucrose transporters from the Solanaceous species Solanum tuberosum and Solanum lycopersicum represents a specific subset of interaction partners, suggesting different functions for the three different sucrose transporters. Here, we focus on factors that affect the subcellular distribution of the transporters. It was already known that sucrose transporters are able to form homo- as well as heterodimers. Here, we reveal the consequences of homo- and heterodimer formation and the fact that the responses of individual sucrose transporters will respond differently. Sucrose transporter SlSUT2 is mainly found in intracellular vesicles and several of its interaction partners are involved in vesicle traffic and subcellular targeting. The impact of interaction partners such as SNARE/VAMP proteins on the localization of SlSUT2 protein will be investigated, as well as the impact of inhibitors, excess of substrate, or divalent cations which are known to inhibit SUT1-mediated sucrose transport in yeast cells. Thereby we are able to identify factors regulating sucrose transporter activity via a change of their subcellular distribution. Full article
(This article belongs to the Special Issue Plant Plasma Membrane)
Show Figures

Figure 1

13 pages, 3072 KiB  
Article
Comparative Analysis of Actaea Chloroplast Genomes and Molecular Marker Development for the Identification of Authentic Cimicifugae Rhizoma
by Inkyu Park, Jun-Ho Song, Sungyu Yang and Byeong Cheol Moon
Plants 2020, 9(2), 157; https://doi.org/10.3390/plants9020157 - 27 Jan 2020
Cited by 5 | Viewed by 2809
Abstract
Actaea (Ranunculaceae; syn. Cimicifuga) is a controversial and complex genus. Dried rhizomes of Actaea species are used as Korean traditional herbal medicine. Although Actaea species are valuable, given their taxonomic classification and medicinal properties, sequence information of Actaea species is limited. In [...] Read more.
Actaea (Ranunculaceae; syn. Cimicifuga) is a controversial and complex genus. Dried rhizomes of Actaea species are used as Korean traditional herbal medicine. Although Actaea species are valuable, given their taxonomic classification and medicinal properties, sequence information of Actaea species is limited. In this study, we determined the complete chloroplast (cp) genome sequences of three Actaea species, including A. simplex, A. dahurica, and A. biternata. The cp genomes of these species varied in length from 159,523 to 159,789 bp and contained 112 unique functional genes, including 78 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. Gene order, orientation, and content were well conserved in the three cp genomes. Comparative sequence analysis revealed the presence of hotspots, including ndhC-trnV-UAC, in Actaea cp genomes. High-resolution phylogenetic relationships were established among Actaea species based on cp genome sequences. Actaea species were clustered into each Actaea section, consistent with the Angiosperm Phylogeny Group (APG) IV system of classification. We also developed a novel indel marker, based on copy number variation of tandem repeats, to facilitate the authentication of the herbal medicine Cimicifugae Rhizoma. The availability Actaea cp genomes will provide abundant information for the taxonomic and phylogenetic analyses of Actaea species, and the Actaea (ACT) indel marker will be useful for the authentication of the herbal medicine. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics)
Show Figures

Figure 1

14 pages, 5994 KiB  
Article
Community Structure, Diversity and Potential of Endophytic Bacteria in the Primitive New Zealand Medicinal Plant Pseudowintera colorata
by Neeraj Purushotham, Eirian Jones, Jana Monk and Hayley Ridgway
Plants 2020, 9(2), 156; https://doi.org/10.3390/plants9020156 - 27 Jan 2020
Cited by 19 | Viewed by 3744
Abstract
Although the importance of the plant microbiome in commercial plant health has been well established, there are limited studies in native medicinal plants. Pseudowintera colorata (horopito) is a native New Zealand medicinal plant recognized for its antimicrobial properties. Denaturing gradient gel electrophoresis (DGGE) [...] Read more.
Although the importance of the plant microbiome in commercial plant health has been well established, there are limited studies in native medicinal plants. Pseudowintera colorata (horopito) is a native New Zealand medicinal plant recognized for its antimicrobial properties. Denaturing gradient gel electrophoresis (DGGE) and Illumina MiSeq analysis of P. colorata plants from ten sites across New Zealand showed that tissue type strongly influenced the diversity and richness of endophytic bacteria (PERMANOVA, P < 0.05). In addition, two OTUs belonging to the genus Pseudomonas (Greengenes ID: 646549 and 138914) were found to be present in >75% of all P. colorata leaf, stem and root samples and were identified as the members of the P. colorata “core endomicrobiome”. Culture-independent analysis was complemented by the recovery of 405 endophytic bacteria from the tissues of P. colorata. Some of these cultured endophytic bacteria (n = 10) showed high antagonism against four different phytopathogenic fungi tested. The influence of endophytic bacteria on plant growth was assessed by inoculating P. colorata seedlings. The mean shoot height of seedlings treated with Bacillus sp. TP1LA1B were longer (1.83×), had higher shoot dry weight (1.8×) and produced more internodes (1.8×) compared to the control. Full article
Show Figures

Figure 1

16 pages, 298 KiB  
Article
Variation in Morphological and Quality Parameters in Garlic (Allium sativum L.) Bulb Influenced by Different Photoperiod, Temperature, Sowing and Harvesting Time
by Muhammad Jawaad Atif, Bakht Amin, Muhammad Imran Ghani, Muhammad Ali and Zhihui Cheng
Plants 2020, 9(2), 155; https://doi.org/10.3390/plants9020155 - 26 Jan 2020
Cited by 34 | Viewed by 6453
Abstract
Photoperiod (light) and temperature as abiotic factors having significant impact on the garlic bulb morphology and quality. In various bulb plants including garlic, bulbing is affected by photoperiod, temperature, sowing date and the plant age. In this backdrop experiments were performed to understand [...] Read more.
Photoperiod (light) and temperature as abiotic factors having significant impact on the garlic bulb morphology and quality. In various bulb plants including garlic, bulbing is affected by photoperiod, temperature, sowing date and the plant age. In this backdrop experiments were performed to understand the effect of different photoperiods (10 h/14 h, 12 h/12 h and 14 h/10 h (light/dark)), temperatures (25 °C/18 °C and 30 °C/20 °C (light/dark)), sowing dates (D0801: 1st August, D0901: 1st September and D1001: 1st October) and plant ages (A80, A60 and A40: 80, 60 and 40 days after planting) on garlic cultivars viz; G103, G024 and G2011-5. Parameters including morphological (plant height, fresh weight and pseudostem diameter), bulb attributes (diameter, weight, height and bulbing index), growth period and bulb quality related traits (total soluble solid (TSS), contents of soluble protein, soluble sugar, total sugar, glucose, sucrose, fructose, starch, total phenol and total flavonoid) were assayed. Longer photoperiod (14 h), higher temperature (30 °C), early sowing (D0801) and maximum plant age (A80) had maximum morphological and bulb quality related traits for cv. G103. These results showed that early sowing, maximum plant age, longer photoperiod and higher temperature are important for garlic bulb formation and quality. Moreover, the regulation of garlic bulb morphology and quality is achievable over the switch of sowing date, plant age, light and growth temperature. Full article
15 pages, 6552 KiB  
Article
YES-10, A Combination of Extracts from Clematis mandshurica RUPR. and Erigeron annuus (L.) PERS., Prevents Ischemic Brain Injury in A Gerbil Model of Transient Forebrain Ischemia
by Tae-Kyeong Lee, Joon Ha Park, Bora Kim, Young Eun Park, Jae-Chul Lee, Ji Hyeon Ahn, Cheol Woo Park, Yoohun Noh, Ji-Won Lee, Sung-Su Kim, Jong Dai Kim and Moo-Ho Won
Plants 2020, 9(2), 154; https://doi.org/10.3390/plants9020154 - 26 Jan 2020
Cited by 6 | Viewed by 2862
Abstract
Clematis mandshurica RUPR. (CMR) and Erigeron annuus (L.) PERS. (EALP) have pharmacological effects including anti-inflammatory activity and been used in traditional medicines in Asia. However, neuroprotective effects of CMR and/or EALP extracts against brain ischemic insults have never been addressed. Thus, the aim [...] Read more.
Clematis mandshurica RUPR. (CMR) and Erigeron annuus (L.) PERS. (EALP) have pharmacological effects including anti-inflammatory activity and been used in traditional medicines in Asia. However, neuroprotective effects of CMR and/or EALP extracts against brain ischemic insults have never been addressed. Thus, the aim of this study was to examine neuroprotective effects of YES-10, a combination of extracts from CMR and EALP (combination ratio, 1:1), in the hippocampus following ischemia/reperfusion in gerbils. Protection of neurons was investigated by cresyl violet staining, fluoro-jade B histofluorescence staining and immunohistochemistry for neuronal nuclei. In addition, attenuation of gliosis was studied by immunohistochemistry for astrocytic and microglial markers. Treatments with 50 or 100 mg/kg YES-10 failed to protect neurons in the hippocampus after ischemia/reperfusion injury. However, administration of 200 mg/kg YES-10 protected neurons from ischemia/reperfusion injury and attenuated reactive gliosis. These findings strongly suggest that a combination of extracts from CMR and EALP can be used as a prevention approach/drug against brain ischemic damage. Full article
Show Figures

Figure 1

14 pages, 1990 KiB  
Article
Application of Deep Eutectic Solvents for the Extraction of Rutin and Rosmarinic Acid from Satureja montana L. and Evaluation of the Extracts Antiradical Activity
by Martina Jakovljević, Jelena Vladić, Senka Vidović, Kristian Pastor, Stela Jokić, Maja Molnar and Igor Jerković
Plants 2020, 9(2), 153; https://doi.org/10.3390/plants9020153 - 26 Jan 2020
Cited by 28 | Viewed by 4943
Abstract
Satureja montana L. was used in the current research as the plant exhibits numerous health-promoting benefits due to its specific chemical composition. The extraction method based on deep eutectic solvents (DESs) was used for the extraction of rutin and rosmarinic acid from this [...] Read more.
Satureja montana L. was used in the current research as the plant exhibits numerous health-promoting benefits due to its specific chemical composition. The extraction method based on deep eutectic solvents (DESs) was used for the extraction of rutin and rosmarinic acid from this plant. Five different choline chloride-based DESs with different volumes of water (10%, 30%, and 50% (v/v)) were used for the extraction at different temperatures (30, 50, and 70 °C) to investigate the influence on rosmarinic acid and rutin content obtained by high-performance liquid chromatography with diode-array detector (HPLC-DAD) in the obtained extracts. A principal component analysis was employed to explore and visualize the influence of applied parameters on the efficiency of the extraction procedure of rutin and rosmarinic acid. Among the tested DESs, choline chloride:lactic acid (mole ratio 1:2) and choline chloride:levulinic acid (mole ratio 1:2) were the most suitable for the extraction of rutin, while for rosmarinic acid choline chloride:urea (mole ratio 1:2) was the most effective solvent. The extract showing the best antiradical activity was obtained with choline chloride:urea (mole ratio 1:1) at 30 °C and 50% H2O (v/v). Full article
(This article belongs to the Special Issue 2019 Feature Papers by Plants’ Editorial Board Members)
Show Figures

Figure 1

13 pages, 1803 KiB  
Article
Exploring the Link between Photosystem II Assembly and Translation of the Chloroplast psbA mRNA
by Prakitchai Chotewutmontri, Rosalind Williams-Carrier and Alice Barkan
Plants 2020, 9(2), 152; https://doi.org/10.3390/plants9020152 - 25 Jan 2020
Cited by 22 | Viewed by 4322
Abstract
Photosystem II (PSII) in chloroplasts and cyanobacteria contains approximately fifteen core proteins, which organize numerous pigments and prosthetic groups that mediate the light-driven water-splitting activity that drives oxygenic photosynthesis. The PSII reaction center protein D1 is subject to photodamage, whose repair requires degradation [...] Read more.
Photosystem II (PSII) in chloroplasts and cyanobacteria contains approximately fifteen core proteins, which organize numerous pigments and prosthetic groups that mediate the light-driven water-splitting activity that drives oxygenic photosynthesis. The PSII reaction center protein D1 is subject to photodamage, whose repair requires degradation of damaged D1 and its replacement with nascent D1. Mechanisms that couple D1 synthesis with PSII assembly and repair are poorly understood. We address this question by using ribosome profiling to analyze the translation of chloroplast mRNAs in maize and Arabidopsis mutants with defects in PSII assembly. We found that OHP1, OHP2, and HCF244, which comprise a recently elucidated complex involved in PSII assembly and repair, are each required for the recruitment of ribosomes to psbA mRNA, which encodes D1. By contrast, HCF136, which acts upstream of the OHP1/OHP2/HCF244 complex during PSII assembly, does not have this effect. The fact that the OHP1/OHP2/HCF244 complex brings D1 into proximity with three proteins with dual roles in PSII assembly and psbA ribosome recruitment suggests that this complex is the hub of a translational autoregulatory mechanism that coordinates D1 synthesis with need for nascent D1 during PSII biogenesis and repair. Full article
(This article belongs to the Special Issue Chloroplast RNA Metabolism and Biology)
Show Figures

Figure 1