Quality of Experience in 6G Networks: Outlook and Challenges
Abstract
:1. Introduction
2. Quality of Experience in the Cellular Evolution
2.1. QoE in the First Four Generations
2.1.1. First and Second Generation Cellular, and Mean Opinion Score
2.1.2. QoE in 3G Networks
2.1.3. Fourth Generation Networks and QoS Legacy
2.2. The Fifth Generation—Generation Software
2.3. Expectations for QoE in 6G Networks
3. Enabling Technologies of Sixth Generation Networks
3.1. Physical Layer
3.2. Infrastructure and Topology
3.3. Networking
3.4. Intelligence and Autonomy
3.5. Network Management Consideration
3.6. Other Considerations
4. Sixth Generation Services and Features
5. Quality of Experience in 6G Networks
5.1. Capturing QoE through Affect
5.2. Causal Inference
5.3. Relevant Considerations
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 5G Americas, 5G & LTE Deployments. Available online: https://bit.ly/2J0EjjM (accessed on 21 November 2020).
- 3GPP, Release 16. Available online: https://bit.ly/3lRNzF7 (accessed on 21 November 2020).
- 3GPP, Release 17. Available online: https://bit.ly/39hiUOn (accessed on 21 November 2020).
- The Mobile Economy: 2020, GSMA. Available online: https://bit.ly/3kZylwF (accessed on 21 November 2020).
- With 5G Rollout Lagging, Research Looks ahead to 6G, IEEE Spectrum. Available online: https://bit.ly/338PZrQ (accessed on 21 November 2020).
- 5G Evolution and 6G, NTT Docomo, January 2020. Available online: https://bit.ly/36Xoa6L (accessed on 21 November 2020).
- 6G: The Next Hyper-Connected Experience for All, Samsung. Available online: https://bit.ly/3kTfxzd (accessed on 21 November 2020).
- Ever-Present Intelligent Communication—A Research Outlook towards 6G, Ericsson, November 2020. Available online: https://bit.ly/2UNtm7F (accessed on 21 November 2020).
- 6G Flagship, University of Oulu. Available online: https://bit.ly/337WyuJ (accessed on 21 November 2020).
- Tariq, F.; Khandaker, M.R.A.; Wong, K.-K.; Imran, M.A.; Bennis, M.; Debbah, M. A Speculative Study on 6G. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.-S. What Should 6G Be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Fitzek, F.H.P.; Seeling, P. Why We Should NOT Talk about 6G, March 2020. Available online: https://arxiv.org/abs/2003.02079 (accessed on 21 November 2020).
- Ali, N.; Taha, A.-E.; Hassanein, H. Quality of Service in 3GPP R12 LTE-Advanced. IEEE Commun. Mag. 2013, 51, 103–109. [Google Scholar] [CrossRef]
- Singhal, C.; De, S. Resource Allocation in Next-Generation Broadband Wireless Access Networks. Adv. Wirel. Technol. Telecommun. 2017. [Google Scholar] [CrossRef]
- Katsinis, G.; Tsiropoulou, E.E.; Papavassiliou, S. Multicell Interference Management in Device to Device Underlay Cellular Networks. Future Internet 2017, 9, 44. [Google Scholar] [CrossRef]
- Calabrese, F.D.; Wang, L.; Ghadimi, E.; Peters, G.; Hanzo, L.; Soldati, P. Learning Radio Resource Management in RANs: Framework, Opportunities, and Challenges. IEEE Commun. Mag. 2018, 56, 138–145. [Google Scholar] [CrossRef]
- Ayoubi, S.; Limam, N.; Salahuddin, M.A.; Shahriar, N.; Boutaba, R.; Estrada-Solano, F.; Caicedo, O.M. Machine Learning for Cognitive Network Management. IEEE Commun. Mag. 2018, 56, 158–165. [Google Scholar] [CrossRef]
- 3GPP TS 29.520: 5G System; Network Data Analytics Services; Stage 3, 3GPP. Available online: https://bit.ly/3kO2Ci1 (accessed on 21 November 2020).
- Qamar, F.; Siddiqui, M.U.A.; Hindia, M.N.; Hassan, R.; Nguyen, Q.N. Issues, Challenges, and Research Trends in Spectrum Management: A Comprehensive Overview and New Vision for Designing 6G Networks. Electronics 2020, 9, 1416. [Google Scholar] [CrossRef]
- ITU–T Recommendation G.1080: Quality of Experience Requirements for IPTV Services; International Telecommunication Union Telecommunication Standardization Sector: Geneva, Switzerland, 2008.
- Porcu, S.; Floris, A.; Voigt-Antons, J.-N.; Atzori, L.; Moller, S. Estimation of the Quality of Experience During Video Streaming From Facial Expression and Gaze Direction. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2702–2716. [Google Scholar] [CrossRef]
- Donald, V.H.M. Advanced Mobile Phone Service: The Cellular Concept. Bell Syst. Tech. J. 1979, 58, 15–41. [Google Scholar] [CrossRef]
- ITU–T Recommendation P.800: Methods for Subjective Determination of Transmission Quality; International Telecommunication Union Telecommunication Standardization Sector: Geneva, Switzerland, 1996.
- ITU–T Recommendation P.563, Single-Ended Method for Objective Speech Quality Assessment in Narrow-Band Telephony Applications; International Telecommunication Union Telecommunication Standardization Sector: Geneva, Switzerland, 2004.
- Holma, H.; Toskala, A.; Tapia, P. HSPA+ Evolution to Release 12: Performance and Optimization, 1st ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Chen, Y.; Wu, K.; Zhang, Q. From QoS to QoE: A Tutorial on Video Quality Assessment. IEEE Commun. Surv. Tutor. 2015, 17, 1126–1165. [Google Scholar] [CrossRef]
- Raake, A.; Egger, S. Quality and quality of experience. In Quality of Experience; Springer: Cham, Switzerland, 2014; pp. 11–33. [Google Scholar]
- ITU–T Recommendation P.10/G.100: Vocabulary for Performance, Quality of Service and Quality of Experience; International Telecommunication Union Telecommunication Standardization Sector: Geneva, Switzerland, 2017.
- ITU-T. Recommendation P. 1204.3—Video quality assessment of streaming services over reliable transport for resolutions up to 4K with access to full bitstream information. Int. Telecommun. Union 2019. Available online: https://bit.ly/3lmvrlT (accessed on 21 November 2020).
- Ickin, S.; Wac, K.; Fiedler, M.; Janowski, L.; Hong, J.-H.; Dey, A.K. Factors Influencing Quality of Experience of Commonly Used Mobile Applications. IEEE Commun. Mag. 2012, 50, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Jelassi, S.; Rubino, G.; Melvin, H.; Youssef, H.; Pujolle, G. Quality of Experience of VoIP Service: A Survey of Assessment Approaches and Open Issues. IEEE Commun. Surv. Tutor. 2012, 14, 491–513. [Google Scholar] [CrossRef]
- Taha, A.M.; Ali, N.A.; Hassanein, H.S. LTE, LTE-Advanced, and WiMax: Towards IMT-Advanced Networks, 1st ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- 3GPP, Release 13. Available online: https://bit.ly/3lq9Ske (accessed on 21 November 2020).
- 3GPP, Release 14. Available online: https://bit.ly/2VhSEel (accessed on 21 November 2020).
- Sauter, M. From GSM to LTE-Advanced Pro and 5G: An Introduction to Mobile Networks and Mobile Broadband, 3rd ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- 3GPP, Release 15. Available online: https://bit.ly/39rN2Xb (accessed on 21 November 2020).
- Ordonez-Lucena, J.; Ameigeiras, P.; Lopez, D.; Ramos-Munoz, J.J.; Lorca, J.; Folgueira, J. Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges. IEEE Commun. Mag. 2017, 55, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Guidelines for 5G Campus Networks, Federal Ministry for Economic Affairs and Energy (Germany). April 2020. Available online: https://bit.ly/39rl9P5 (accessed on 21 November 2020).
- Ferranti, L.; Cuomo, F.; Colonnese, S.; Melodia, T. Drone cellular networks: Enhancing the quality of experience of video streaming applications. Ad Hoc Netw. 2018, 80, 130–141. [Google Scholar] [CrossRef]
- Holma, H.; Toskala, A.; Nakamura, T. 5G Technology: 3GPP New Radio System, 1st ed.; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Navarro-Ortiz, J.; Romero-Diaz, P.; Sendra, S.; Ameigeiras, P.; Ramos-Munoz, J.J.; Lopez-Soler, J.M. A survey on 5G usage scenarios and traffic models. IEEE Commun. Surv. Tutor. 2020, 22, 905–929. [Google Scholar] [CrossRef]
- Huq, K.M.; Busari, S.A.; Rodriguez, J.; Frascolla, V.; Bazzi, W.; Sicker, D.C. Terahertz-enabled wireless system for beyond-5G ultra-fast networks: A brief survey. IEEE Netw. 2019, 33, 89–95. [Google Scholar] [CrossRef]
- Gong, S.; Lu, X.; Hoang, D.T.; Niyato, D.; Shu, L.; Kim, D.I.; Liang, Y.C. Towards smart wireless communications via intelligent reflecting surfaces: A contemporary survey. IEEE Commun. Surv. Tutor. 2020, 22, 2283–2314. [Google Scholar] [CrossRef]
- Gazestani, A.H.; Ghorashi, S.A.; Mousavinasab, B.; Shikh-Bahaei, M. A survey on implementation and applications of full duplex wireless communications. Phys. Commun. 2019, 34, 121–134. [Google Scholar] [CrossRef]
- Chen, X.; Liu, G.; Ma, Z.; Zhang, X.; Fan, P.; Chen, S.; Yu, F.R. When full duplex wireless meets non-orthogonal multiple access: Opportunities and challenges. IEEE Wirel. Commun. 2019, 26, 148–155. [Google Scholar] [CrossRef]
- Oubbati, O.S.; Atiquzzaman, M.; Ahanger, T.A.; Ibrahim, A. Softwarization of UAV Networks: A Survey of Applications and Future Trends. IEEE Access 2020, 8, 98073–98125. [Google Scholar] [CrossRef]
- 3GPP TR 38.811: Study on New Radio (NR) to Support Non-Terrestrial Networks; 3GPP. Available online: https://bit.ly/39t9Buw (accessed on 21 November 2020).
- 3GPP TR 22.822: Study on Using Satellite Access in 5G, 3GPP. Available online: https://bit.ly/3fSoE2k (accessed on 21 November 2020).
- Yaacoub, E.; Alouini, M.S. A key 6G challenge and opportunity—connecting the base of the pyramid: A survey on rural connectivity. Proc. IEEE. 2020, 108, 533–582. [Google Scholar] [CrossRef] [Green Version]
- Milojicic, D. The Edge-to-Cloud Continuum. Computer 2020, 53, 16–25. [Google Scholar] [CrossRef]
- Network 2030. ITU. Available online: https://bit.ly/2KNBwuR (accessed on 21 November 2020).
- Clemm, A.; Zhani, M.F.; Boutaba, R. Network management 2030: Operations and control of network 2030 services. J. Netw. Syst. Manag. 2020, 28, 721–750. [Google Scholar] [CrossRef]
- Clark, D.D.; Partridge, C.; Ramming, J.C.; Wroclawski, J.T. A knowledge plane for the Internet. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Karlsruhe, Germany, 25–29 August 2003; p. 3. [Google Scholar]
- Mestres, A.; Rodriguez-Natal, A.; Carner, J.; Barlet-Ros, P.; Alarcón, E.; Solé, M.; Muntés-Mulero, V.; Meyer, D.; Barkai, S.; Hibbett, M.J.; et al. Knowledge-Defined Networking. SIGCOMM Comput. Commun. Rev. 2017. [Google Scholar] [CrossRef] [Green Version]
- Serhane, O.; Yahyaoui, K.; Nour, B.; Moungla, H. A Survey of ICN Content Naming and In-network Caching in 5G and Beyond Networks. IEEE Internet Things J. 2020, 47, 2–10. [Google Scholar] [CrossRef]
- Strinati, E.C.; Barbarossa, S. 6G Networks: Beyond Shannon towards Semantic and Goal-Oriented Communications. arXiv 2020, arXiv:2011.14844. [Google Scholar]
- Sorour, S.; Mohammad, U.; Abutuleb, A.; Hassanein, H. Returning the Favor: What Wireless Networking Can Offer to AI and Edge Learning. arXiv 2020, arXiv:2006.07453. [Google Scholar]
- Du, R.; Magnússon, S.; Fischione, C. The Internet of Things as a Deep Neural Network. arXiv 2020, arXiv:2003.10538. [Google Scholar] [CrossRef]
- Wei, Y.; Peng, M.; Liu, Y. Intent-based networks for 6G: Insights and challenges. Digit. Commun. Netw. 2020, 6, 270–280. [Google Scholar] [CrossRef]
- Moerman, I.; Zeghlache, D.; Shahid, A.; Santos, J.F.; DaSilva, L.A.; David, K.; Farscrotu, J.; de Ridder, A.; Liu, W.; Hoebeke, J. Mandate-driven Networking Eco-system: A Paradigm Shift in End-to-End Communications. In Proceedings of the 2nd IEEE 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020. [Google Scholar]
- Fang, D.; Qian, Y. 5G Wireless Security and Privacy: Architecture and Flexible Mechanisms. IEEE Veh. Technol. Mag. 2020, 15, 58–64. [Google Scholar] [CrossRef]
- Taleb, T.; Aguiar, R.L.; Yahia, I.G.B.; Chatras, B.; Christensen, G.; Chunduri, U.; Clemm, A.; Costa, X.; Dong, L.; Elmirghani, J.; et al. White Paper on 6G Networking—6G Research Visions, No. 6. University of Oulu. Available online: http://urn.fi/urn:isbn:9789526226842 (accessed on 21 November 2020).
- Jiang, X.; Shokri-Ghadikolaei, H.; Fodor, G.; Modiano, E.; Pang, Z.; Zorzi, M.; Fischione, C. Low-Latency Networking: Where Latency Lurks and How to Tame It. Proc. IEEE 2019, 107, 280–306. [Google Scholar] [CrossRef]
- Vitturi, S.; Zunino, C.; Sauter, T. Industrial Communication Systems and Their Future Challenges: Next-Generation Ethernet, IIoT, and 5G. Proc. IEEE 2019, 107, 944–961. [Google Scholar] [CrossRef]
- Casas, P.; Schatz, R.; Wamser, F.; Seufert, M.; Irmer, R. Exploring QoE in Cellular Networks: How Much Bandwidth Do you Need for Popular Smartphone Apps? In Proceedings of the 5th ACM Workshop on All Things Cellular: Operations, Applications and Challenges, London, UK, 17 August 2015. [Google Scholar]
- Pierucci, L. The quality of experience perspective toward 5G technology. IEEE Wirel. Commun. 2015, 22, 10–16. [Google Scholar] [CrossRef]
- Malik, S.U.R. Moving Towards 5G: Significance, Differences, and Impact on Quality of Experience (QoE). IEEE Consum. Electron. Mag. 2020, 9, 9–14. [Google Scholar] [CrossRef]
- Shu, J.; Chiu, M.; Hui, P. Emotion Sensing for Mobile Computing. IEEE Commun. Mag. 2019, 57, 84–90. [Google Scholar] [CrossRef]
- Amour, L.; Boulabiar, M.I.; Souihi, S.; Mellouk, A. An Improved QoE Estimation Method Based on QoS and Affective Computing. In Proceedings of the 2018 International Symposium on Programming and Systems (ISPS), Algiers, Algeria, 24–26 April 2018. [Google Scholar] [CrossRef]
- Adolphs, R.; Mlodinow, L.; Barrett, L.F. What Is an Emotion? Curr. Biol. 2019, 29, R1060–R1064. [Google Scholar] [CrossRef]
- McStay, A. Emotional AI: The Rise of Empathic Media; Sage: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Bryson, J.; Winfield, A. Standardizing ethical design for artificial intelligence and autonomous systems. Computer 2017, 50, 116–119. [Google Scholar] [CrossRef]
- Baraković Husić, J.; Baraković, S.; Cero, E.; Slamnik, N.; Oćuz, M.; Dedović, A.; Zupčić, O. Quality of Experience for Unified Communications: A Survey. Int. J. Netw. Manag. 2019, 30. [Google Scholar] [CrossRef]
- Pearl, J. The Seven Tools of Causal Inference, with Reflections on Machine Learning. Commun. ACM 2019, 62, 54–60. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, A.-E.M. Quality of Experience in 6G Networks: Outlook and Challenges. J. Sens. Actuator Netw. 2021, 10, 11. https://doi.org/10.3390/jsan10010011
Taha A-EM. Quality of Experience in 6G Networks: Outlook and Challenges. Journal of Sensor and Actuator Networks. 2021; 10(1):11. https://doi.org/10.3390/jsan10010011
Chicago/Turabian StyleTaha, Abd-Elhamid M. 2021. "Quality of Experience in 6G Networks: Outlook and Challenges" Journal of Sensor and Actuator Networks 10, no. 1: 11. https://doi.org/10.3390/jsan10010011
APA StyleTaha, A. -E. M. (2021). Quality of Experience in 6G Networks: Outlook and Challenges. Journal of Sensor and Actuator Networks, 10(1), 11. https://doi.org/10.3390/jsan10010011