Non-Invasive Differential Temperature Monitoring Using Sensor Array for Microwave Hyperthermia Applications: A Subspace-Based Approach
Abstract
:1. Introduction
2. Methods
2.1. Subspace-Based Temperature-Monitoring Algorithm
2.1.1. Forward Solver
2.1.2. Inverse Solver
2.1.3. Temperature-Dependent Dielectric Properties of Breast Tissue
2.2. Model Parameters
2.2.1. Digital Breast Model
2.2.2. Heating Model
3. Results
3.1. Noise-Free Scenario
3.2. Noisy Scenario
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today (Version 1.1). Available online: https://gco.iarc.who.int/today (accessed on 19 December 2024).
- Fear, E.C.; Hagness, S.C.; Meaney, P.M.; Okoniewski, M.; Stuchly, M.A. Enhancing breast tumor detection with Near-Field Imaging. IEEE Microw. Mag. 2002, 3, 48–56. [Google Scholar] [CrossRef]
- Li, X.; Davis, S.K.; Hagness, S.C.; van der Weide, D.W.; Van Veen, B.D. Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms. IEEE Trans. Microw. Theory Tech. 2004, 52, 1856–1865. [Google Scholar] [CrossRef]
- Meaney, P.M.; Fanning, M.W.; Li, D.; Poplack, S.P.; Paulsen, K.D. A clinical prototype for active microwave imaging of the breast. IEEE Trans. Microw. Theory Tech. 2000, 48, 1841–1853. [Google Scholar] [CrossRef]
- Pastorino, M. Applications of Microwave Imaging. In Microwave Imaging; Wiley: Hoboken, NJ, USA, 2010; pp. 229–263. [Google Scholar]
- Golnabi, A.H.; Meaney, P.M.; Epstein, N.R.; Paulsen, K.D. Microwave Imaging for Breast Cancer Detection: Advances in Three-Dimensional Image Reconstruction. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 5730–5733. [Google Scholar]
- Fear, E.C.; Bourqui, J.; Curtis, C.; Mew, D.; Docktor, B.; Romano, C. Microwave Breast Imaging With a Monostatic Radar-Based System: A Study of Application to Patients. IEEE Trans. Microw. Theory Tech. 2013, 61, 2119–2128. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Abbosh, A.M.; Crozier, S. 3-D Focused Microwave Hyperthermia for Breast Cancer Treatment with Experimental Validation. IEEE Trans. Antennas Propag. 2017, 65, 3489–3500. [Google Scholar] [CrossRef]
- Haynes, M.; Stang, J.; Moghaddam, M. Real-time Microwave Imaging of Differential Temperature for Thermal Therapy Monitoring. IEEE Trans. Biomed. Eng. 2014, 61, 1787–1797. [Google Scholar] [CrossRef] [PubMed]
- Onal, H.; Yilmaz, T.; Akinci, M.N. A BIM-Based Algorithm for Quantitative Monitoring of Temperature Distribution During Breast Hyperthermia Treatments. IEEE Access 2023, 11, 38680–38695. [Google Scholar] [CrossRef]
- Lee, K.J.; Kim, J.Y.; Kim, B.R.; Jeon, S.I.; Kim, N.; Son, S.H. Real-Time 2D Microwave Differential Imaging for Temperature Monitoring. In Proceedings of the 2018 International Symposium on Antennas and Propagation (Isap), Busan, Repulic of Korea, 23–26 October 2018. [Google Scholar]
- Chen, G.B.; Stang, J.; Haynes, M.; Leuthardt, E.; Moghaddam, M. Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy. IEEE Trans. Biomed. Eng. 2018, 65, 528–538. [Google Scholar] [CrossRef]
- Roemer, R.B. Engineering aspects of hyperthermia therapy. Annu. Rev. Biomed. Eng. 1999, 1, 347–376. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, P.R. Evolving technology for thermal therapy of cancer. Int. J. Hyperth. 2005, 21, 731–744. [Google Scholar] [CrossRef]
- Schaible, J.; Pregler, B.; Bäumler, W.; Einspieler, I.; Jung, E.M.; Stroszczynski, C.; Beyer, L.P. Safety margin assessment after microwave ablation of liver tumors: Inter- and intrareader variability. Radiol. Oncol. 2020, 54, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Ferraioli, F.; Formisano, A.; Martone, R. Effective Exploitation of Prior Information in Electrical Impedance Tomography for Thermal Monitoring of Hyperthermia Treatments. IEEE Trans. Magn. 2009, 45, 1554–1557. [Google Scholar] [CrossRef]
- Arora, N.; Martins, D.; Ruggerio, D.; Tousimis, E.; Swistel, A.J.; Osborne, M.P.; Simmons, R.M. Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. Am. J. Surg. 2008, 196, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Rieke, V.; Butts Pauly, K. MR thermometry. J. Magn. Reson. Imaging 2008, 27, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.M.; Viglianti, B.L.; Yarmolenko, P.; Park, J.Y.; Stauffer, P.; Needham, D.; Dewhirst, M.W. A method to convert MRI images of temperature change into images of absolute temperature in solid tumours. Int. J. Hyperth. 2013, 29, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Lazebnik, M.; Popovic, D.; McCartney, L.; Watkins, C.B.; Lindstrom, M.J.; Harter, J.; Sewall, S.; Ogilvie, T.; Magliocco, A.; Breslin, T.M.; et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol. 2007, 52, 6093–6115. [Google Scholar] [CrossRef]
- Ley, S.; Schilling, S.; Fiser, O.; Vrba, J.; Sachs, J.; Helbig, M. Ultra-Wideband Temperature Dependent Dielectric Spectroscopy of Porcine Tissue and Blood in the Microwave Frequency Range. Sensors 2019, 19, 1707. [Google Scholar] [CrossRef]
- Nikolova, N.K. Introduction to Microwave Imaging; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Wu, J.; Yang, F.; Zheng, J.C.; Nguyen, H.T.; Chai, R.F. Microwave Imaging Based on a Subspace-based Two-step Iterative Shrinkage/Thresholding Method. In Proceedings of the 2023 45th Annual International Conference of the Ieee Engineering in Medicine & Biology Society, Sydney, Australia, 24–27 July 2023. [Google Scholar] [CrossRef]
- Chen, X.D. Subspace-Based Optimization Method for Solving Inverse-Scattering Problems. IEEE Trans. Geosci. Remote. Sens. 2010, 48, 42–49. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed.; Allen, T., Susan, C.H., Eds.; Artech House: Boston, MA, USA, 2000. [Google Scholar]
- Abubakar, A.; van den Berg, P.M. The contrast source inversion method for location and shape reconstructions. Inverse Probl. 2002, 18, 495–510. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Figueiredo, M.A.T. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 2007, 16, 2992–3004. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, R.A. Solutions of Ill-Posed Problems (A. N. Tikhonov and V. Y. Arsenin). SIAM Rev. 1979, 21, 266–267. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Lazebnik, M.; McCartney, L.; Popovic, D.; Watkins, C.B.; Lindstrom, M.J.; Harter, J.; Sewall, S.; Magliocco, A.; Booske, J.H.; Okoniewski, M.; et al. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Phys. Med. Biol. 2007, 52, 2637–2656. [Google Scholar] [CrossRef]
- Burfeindt, M.J.; Colgan, T.J.; Mays, R.O.; Shea, J.D.; Behdad, N.; Veen, B.D.V.; Hagness, S.C. MRI-Derived 3-D-Printed Breast Phantom for Microwave Breast Imaging Validation. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1610–1613. [Google Scholar] [CrossRef] [PubMed]
- Colgan, T.J.; Hagness, S.C.; Van Veen, B.D. A 3-D Level Set Method for Microwave Breast Imaging. IEEE Trans. Biomed. Eng. 2015, 62, 2526–2534. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.T.; Abbosh, A.; Crozier, S. Microwave Hyperthermia for Breast Cancer Treatment Using Electromagnetic and Thermal Focusing Tested on Realistic Breast Models and Antenna Arrays. IEEE Trans. Antennas Propag. 2015, 63, 4426–4434. [Google Scholar] [CrossRef]
ξb (%) | ξh (%) | Th (°C) | ||||
---|---|---|---|---|---|---|
Temperature | BA | Proposed Method | BA | Proposed Method | BA | Proposed Method |
38 | 0.1027 | 0.1027 | 0.2749 | 0.3073 | 38.0077 | 38.0313 |
39 | 0.1895 | 0.1916 | 0.2917 | 0.3008 | 39.0155 | 39.0626 |
40 | 0.1941 | 0.2601 | 0.3725 | 0.2746 | 40.0232 | 40.0232 |
41 | 0.3436 | 0.4932 | 0.3474 | 0.2739 | 41.0310 | 41.1252 |
42 | 0.8857 | 1.8057 | 0.4957 | 0.3888 | 42.0387 | 42.0500 |
43 | 1.5623 | 1.5618 | 0.3629 | 0.3522 | 43.0465 | 43.1878 |
44 | 2.3441 | 2.7092 | 0.4266 | 0.4134 | 43.7754 | 44.0542 |
45 | 3.5679 | 0.7262 | 0.5374 | 0.4365 | 45.0620 | 45.0620 |
ξb (%) | ξh (%) | Th (°C) | ||||
---|---|---|---|---|---|---|
Temperature | BA | Proposed Method | BA | Proposed Method | BA | Proposed Method |
38 | 0.1027 | 0.1027 | 0.3599 | 0.3813 | 38.0313 | 38.0077 |
39 | 0.1656 | 0.2010 | 0.3829 | 0.4055 | 39.0626 | 39.0155 |
40 | 0.1592 | 0.2503 | 0.3393 | 0.4268 | 40.0939 | 40.0232 |
41 | 0.4319 | 0.2237 | 0.5252 | 0.3478 | 41.1252 | 41.0310 |
42 | 1.7512 | 0.4190 | 0.5264 | 0.4996 | 42.1565 | 42.0387 |
43 | 1.7843 | 0.9560 | 0.4905 | 0.5445 | 43.1878 | 43.0465 |
44 | 3.3100 | 1.4657 | 0.5038 | 0.4711 | 44.2191 | 43.8342 |
45 | 5.2054 | 2.7036 | 0.5776 | 0.5869 | 44.7899 | 44.9820 |
ξb (%) | ξh (%) | Th (°C) | ||||
---|---|---|---|---|---|---|
Temperature | BA | Proposed Method | BA | Proposed Method | BA | Proposed Method |
38 | 0.3146 | 0.2940 | 0.7757 | 0.7249 | 38.0420 | 38.0077 |
39 | 0.3487 | 0.3503 | 0.8598 | 0.8640 | 39.0840 | 39.0155 |
40 | 3.6405 | 0.0956 | 0.7315 | 0.6993 | 39.4214 | 40.0232 |
41 | 3.7160 | 0.3526 | 1.2616 | 0.6939 | 41.1680 | 41.0400 |
42 | 5.6056 | 0.3091 | 1.3517 | 0.7622 | 42.0545 | 41.8240 |
43 | 7.8482 | 0.5785 | 1.3500 | 1.4266 | 41.8137 | 43.0600 |
44 | 9.5270 | 1.2706 | 1.0490 | 1.2831 | 42.0997 | 44.4700 |
45 | 11.7668 | 5.0855 | 1.0905 | 1.4774 | 42.0184 | 44.5433 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Yang, F.; Zheng, J.; Nguyen, H.T.; Chai, R. Non-Invasive Differential Temperature Monitoring Using Sensor Array for Microwave Hyperthermia Applications: A Subspace-Based Approach. J. Sens. Actuator Netw. 2025, 14, 19. https://doi.org/10.3390/jsan14010019
Wu J, Yang F, Zheng J, Nguyen HT, Chai R. Non-Invasive Differential Temperature Monitoring Using Sensor Array for Microwave Hyperthermia Applications: A Subspace-Based Approach. Journal of Sensor and Actuator Networks. 2025; 14(1):19. https://doi.org/10.3390/jsan14010019
Chicago/Turabian StyleWu, Ji, Fan Yang, Jinchuan Zheng, Hung T. Nguyen, and Rifai Chai. 2025. "Non-Invasive Differential Temperature Monitoring Using Sensor Array for Microwave Hyperthermia Applications: A Subspace-Based Approach" Journal of Sensor and Actuator Networks 14, no. 1: 19. https://doi.org/10.3390/jsan14010019
APA StyleWu, J., Yang, F., Zheng, J., Nguyen, H. T., & Chai, R. (2025). Non-Invasive Differential Temperature Monitoring Using Sensor Array for Microwave Hyperthermia Applications: A Subspace-Based Approach. Journal of Sensor and Actuator Networks, 14(1), 19. https://doi.org/10.3390/jsan14010019