Lower-Complexity Multi-Layered Security Partitioning Algorithm Based on Chaos Mapping-DWT Transform for WA/SNs
Abstract
:1. Introduction
Main Contributions
2. Preliminaries
2.1. Data Transforms
2.2. Chaos Mapping
2.3. Key Management of Chaos Mapping
- Camera man (1024 × 1024) secret keys:
- Girl secret keys:
- Sailboat secret keys:
- Cable Car secret keys:
3. Literature Review
4. The Methodology of the Lower-Complexity Crypto-System
4.1. Encryption Algorithm Steps
- The classified RBG image (IRGB) is converted to a grayscale image
- Gr stands for grayscale images and SD stands for square dimensions.
- The ISD decomposition transforms tech as a stage (1) processing.
- LL1_Org is separated to decompose the process individually.
- DWT2(LL1_Org) = {LL2, LH2, HL2, HH2}
- The LLNDim(M/2N, M/2N).
- The encryption process can be performed at every stage or the lower dimensions.
- The accepted number of stages is restricted by the Org. Dim of the plaintext/payload, due to the direct relation of the power and varieties of Skey and the Dim of the plaintext/payload.
- Enc-I, Enc-II, Enc-III, etc., denote the stage of encryption, and may equal the decomposing stages or not; this is optional in the algorithm.
- The generated Skey is executed based on the new Dim of the processed plaintext.
- Stage 2 of the encryption (optional) uses the different Skey or the same one, or relays the encryption to another decomposing process for more simplicity.
- Example of the two optional processes:
4.2. The Complexity Analysis of the Proposed Algorithm
5. The Objective Metrics: Performance Evaluations
- Correlation Coefficient (Cr):
- Mean Square Error (MSE):
- Peak Signal-to-Noise Ratio (PSNR):
- Structural Similarity (SSIM):
- The Computational and Time Complexity (CC&TE):
6. Computer Simulation Result Discussion
6.1. Preparation of Simulation and Parameter Setting
6.2. The Applicability Measurement of the Multi DWT and N-Round Chaos-Based Cascaded Cryptographic Approach Using Grayscale Images: Four-Cascaded Skeys (N = 4)
6.3. Attacks Presence Consideration {Grayscale Images}
6.4. The Applicability Measurement of the Multi DWT and N-Round Chaos-Based Cascaded Cryptographic Approach Using RGB Images: Four-Cascaded Skeys (N = 4)
6.5. Attacks Presence Consideration {RBG Images}
7. Comprehensive Comparison
Practical Limitations and Future Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, J.-Y.; Lee, E.; Oh, S.-R.; Seo, Y.-D.; Kim, Y.-G. A Survey on Security Requirements for WSNs: Focusing on the Characteristics Related to Security. IEEE Access 2020, 8, 45304–45324. [Google Scholar] [CrossRef]
- Wei, W.; Peng, H.; Wang, L.; Liu, Y.; Tang, F.; Liu, L. A Secure and Efficient Data Transmission Method WITH Multilevel Concealment Function Based on Chaotic Compressive Sensing. IEEE Sens. J. 2023, 23, 6789–6800. [Google Scholar]
- Huda, A.; Al-Ahmadi, S.A. Efficient and Secure Data Transmission and Sinkhole Detection in a Multi-Clustering Wireless Sensor Network Based on Homomorphic Encryption and Watermarking. IEEE Access 2020, 8, 92098–92109. [Google Scholar] [CrossRef]
- Sadeghzadeh, M.; Farzaneh, F.; Sadeghzadeh, M.; Ghasemi, M. Low Power Cryptography Solution Based on Chaos Theory in Wireless Sensor Nodes. IEEE Access 2019, 7, 31068–31079. [Google Scholar]
- Suseela, G.; Asnath, A.Y.; Niranjana, G.; Kadiyala, R.; Saurabh, S.; Yoo, B. Low Energy Interleaved Chaotic Secure Image Coding Scheme for Visual Sensor Networks Using Pascal’s Triangle Transform. IEEE Access 2021, 9, 123456–123467. [Google Scholar] [CrossRef]
- Chen, T.-S.; Huang, K.-N.; Hwang, W.-K.; Wang, A.-Y. Low-Complexity Compressed-Sensing-Based Watermark Cryptosystem and Circuits Implementation for Wireless Sensor Networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1234–1245. [Google Scholar] [CrossRef]
- Han, W.; Xu, L.; Li, W.; Xu, P.; Wang, R. Physical Layer Security Performance of Wireless Mobile Sensor Networks in Smart City. IEEE Access 2019, 7, 12345–12356. [Google Scholar]
- Alhawari, M.; Hakam, A. Optimum Piezo-Electric Based Energy Harvesting for Low-Power Wireless Networks with Power Complexity Considerations. Wirel. Pers. Commun. 2020, 115, 123–145. [Google Scholar]
- Tallat, J.; Ahmed, H.; Khan, A.; Saleem, S.; Malik, A. A Lightweight Genetic Based Algorithm for Data Security in Wireless Body Area Networks. IEEE Access 2020, 8, 123456–123467. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D. A Lightweight User Authentication Scheme for Multi-Gateway Based Wireless Sensor Networks Using Rabin Cryptosystem. IEEE Access 2023, 11, 1234–1245. [Google Scholar] [CrossRef]
- Alzahrani, M.; Tariq, M.; Saeed, N.; Younis, M. A Secure Framework for Authentication and Encryption Using Improved ECC for IoT-Based Medical Sensor Data. IEEE Access 2020, 8, 12345–12356. [Google Scholar] [CrossRef]
- Tchao, E.; Chukwu, O.C.; Lawal, A.L.; Balogun, J.B.; Chen, T.-Y.; Lo, C.-C.; Do, D.-T. An Efficient Authenticated Elliptic Curve Cryptography Scheme for Multicore Wireless Sensor Networks. IEEE Access 2023, 11, 12345–12356. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, W.; Zhao, P.; Xie, F. Cooperative Jamming-Aided Secure Communication in Wireless Powered Sensor Networks. IEEE Trans. Dependable Secur. Comput. 2023, 20, 123–134. [Google Scholar]
- Sharma, D.; Kumar, P.; Muralidhara, B. Data Privacy Technique for the Data Transmitted in Wireless Body Area Network. IEEE Access 2024, 12, 12345–12356. [Google Scholar]
- Mathews, E.; Puthuchirakkal, V.; Thomas, M. Efficient Strategies for Signal Aggregation in Low-Power Wireless Sensor Networks with Discrete Transmission Ranges. IEEE Sens. Lett. 2023, 5, 123–134. [Google Scholar]
- Khashan, O.A.; Khafajah, N.M.; Alomoush, W.; Alshinwan, M. Innovative Energy-Efficient Proxy Re-Encryption for Secure Data Exchange in Wireless Sensor Networks. IEEE Access 2024, 12, 23290–23304. [Google Scholar]
- El-Bendary, M.A.M.; Abou El-Azm, A.E. Complexity Considerations: Efficient Image Transmission over Mobile Communications Channels. Multimed. Tools Appl. 2019, 78, 16345–16365. [Google Scholar]
- Na, W.; Zhang, S.; Zheng, Z.; Qian, J.; Fu, J.; Li, J.; Kumar, B. Lightweight and Secure Data Transmission Scheme Against Malicious Nodes in Heterogeneous Wireless Sensor Networks. IEEE Trans. Inf. Forensics Secur. 2023, 18, 1234–1245. [Google Scholar]
- Sabry, S.; Osama, S.; El-Bendary, M.A. Reliable Mark-Embedded Algorithm for Verifying Archived/Encrypted Image Contents in Presence of Different Attacks with FEC Utilizing Consideration. Wirel. Pers. Commun. 2021, 120, 2021–2040. [Google Scholar]
- Faragallah, O.; Farouk, M.; El-Sayed, H.; El-Bendary, M. Speech Cryptography Algorithms: Utilizing Frequency and Time Domain Techniques Merging. J. Ambient. Intell. Humaniz. Comput. 2024, 15, 567–580. [Google Scholar]
- El-Bendary, M.; Faragallah, O.; Nassar, S. An Efficient Hidden Marking Approach for Forensic and Contents Verification of Digital Images. Multimed. Tools Appl. 2023, 82, 5678–5695. [Google Scholar]
- Kasban, H.; Nassar, S.; El-Bendary, M. Medical Images Transmission over Wireless Multimedia Sensor Networks with High Data Rate. Analog. Integr. Circuits Signal Process. 2021, 108, 345–360. [Google Scholar]
- Nassar, S.; El-Bendary, M. Confidentiality Considerations: Multimedia Signals Transmission over Different Wireless Channels Utilizing Efficient Secured Model. Multimed. Tools Appl. 2022, 81, 15000–15020. [Google Scholar]
- Fu, X.; Li, Q.; Li, W. Modeling and Analysis of Industrial IoT Reliability to Cascade Failures: An Information-Service Coupling Perspective. Reliab. Eng. Syst. Saf. 2023, 230, 108872. [Google Scholar]
- Fu, X.; Wang, Y.; Yang, Y.; Postolache, O. Analysis on Cascading Reliability of Edge-Assisted Internet of Things. Reliab. Eng. Syst. Saf. 2022, 225, 107750. [Google Scholar]
- El-Bendary, M.; Nassar, S. Different Attacks Presence Considerations: Analyzing the Simple and Efficient Self-Marked Algorithm Performance for Highly-Sensitive Audio Signals Contents Verification. Int. J. Speech Technol. 2023, 26, 123–135. [Google Scholar]
- Sabry, S.; Nabil, M.; Hamdy, M.; Hala, S.; Mohsen, A.; Fathi, E.; Osama, S. Secure Wireless Image Communication Using LSB Steganography and Chaotic Baker Ciphering. Wirel. Pers. Commun. 2016, 90, 889–905. [Google Scholar]
- Abd-Elhafiez, W.; Yang, X.; Balobaid, A. An Image Encryption Technique Based on Discrete Wavelet Transform and Fractional Chaotic Cryptovirology. Fractals 2023, 31, 2250034. [Google Scholar]
- Hazzazi, M.; Rehman, M.; Shafique, A.; Aljaedi, A.; Bassfar, Z.; Usman, A. Enhancing Image Security via Chaotic Maps, Fibonacci, Tribonacci Transformations, and DWT Diffusion: A Robust Data Encryption Approach. Sci. Rep. 2024, 14, 56789. [Google Scholar]
- Zhang, B.; Liu, L. Chaos-Based Image Encryption: Review, Application, and Challenges. Mathematics 2023, 11, 2585. [Google Scholar] [CrossRef]
- Zolfaghari, B.; Koshiba, T. Chaotic Image Encryption: State-of-the-Art, Ecosystem, and Future Roadmap. Appl. Syst. Innov. 2022, 5, 57. [Google Scholar] [CrossRef]
- Liu, X. Integrate encryption of multiple images based on a new hyperchaotic system and Baker map. Multimed. Syst. 2024, 30, 247. [Google Scholar]
- Mostafa, A.; Abeer, T.; Hanan, M.; Mohamed, M. Enhancing image encryption using chaotic maps: A multi-map approach for robust security and performance optimization. Clust. Comput. 2024, 27, 14611–14635. [Google Scholar]
- Nasr, M.; El-Shafai, W.; El-Rabaie, E.; El-Fishawy, A.; El-Hoseny, H.; Abd El-Samie, F.; Abdel-Salam, N. A robust audio steganography technique based on image encryption using different chaotic maps. Sci. Rep. 2024, 14, 22054. [Google Scholar]
- Osama, S.; Ensherah, A.; Walid, E.; Noha, R.; Hossam, E.; Mustafa, M.; Ibrahim, E.; Said, E.; Fathi, E. Efficient chaotic-Baker-map-based cancelable face recognition. J. Ambient. Intell. Humaniz. Comput. 2021, 14, 1837–1875. [Google Scholar]
- Asmaa, H.; Maisa’a, A.; Ahmed, T. Image encryption based on 2DNA encoding and chaotic 2D logistic map. J. Eng. Appl. Sci. 2023, 70, 60. [Google Scholar]
- Wanqing, W.; Qiao, Q. Block image encryption based on chaotic map and fractional fourier transformation. Multimed. Tools Appl. 2022, 82, 10367–10395. [Google Scholar]
- Nadeem, I.; Ibrar, H.; Muhammad, M.; Sagheer, A.; Shahid, Y. An efficient image cipher based on the 1D scrambled image and 2D logistic chaotic map. Multimed. Tools Appl. 2023, 82, 40345–40373. [Google Scholar]
- Abushhiwa, H.; Abdussalam, M. Network attacks and network security threats and preventions. Int. J. Adv. Eng. Manag. 2024, 6, 276–283. [Google Scholar]
- Singh, R.; Saraswat, M.; Ashok, A.; Mittal, H.; Tripathi, A.; Pandey, A.; Pal, R. From classical to soft computing based watermarking techniques: A comprehensive review. Future Gener. Comput. Syst. 2022, 141, 738–754. [Google Scholar]
- Naffouti, S.; Kricha, A.; Sakly, A. A sophisticated and provably gray scale image watermarking system using DWT-SVD domain. Vis. Comput. 2022, 39, 4227–4247. [Google Scholar] [CrossRef] [PubMed]
- Shabana, U.; Sonam, L.; Shahnawaz, A.; Shabana, M.; Kalathil, S. Cryptographic Data Security for Reliable Wireless Sensor Network. Alex. Eng. J. 2023, 72, 37–50. [Google Scholar]
- Uras, P.; Cüneyt, B. Enabling secure data transmission for wireless sensor networks based IoT applications. Ain Shams Eng. J. 2022, 14, 101866. [Google Scholar]
- Elamurugu, V.; Evanjaline, D. An Efficient and Secure Text Encryption Scheme for Wireless Sensor Network (WSN) Using Dynamic Key Approach. Int. J. Comput. Netw. Appl. 2021, 8, 788. [Google Scholar] [CrossRef]
- Alakananda, T.; Sateesh, K.; Ajit, K.; Alok, R. Hybrid Cryptography for Data Security in Wireless Sensor Network. Data Eng. Intell. Comput. 2021, 221–225. [Google Scholar]
- Ramadevi, P.; Ayyasamy, S.; Yalla, S.; Chunduru, A.; Vijayakumar, S.; Sudha, R. Security for wireless sensor networks using cryptography. Meas. Sens. 2023, 27, 100604. [Google Scholar] [CrossRef]
- Bhanu, P.; Nitin, S. Exceptional key based node validation for secure data transmission using asymmetric cryptography in wireless sensor networks. Meas. Sens. 2024, 29, 100661. [Google Scholar]
- Satheesh, M.; Ganesh, P. A public static agreement key based cryptography for secure data transmission in WSN based smart environment application. Expert Syst. Appl. 2024, 239, 120232. [Google Scholar]
- Fursan, T.; Ozgu, C.; Asia, O.; Ghaleb, H.; Hoda, A. Cryptography Algorithms for Enhancing IoT Security. Internet Things 2023, 23, 100790. [Google Scholar]
- Manish, K.; Vrushali, P. Secure communication using an adaptable multilevel RGB image encryption algorithm for wireless sensor networks. E-Prime—Adv. Electr. Eng. Electron. Energy 2024, 3, 100107. [Google Scholar]
- Nester, M.; Jasmine, S. Secure medical sensor monitoring framework using novel hybrid encryption algorithm driven by internet of things. Meas. Sens. 2024, 28, 100648. [Google Scholar]
- Olusogo, P.; Marcos, A.; Jims, M.; Alex, S.; Augustine, I.; Jumoke, P. An optimized hybrid encryption framework for smart home healthcare: Ensuring data confidentiality and security. Internet Things 2024, 25, 101071. [Google Scholar]
- Raad, A.; Nahla, A.; Mishall, A. A Perfect Security Key Management Method for Hierarchical Wireless Sensor Networks in Medical Environments. Electronics 2023, 12, 1011. [Google Scholar] [CrossRef]
- Safwan, M.; Juan, A.; Abubakar, M. A Secure and Efficient Method to Protect Communications and Energy Consumption in IoT Wireless Sensor Networks. Electronics 2022, 11, 2721. [Google Scholar] [CrossRef]
- Attique, U.; Muhammad, S.; Shoaib, Z.; Muhammad, A.; Fahad, Q.; Sumayh, S.; Irfan, U.; Nida, A. A Survey on MAC-Based Physical Layer Security over Wireless Sensor Network. Electronics 2022, 11, 2529. [Google Scholar] [CrossRef]
- Rajeev, R.; Abhishek, T. Image encryption using discrete orthogonal Stockwell transform with fractional Fourier transform. Multimed. Tools Appl. 2022, 81, 19935–19953. [Google Scholar]
- Varun, S.; Manoj, K.; Atul, C. A New Secure Data Communication Method Using Wavelet Transform. Wirel. Pers. Commun. 2024, 138, 2707–2724. [Google Scholar]
- Lingamallu, N.; Vijayaraghavan, V. Steganography using wavelet transform for secured data transmission. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 11829–11840. [Google Scholar]
- Steffen, C.; Paraskevas, P.; Oswin, K.; Aasa, F. Semantic similarity metrics for image registration. Med. Image Anal. 2023, 84, 102684. [Google Scholar]
- Sai, P.; Nagabhushan, R. Comparative study of Structural Similarity Index (SSIM) by using different edge detection approaches on live video frames for different color models. In Proceedings of the 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, Kerala, India, 6–7 July 2017; pp. 345–349. [Google Scholar]
- Razaq, A.; Maghrabi, L.; Ahmed, M.; Aslam, F.; Feng, W. Fuzzy Logic-Based Substitution-Box for Robust Medical Image Encryption in Telemedicine. IEEE Access 2024, 12, 31654–31668. [Google Scholar] [CrossRef]
- Yasser, I.; Khalil, A.; Mohamed, M.; Samra, A.; Khalifa, F. A Robust Chaos-Based Technique for Medical Image Encryption. IEEE Access 2021, 9, 125535–125550. [Google Scholar]
- Gaffar, A.; Joshi, A.; Singh, S.; Mishra, V.; Rosales, H.; Zhou, L.; Dhaka, A.; Mishra, L. A Technique for Securing Multiple Digital Images Based on 2D Linear Congruential Generator, Silver Ratio, and Galois Field. IEEE Access 2021, 9, 120203–120218. [Google Scholar] [CrossRef]
- Dai, L.; Chen, L.; Wang, C.; Lin, F. An Image Double Encryption Based on Improved GAN and Hyper Chaotic System. IEEE Access 2024, 12, 8895–8908. [Google Scholar]
- Ustun, D.; Sahinkaya, S.; Atli, N. Developing a secure image encryption technique using a novel S-box constructed through real-coded genetic algorithm’s crossover and mutation operators. Expert Syst. Appl. 2024, 238, 121449. [Google Scholar]
- Kumar, S.; Sharma, D. Image scrambling encryption using chaotic map and genetic algorithm: A hybrid approach for enhanced security. Nonlinear Dyn. 2024, 110, 1131–1150. [Google Scholar] [CrossRef]
- Mohamed, A.; Korany, N.; EL-khamy, S. New DNA Coded Fuzzy Based (DNAFZ) S-Boxes: Application to Robust Image Encryption Using Hyper Chaotic Maps. IEEE Access 2021, 9, 146634–146649. [Google Scholar]
- Qin, X.; Zhang, Y. Image encryption algorithm based on COA and hyperchaotic Lorenz system. Nonlinear Dyn. 2024, 110, 1973–1991. [Google Scholar]
- Singh, D.; Kumar, S. Image authentication and encryption algorithm based on RSA cryptosystem and chaotic maps. Expert Syst. Appl. 2025, 239, 121658. [Google Scholar] [CrossRef]
- Souici, I.; Mahamdioua, M.; Jacques, S.; Ouahabi, A. Advanced genetic image encryption algorithms for intelligent transport systems. Comput. Electr. Eng. 2025, 110, 108208. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, S.; Verma, C.; Illés, Z.; Kumar, N. Visually meaningful image encryption for secure and authenticated data transmission using chaotic maps. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 139–148. [Google Scholar]
- Sharma, V.; Sharma, J. Harris Hawk optimization driven adaptive image encryption integrating Hilbert vibrational decomposition and chaos. Appl. Soft Comput. 2024, 150, 111628. [Google Scholar] [CrossRef]
- Raghuvanshi, K.; Kumar, S.; Kumar, S.; Kumar, S. Image encryption algorithm based on DNA encoding and CNN. Expert Syst. Appl. 2024, 239, 121612. [Google Scholar]
- Al-Muhammed, M. Medical image encryption algorithm based on Fresnel zone formula, differential neural networks, and pixel-guided perturbation techniques. Comput. Electr. Eng. 2024, 114, 108360. [Google Scholar]
- Pandey, K.; Sharma, D. Novel image encryption algorithm utilizing hybrid chaotic maps and Elliptic Curve Cryptography with genetic algorithm. J. Inf. Secur. Appl. 2025, 76, 103878. [Google Scholar]
Simulation Experiments Parameter Settings | |
---|---|
Parameters | Description |
Simulation tool | Matlab Program R2017a |
Simulation environment | O.S: windows 10 |
Intel(R) Core(TM) | |
i5-6200U CPU @ 2.30 GHz 2.40 GHz | |
RAM: 6.00 GB | |
Utilized image signal | Grayscale image: standard and nonstandard |
Color image: nonstandard | |
Image signal size | Grayscale image: 1024*1024 |
Color image: 300*400*3 | |
Security mechanism | Permutations and substitution |
Domain | Domain time Frequency domain Merging time and frequency domains |
Transforms tools | DWT |
Number of secret keys (SK) | 12 Skeys |
Evaluation metrics | Cr, SSIM, PSNR, and MSE, Tc |
Presence noise attacks | Gaussian noise, salt and pepper, speckle, and Poisson noise |
Image Quality Metrics | Metrics Value | |
---|---|---|
Camera man | Cr Plaintext and Cipher-text | 0.0030 |
Cr Plaintext and Decrypted text | 1 | |
PSNR | 99 | |
MSE | 0 | |
SSIM | 1 | |
Girl | Cr Plaintext and Cipher text | 0.0079 |
Cr Plaintext and Decrypted text | 1 | |
PSNR | 99 | |
MSE | 0 | |
SSIM | 1 |
Image Quality Metrics | Different Attacks | |||
---|---|---|---|---|
Gaussian Noise α = 0.1 | Salt and Pepper Noise α = 0.1 | Speckle Noise α = 0.1 | ||
Camera man | Cr | 0.6671 | 0.7955 | 0.8015 |
PSNR | 39.5958 | 41.4101 | 39.6408 | |
MSE | 115.0862 | 75.7864 | 113.8985 | |
SSIM | 0.4595 | 0.5830 | 0.5727 | |
Girl | Cr | 0.4884 | 0.6957 | 0.7089 |
PSNR | 39.6361 | 41.7914 | 39.9103 | |
MSE | 114.0219 | 69.4153 | 107.0471 | |
SSIM | 0.4313 | 0.6359 | 0.6442 |
Image Quality Metrics | Different Attacks | |||
---|---|---|---|---|
Gaussian Noise α = 0.01 | Salt and Pepper Noise α = 0.01 | Speckle Noise α = 0.01 | ||
Camera man | Cr | 0.9397 | 0.9762 | 0.9674 |
PSNR | 40.8252 | 48.6841 | 41.6788 | |
MSE | 86.7114 | 14.1969 | 71.2391 | |
SSIM | 0.8002 | 0.9097 | 0.8731 | |
Girl | Cr | 0.8748 | 0.9588 | 0.9549 |
PSNR | 40.8265 | 49.5830 | 42.2649 | |
MSE | 86.6855 | 11.5424 | 62.2455 | |
SSIM | 0.8229 | 0.9408 | 0.9319 |
Image Quality Metrics | Different Attacks | |||
---|---|---|---|---|
Gaussian Noise α = 0.001 | Salt and Pepper Noise α = 0.001 | Speckle Noise α = 0.001 | ||
Camera man | Cr | 0.9929 | 0.9974 | 0.9964 |
PSNR | 45.3780 | 57.1919 | 47.9450 | |
MSE | 30.3948 | 2.0017 | 16.8306 | |
SSIM | 0.9691 | 0.9893 | 0.9834 | |
Girl | Cr | 0.9849 | 0.9958 | 0.9951 |
PSNR | 45.4493 | 59.3389 | 50.0465 | |
MSE | 29.8997 | 1.2210 | 10.3741 | |
SSIM | 0.9766 | 0.9935 | 0.9923 |
Image Quality Metrics | Metrics Value | |
---|---|---|
Sailboat | Cr Plaintext and Cipher-text | 0.1596 |
Cr Plaintext and Decrypted text | 1 | |
PSNR | 99 | |
MSE | 0 | |
SSIM | 1 | |
Cable car | Cr Plaintext and Cipher text | 0.0571 |
Cr Plaintext and Decrypted text | 1 | |
PSNR | 99 | |
MSE | 0 | |
SSIM | 1 |
Image Quality Metrics | Different Attacks | |||
---|---|---|---|---|
Gaussian Noise α = 0.1 | Salt and Pepper Noise α = 0.1 | Speckle Noise α = 0.1 | ||
Sailboat | Cr | 0.5737 | 0.7551 | 0.8295 |
PSNR | 35.1615 | 37.0602 | 35.7496 | |
MSE | 109.6856 | 70.8400 | 95.7960 | |
SSIM | 0.4249 | 0.5985 | 0.6750 | |
Cable car | Cr | 0.7275 | 0.8390 | 0.8962 |
PSNR | 35.1791 | 36.6259 | 35.4335 | |
MSE | 109.2425 | 78.2904 | 103.0262 | |
SSIM | 0.3262 | 0.4534 | 0.5530 |
Image Quality Metrics | Different Attacks | |||
---|---|---|---|---|
Gaussian Noise α = 0.01 | Salt and Pepper Noise α = 0.01 | Speckle Noise α = 0.01 | ||
Sailboat | Cr | 0.9121 | 0.9688 | 0.9756 |
PSNR | 36.3195 | 44.0207 | 38.6215 | |
MSE | 84.0149 | 14.2639 | 49.4482 | |
SSIM | 0.7845 | 0.9090 | 0.9172 | |
Cable car | Cr | 0.9556 | 0.9806 | 0.9833 |
PSNR | 36.2930 | 42.2072 | 38.1504 | |
MSE | 84.5290 | 21.6564 | 55.1144 | |
SSIM | 0.6777 | 0.8245 | 0.8192 |
Image Quality Metrics | Different Attacks | |||
---|---|---|---|---|
Gaussian Noise α = 0.001 | Salt and Pepper Noise α = 0.001 | Speckle Noise α = 0.001 | ||
Sailboat | Cr | 0.9876 | 0.9946 | 0.9953 |
PSNR | 40.6685 | 49.4520 | 45.4799 | |
MSE | 30.8640 | 4.0842 | 10.1932 | |
SSIM | 0.9540 | 0.9814 | 0.9810 | |
Cable car | Cr | 0.9920 | 0.9952 | 0.9953 |
PSNR | 40.0027 | 45.1766 | 42.7429 | |
MSE | 35.9779 | 10.9305 | 19.1433 | |
SSIM | 0.8917 | 0.9343 | 0.9263 |
Ref | Cr Orig&Enc | Cr Orig&Dec | SSIM | PSNR | MSE | Methodology/Utilized Techniques |
---|---|---|---|---|---|---|
Nasr, M. [34] | 0.0044 | 0.3787 | 0.04756 | 11.5565 | - | Henon + Arnold |
Wanqing, W. [37] | 0.0074 | _ | _ | _ | _ | FRFT transform+2D Logistic map+2D-Baker map |
Razaq, A. [61] | 0.0047 | _ | _ | _ | _ | S-box |
Yasser, I. [62] | 0.004 | _ | _ | _ | _ | Novel chaotic maps |
Gaffar, A. [63] | _ | _ | 0.9719 | 31.7289 | 5.6789 | 2D-LCG, silver ratio, and Galois field |
Dai, L. [64] | _ | _ | 0.9383 | 33.3145 | _ | Improved GAN and Hyper Chaotic |
Proposed Crypto-graphic Algorithm | 0.0030 | 1 | 1 | 99 | 0 | N-round chaos/transform crypto-system |
Ref | Image Quality Metrics | Different Attacks | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gaussian Noise α = 0.1 | Gaussian Noise α = 0.01 | Gaussian Noise α = 0.001 | Salt and Pepper Noise α = 0.1 | Salt and Pepper Noise α = 0.01 | Salt and Pepper Noise α = 0.001 | Speckle Noise α = 0.1 | Speckle Noise α = 0.01 | Speckle Noise α = 0.001 | ||
Razaq, A. [61] | PSNR | _ | _ | _ | _ | 24.76 | _ | _ | _ | _ |
Ustun, D. [65] | PSNR | _ | _ | _ | 14.6180 | 24.6022 | 34.5396 | _ | _ | _ |
Kumar, S. [66] | PSNR | _ | _ | _ | 18.3675 | _ | _ | _ | _ | _ |
Mohamed, A. [67] | PSNR | _ | _ | _ | 18.3045 | _ | _ | _ | _ | _ |
Qin, X. [68] | PSNR | _ | _ | _ | _ | 25.8941 | _ | _ | _ | _ |
Singh, D. [69] | PSNR | _ | _ | _ | 19.0380 | _ | _ | _ | _ | _ |
SSIM | _ | _ | _ | 0.6882 | _ | _ | _ | _ | _ | |
Souici, I. [70] | PSNR | _ | _ | _ | 23.84 | _ | 29.89 | _ | _ | _ |
Singh, D. [71] | PSNR | _ | _ | _ | 12.7136 | 19.0145 | 30.0487 | _ | _ | _ |
Sharma, V. [72] | PSNR | 19.1547 | _ | _ | 18.6230 | _ | _ | _ | _ | _ |
Raghuvanshi, K. [73] | PSNR | _ | _ | _ | 18.45 | _ | _ | _ | _ | _ |
Al-Muhammed, M. [74] | PSNR | _ | _ | 24.253 | _ | 22.177 | _ | _ | _ | _ |
MSE | _ | _ | 244.219 | _ | 393.895 | _ | _ | _ | _ | |
Pandey, K. [75] | PSNR | _ | _ | _ | 18.3613 | _ | _ | _ | _ | _ |
Proposed crypto-algorithm metrics | Cr | 0.6671 | 0.9397 | 0.9929 | 0.7955 | 0.9762 | 0.9974 | 0.8015 | 0.9674 | 0.9964 |
PSNR | 39.5958 | 40.8252 | 45.3780 | 41.4101 | 48.6841 | 57.1919 | 39.6408 | 41.6788 | 47.9450 | |
MSE | 115.0862 | 86.7114 | 30.3948 | 75.7864 | 14.1969 | 2.0017 | 113.8985 | 71.2391 | 16.8306 | |
SSIM | 0.4595 | 0.8002 | 0.9691 | 0.5830 | 0.9097 | 0.9893 | 0.5727 | 0.8731 | 0.9834 |
Ref. | Encryption Time | Decryption Time | Methodology/Utilized Techniques |
---|---|---|---|
Shabana, U. [42] | 2.5 | 1.71 | ECC + AES |
Elamurugu, V. [44] | 0.841 | 0.037 | Salt key |
Ramadevi, P. [46] | 73 | _ | IKEC |
Bhanu, P. [47] | 12 | 11 | EKbNV-SDT-AC model |
Satheesh, M. [48] | 3.8 | 2.3 | PSKAC |
Nester, M. [51] | 4 | 4 | Hybrid encryption algorithm |
Proposed crypto-graphic algorithm | 2.1379 | 1.5717 | N-round chaos/transform crypto-system |
2.6318 | 1.6654 | ||
4.7546 | 1.5610 | ||
5.0286 | 1.5769 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srour, T.; El-Bendary, M.A.M.; Eltokhy, M.; Abouelazm, A.E.; Youssef, A.A.F.; El-Rifaie, A.M. Lower-Complexity Multi-Layered Security Partitioning Algorithm Based on Chaos Mapping-DWT Transform for WA/SNs. J. Sens. Actuator Netw. 2025, 14, 36. https://doi.org/10.3390/jsan14020036
Srour T, El-Bendary MAM, Eltokhy M, Abouelazm AE, Youssef AAF, El-Rifaie AM. Lower-Complexity Multi-Layered Security Partitioning Algorithm Based on Chaos Mapping-DWT Transform for WA/SNs. Journal of Sensor and Actuator Networks. 2025; 14(2):36. https://doi.org/10.3390/jsan14020036
Chicago/Turabian StyleSrour, Tarek, Mohsen A. M. El-Bendary, Mostafa Eltokhy, Atef E. Abouelazm, Ahmed A. F. Youssef, and Ali M. El-Rifaie. 2025. "Lower-Complexity Multi-Layered Security Partitioning Algorithm Based on Chaos Mapping-DWT Transform for WA/SNs" Journal of Sensor and Actuator Networks 14, no. 2: 36. https://doi.org/10.3390/jsan14020036
APA StyleSrour, T., El-Bendary, M. A. M., Eltokhy, M., Abouelazm, A. E., Youssef, A. A. F., & El-Rifaie, A. M. (2025). Lower-Complexity Multi-Layered Security Partitioning Algorithm Based on Chaos Mapping-DWT Transform for WA/SNs. Journal of Sensor and Actuator Networks, 14(2), 36. https://doi.org/10.3390/jsan14020036