Efficient and Low-Cost Modular Polynomial Multiplier for WSN Security
Abstract
1. Introduction
- Cost-Efficient and Symmetric Design: The proposed modular polynomial multiplier has been designed with symmetric PEs and submodules for efficient implementation. It includes registers, XOR gates, AND gates, and 2-to-1 multiplexers for the modular polynomial multiplication in .
- Serial Input and Parallel Output: One of the multiplicands is serially input to minimize I/O pin usage. After clock cycles, the modular product is output in parallel.
- Karatsuba Reconfigurable Polynomial Multiplier for General Modulus Polynomials: The proposed architecture is reconfigurable with respect to the modulus polynomial, which is supplied as an input parameter. It supports dynamic updates of the modulus polynomial without hardware modification and is further optimized using a Karatsuba approach.
2. Background
2.1. Schoolbook Polynomial Multiplication
2.2. Karatsuba Polynomial Multiplication
3. Proposed Reconfigurable Karatsuba Modular Polynomial Multiplier
Algorithm 1 GF-based Reconfigurable Modular Polynomial Multiplier |
Input:
|
Output: |
Load into shift registers |
for (; ; ) { |
} |
for (; ; ) { |
for (; ; ) { |
} |
Right Shift |
for (; ; ) { |
} |
} |
4. Performance Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schneier, B. Applied Cryptography, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Diffie, W.; Hellman, M.E. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. [Google Scholar] [CrossRef]
- Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef]
- ElGamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 1985, 31, 469–472. [Google Scholar] [CrossRef]
- Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209. [Google Scholar] [CrossRef]
- Miller, V.S. Use of elliptic curves in cryptography. In Advances in Cryptology—EUROCRYPT 1985; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1985; pp. 417–426. [Google Scholar]
- Odlyzko, A.M. Discrete logarithms in finite fields and their cryptographic significance. In Advances in Cryptology—EUROCRYPT 1984; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1984; pp. 224–314. [Google Scholar]
- Hsu, I.-S.; Truong, T.-K.; Deutsch, L.J.; Reed, I.S. A comparison of VLSI architectures of finite field multipliers using dual, normal, or standard bases. IEEE Trans. Comput. 1988, 37, 735–739. [Google Scholar] [CrossRef]
- Karatsuba, A.; Ofman, Y. Multiplication of multidigit numbers on automata. Sov. Phys. Dokl. 1963, 7, 595–596. [Google Scholar]
- Nussbaumer, H.J. The Fast Fourier Transform and Convolution Algorithms; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Heidarpur, M.; Mirhassani, M. An efficient and high-speed overlap-free Karatsuba-based finite-field multiplier for FPGA implementation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 667–676. [Google Scholar] [CrossRef]
- Thirumoorthi, M.; Dinesh, B.; Elakkina, R.; Sundararajan, S.; Sekar, A.; Lakshmanan, G. Formulations of M-term overlap-free Karatsuba binary polynomial multipliers and their hardware implementations. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2023, 31, 1509–1522. [Google Scholar] [CrossRef]
- Meher, P.K. Systolic and super-systolic multipliers for finite field GF(2m) based on irreducible trinomials. IEEE Trans. Circuits Syst. I Reg. Pap. 2008, 55, 1031–1040. [Google Scholar] [CrossRef]
- Zeghid, M.; Sghaier, A.; Ahmed, H.Y.; Abdalla, O.A. Power/area-efficient ECC processor implementation for resource-constrained devices. Electronics 2023, 12, 4110. [Google Scholar] [CrossRef]
- Kumari, R.; Rout, T.; Saini, B.; Pandey, J.G.; Karmakar, A. An efficient hardware implementation of elliptic curve point multiplication over GF (2m) on FPGA. In International Symposium on VLSI Design and Test; Springer Nature: Singapore, 2024; pp. 257–271. [Google Scholar]
- Das, M.; Jajodia, B. Hybrid recursive Karatsuba multiplications on FPGAs. IEEE Embed. Syst. Lett. 2025, 17, 240–243. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology (NIST). Recommendations for Discrete Logarithm-Based Cryptography: Elliptic Curve Domain Parameters; NIST Special Publication 800-186; NIST: Gaithersburg, MD, USA, 2023. Available online: https://csrc.nist.gov/pubs/sp/800/186/final (accessed on 2 June 2025).
- Haroon, F.; Li, H. Reconfigurable and Compact Modular Polynomial Multiplier in Galois Field for the Security of IoT. In Proceedings of the IEEE Cloud-Summit 2025, Washington, DC, USA, 26–27 June 2025. [Google Scholar]
- El-Razouk, H.; Reyhani-Masoleh, A. New bit-level serial GF(2m) multiplication using polynomial basis. In Proceedings of the 2015 IEEE 22nd Symposium on Computer Arithmetic (ARITH), Vail, CO, USA, 6–8 June 2015; pp. 129–136. [Google Scholar]
- Pillutla, S.R.; Boppana, L. Area-efficient low-latency polynomial basis finite field GF(2m) systolic multiplier for a class of trinomials. Microelectron. J. 2020, 97, 104709. [Google Scholar] [CrossRef]
- Imaña, J. Low latency GF(2m) polynomial basis multiplier. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 935–946. [Google Scholar] [CrossRef]
- Selimis, G.N.; Fournaris, A.P.; Michail, H.E.; Koufopavlou, O. Improved throughput bit-serial multiplier for GF(2m) fields. Integration 2009, 42, 217–226. [Google Scholar] [CrossRef]
- Samanta, J.; Sultana, R.; Bhaumik, J. FPGA-based modified Karatsuba multiplier. In Proceedings of the 2014 International Conference on VLSI and Signal Processing (ICVSP), Kharagpur, India, 10–12 January 2014; Volume 10. [Google Scholar]
- Arish, S.; Sharma, R.K. An efficient floating point multiplier design for high speed applications using Karatsuba algorithm and Urdhva-Tiryagbhyam algorithm. In Proceedings of the 2015 International Conference on Signal Processing and Communication (ICSC), Noida, India, 16–18 March 2015; pp. 303–308. [Google Scholar]
- Imaña, J.L. Fast bit-parallel binary multipliers based on type-I pentanomials. IEEE Trans. Comput. 2017, 67, 898–904. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
Input polynomials to be multiplied | |
Modulus polynomial (e.g., ) | |
Output modular product: | |
Coefficients of and , elements of | |
n | Degree or bit-width of the polynomials |
⊕ | XOR operation (addition/subtraction in ) |
∧ | AND operation (multiplication in ) |
Designs | #AND | #XOR | #FF | #Mux | Latency | Delay |
---|---|---|---|---|---|---|
[19] | 0 | n | ||||
[20] | 0 | |||||
[21] | ||||||
[22] | ||||||
Prop. |
Designs | #AND | #XOR | #FF | #Mux | Latency | Delay | #Trans. | ADP | % Reduction |
---|---|---|---|---|---|---|---|---|---|
[19] | 465 | 467 | 697 | 0 | 233 | 30 | 11,168 | 78 | 24.04 |
[20] | 54,289 | 54,288 | 81,666 | 0 | 119 | 18 | 1,304,794 | 2794 | 97.87 |
[21] | 27,261 | 27,261 | 1164 | 932 | 149 | 124 | 342,036 | 6319 | 99.06 |
[22] | 699 | 466 | 934 | 466 | 155 | 35 | 17,258 | 93 | 36.66 |
Prop. | 699 | 932 | 699 | 350 | 117 | 29 | 17,475 | 59 | — |
Algorithm | GF() | LUTs | Slices | Total Delay | ADP | % Reduction | FPGA Device Board |
---|---|---|---|---|---|---|---|
[23] | 62 | 36 | 13.95 | 1367 | 74.16 | ||
[11] | 8 | 46 | 24 | 11.01 | 770 | 54.12 | Spartan-7 |
Prop. | 27 | 45 | 4.906 | 353.232 | – | ||
[24] | 1018 | 972 | 13.00 | 25,870 | 91.52 | Virtex-4 | |
[11] | 24 | 360 | 184 | 12.51 | 6805 | 67.78 | Virtex-4 |
[12] | 522 | N/A | 10.15 | 5298 | 58.63 | Virtex-4 | |
Prop. | 79 | 130 | 10.488 | 2191.992 | – | Zynq UltraScale+ | |
[25] | 5501 | 2354 | 20.56 | 161,498 | 74.71 | ||
[11] | 113 | 3792 | 1084 | 10.52 | 51,295 | 20.40 | Artix-7 |
Prop. | 355 | 585 | 43.434 | 40,827.96 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haroon, F.; Li, H. Efficient and Low-Cost Modular Polynomial Multiplier for WSN Security. J. Sens. Actuator Netw. 2025, 14, 86. https://doi.org/10.3390/jsan14050086
Haroon F, Li H. Efficient and Low-Cost Modular Polynomial Multiplier for WSN Security. Journal of Sensor and Actuator Networks. 2025; 14(5):86. https://doi.org/10.3390/jsan14050086
Chicago/Turabian StyleHaroon, Fariha, and Hua Li. 2025. "Efficient and Low-Cost Modular Polynomial Multiplier for WSN Security" Journal of Sensor and Actuator Networks 14, no. 5: 86. https://doi.org/10.3390/jsan14050086
APA StyleHaroon, F., & Li, H. (2025). Efficient and Low-Cost Modular Polynomial Multiplier for WSN Security. Journal of Sensor and Actuator Networks, 14(5), 86. https://doi.org/10.3390/jsan14050086