A New Approach to Estimating the Path Loss in Underground Wireless Sensor Networks
Abstract
:1. Introduction
2. RF Signals in Soil
2.1. Dielectric Properties of Soil
2.2. Propagation Models
3. TDR and Field Trials
3.1. Proposed Path Loss Estimation Method
3.2. Trial Setup
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
RF | Radio Frequency |
TDR | Time Domain Reflectometry |
BEC | Bulk Electrical Conductivity |
PSD | Particle Size Distribution |
EM | Electromagnetic |
GPR | Ground Penetrating Radar |
WSN | Wireless Sensor Networks |
WUSN | Wireless Underground Sensor Networks |
References
- Balachander, D.; Rao, T.R.; Mahesh, G. RF Propagation Investigations in Agricultural Fields and Gardens for Wireless Sensor Communications. In Proceedings of the 2013 IEEE Conference on Information and Communication Technologies, Tamil Nadu, India, 11–12 April 2013; pp. 755–759. [Google Scholar]
- Hancke, G. Industrial wireless sensor networks: A selection of challenging applications. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech, 26–30 March 2012; pp. 64–68. [Google Scholar]
- Akyildiz, I.F.; Stuntebeck, E.P. Wireless underground sensor networks: Research challenges. Ad Hoc Netw. 2006, 4, 669–686. [Google Scholar] [CrossRef]
- The National Joint Utiities Group (NJUG). NJUG Guidelines on the Positioning and Colour Coding of Underground Utilities’ Apparatus; NJUG: London, UK, 2007. [Google Scholar]
- Silva, A.R.; Vuran, M.C. Empirical Evaluation of Wireless Underground-to-Underground Communication in Wireless Underground Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5516. [Google Scholar]
- Kurt, S.; Tavli, B. Path-Loss Modeling for Wireless Sensor Networks. IEEE Antennas Propag. Mag. 2017, 59, 18–37. [Google Scholar] [CrossRef]
- Alsayyari, A.; Kostanic, I.; Otero, C.; Mohammed, A.; Kusay, R. An Empirical Path Loss Model for Wireless Sensor Network Deployment in a Sand Terrain Environment. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 218–223. [Google Scholar]
- Aisayyari, A.; Kostanic, I.; Otero, C.E. An Empirical Path Loss Model for Wireless Sensor Network Deployment in an Artificial Turf Environment. In Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control, Miami, FL, USA, 7–9 April 2014; pp. 637–642. [Google Scholar]
- Silva, A.R. Channel Characterization for Wireless Underground Sensor Networks. Master’s Thesis, University of Nebraska, Lincoln, NE, USA, 2010. [Google Scholar]
- Sadeghioon, A.M. Design and Development of Wireless Underground Sensor Networks for Pipeline Monitoring. Ph.D. Thesis, School of mechanical enginrring, University of Birmingham, Birmingham, UK, 2015. [Google Scholar]
- Curioni, G. Investigating the Seasonal Variability of Electromagnetic Soil Properties Using Field Monitoring Data from Time-Domain Reflectometry Probes. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2013. [Google Scholar]
- Topp, G.; Zegelin, S.; White, I. Impacts of the real and imaginary components of relative permittivity on time domain reflectometry measurements in soils. Soil Sci. Soc. Am. 2000, 1252, 1244–1252. [Google Scholar] [CrossRef]
- Silva, A.R.; Vuran, M.C. Development of a Testbed for Wireless Underground Sensor Networks. EURASIP J. Wirel. Commun. Netw. 2010, 1–14. [Google Scholar] [CrossRef]
- Yu, X.; Wu, P.; Han, W.; Zhang, Z. Overview of wireless underground sensor networks for agriculture. African J. Biotechnol. 2012, 11, 3942–3948. [Google Scholar] [CrossRef]
- Yoon, S. Wireless Signal Networks: A Proof of Concept for Subsurface Characterization and A System Design with Reconfigurable Radio. Ph.D. Thesis, Lehigh University, Bethlehem, PA, USA, 2013. [Google Scholar]
- Van-Dam, R.L.; Borchers, B.; Hendrickx, J.M.H. Methods for prediction of soil dielectric properties: A review Remke. Def. Secur. 2005, 5794, 188–197. [Google Scholar]
- Peplinski, N.; Ulaby, F.T.; Dobson, M.C. Dielectric properties of soils in the 0.3–1.3-GHz range. IEEE Trans. Geosci. Remote Sens. 1995, 33, 803–807. [Google Scholar] [CrossRef]
- Peplinski, N.; Ulaby, F.T.; Dobson, M.C. Corrections to “Dielectric Properties of Soils in the 0.3–1.3-GHz Range”. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1340. [Google Scholar] [CrossRef]
- Mironov, V.; Dobson, M. Generalized refractive mixing dielectric model for moist soils. Geosci. Remote Sens. IEEE Trans. 2004, 42, 3556–3558. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Chaamwe, N.; Liu, W.; Jiang, H. Wave Propagation Communication Models for Wireless Underground Sensor Networks. In Proceedings of the 12th IEEE International Conference on Communication Technology (ICCT), Nanjing, China, 11–14 November 2010; pp. 9–12. [Google Scholar]
- Sahota, H.; Kumar, R. Network based sensor localization in multi-media application of precision agriculture Part 1: Received signal strength. In Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control, Miami, FL, USA, 7–9 April 2014; pp. 191–196. [Google Scholar]
- Bogena, H.R.; Huisman, J.A.; Meier, H.; Rosenbaum, U.; Weuthen, A. Hybrid Wireless Underground Sensor Networks: Quantification of Signal Attenuation in Soil. Vadose Zone J. 2009, 8, 755–761. [Google Scholar] [CrossRef]
- Li, L.; Vuran, M.; Akyildiz, I. Characteristics of underground channel for wireless underground sensor networks. In Proceedings of the Sixth Annual Mediterranean Ad Hoc Networking WorkShop, Corfu, Greece, 12–15 June 2007; pp. 92–99. [Google Scholar]
- Vuran, M.C.; Silva, A.R. Communication Through Soil in Wireless Underground Sensor Networks—Theory and Practice. In Sensor Networks, Signals and Communication Technology; Ferrari, G., Ed.; Springer: Berlin, Germany, 2009; pp. 309–347. [Google Scholar]
- Friis, H. A note on a simple transmission formula. Proc. IRE 1946, 34, 254–256. [Google Scholar] [CrossRef]
- Dane, J.H.; Topp, C. Methods of Soil Analysis: Part 4; Soil Science Society of America, Inc.: Madison, WI, USA, 2002. [Google Scholar]
- Evett, S.R.; Parkin, G.W. Advances in Soil Water Content Sensing. Vadose Zone J. 2005, 4, 986. [Google Scholar] [CrossRef]
- Sadeghioon, A.M.; Metje, N.; Chapman, D.; Anthony, C. SmartPipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines. J. Sens. Actuator Netw. 2014, 3, 64–78. [Google Scholar] [CrossRef]
- British Standards Institution (BSI). BS 1377-2 Methods of Test for Soils for Civil Engineering Purposes: Part 2: Classification Tests; BSI: London, UK, 1990. [Google Scholar]
- Rappaport, T.S. Wireless Communications: Principles and Practice, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2001. [Google Scholar]
Location | Classification * | GWC | ε’ (TDR)/ε’ (Peplinski) | ε’’ (TDR)/ε’’ (Peplinski) | σDC (mS/m) |
---|---|---|---|---|---|
A | Gravelly SAND | 12.97% | 6.53/7.14 | 1.88/1.31 | 2.32 |
B | Gravelly SAND | 17.02% | 10.21/11.78 | 1.42/1.96 | 3.74 |
C | Clayey Silt | 41.72% | 27.42/28.66 | 5.93/6.74 | 61.23 |
Location | RMSE | ||
---|---|---|---|
CRIM-Fresnel | Modified-Friis (Conventional) | New Modified-Friis | |
A | 13.59 | 3.06 | 2.85 |
B | 12.31 | 7.00 | 4.19 |
C | 11.58 | 1.47 | 1.36 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghioon, A.M.; Chapman, D.N.; Metje, N.; Anthony, C.J. A New Approach to Estimating the Path Loss in Underground Wireless Sensor Networks. J. Sens. Actuator Netw. 2017, 6, 18. https://doi.org/10.3390/jsan6030018
Sadeghioon AM, Chapman DN, Metje N, Anthony CJ. A New Approach to Estimating the Path Loss in Underground Wireless Sensor Networks. Journal of Sensor and Actuator Networks. 2017; 6(3):18. https://doi.org/10.3390/jsan6030018
Chicago/Turabian StyleSadeghioon, Ali M., David N. Chapman, Nicole Metje, and Carl J. Anthony. 2017. "A New Approach to Estimating the Path Loss in Underground Wireless Sensor Networks" Journal of Sensor and Actuator Networks 6, no. 3: 18. https://doi.org/10.3390/jsan6030018
APA StyleSadeghioon, A. M., Chapman, D. N., Metje, N., & Anthony, C. J. (2017). A New Approach to Estimating the Path Loss in Underground Wireless Sensor Networks. Journal of Sensor and Actuator Networks, 6(3), 18. https://doi.org/10.3390/jsan6030018