A Survey on Optical Technologies for IoT, Smart Industry, and Smart Infrastructures
Abstract
:1. Introduction
The Role of Optical Technologies in the IoT
2. Optical Sensors
2.1. Classification of Optical Sensors
- According to the modulation and demodulation process, sensors can be based on intensity, phase, frequency, or polarization modulation.
- Optical fiber sensors can be intrinsic or extrinsic. In intrinsic sensors, the sensing occurs in the fiber itself by the change of one or more physical properties of the optical signal (phase, intensity, wavelength, or polarization). Intrinsic sensors are mostly used to measure temperature, pressure, flow, or liquid level. They are mostly easy to use and less expensive. If the fiber is mainly used to guide the light into and out of the sensing region and the sensing essentially occurs outside of the fiber, then such a sensor is called extrinsic. The main applications of extrinsic sensors are the measurement of acceleration, strain, rotation, vibration, and acoustic pressure. They are more sensitive and expensive than intrinsic sensors and require a more complex signal processing.
- According to measurement points there can be point-based (discrete), multiplexed, or distributed sensors. In a point-based sensor, the sensing occurs at a single measurement point in the fiber. Multiplexed sensors are capable of providing several measurement points within a single piece of fiber. In distributed sensors, the sensing is taking place in a distributed manner at any point along the fiber.
- Regarding the intended application or physical property to be sensed, we can have (i) physical sensors, e.g., for measuring the temperature, magnetic field, concentration, humidity, strain; (ii) chemical sensors that sense chemical properties of, e.g., gas or liquid environments, pH factor, refractive index; and (iii) biological sensors, e.g., for sensing physiological parameters, glucose and thrombin detection, and blood flow.
2.1.1. Physical Sensors
2.1.2. Chemical Sensors
2.1.3. Biological Sensors
2.2. Examples of Optical Sensors
3. Optical Sensor Networks
4. Optical Network Infrastructure
4.1. Flexibility and Adaptability
4.2. Optical Cloud Infrastructure
4.3. Optical Access Networks and 5G Backhaul/Fronthaul
4.4. Energy Consumption
5. Conclusions
Funding
Conflicts of Interest
References
- ITU-T Recommendation Y.4000/Y.2060. Overview of the Internet of Things. June 2012. Available online: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-Y.2060-201206-I!!PDF-E&type=items (accessed on 23 February 2019).
- Aleksic, S. Optical Technologies: An Important Enabler for Smart Systems and Infrastructures. In Proceedings of the 15th International Conference on Telecommunications (ConTEL 2019), Graz, Austria, 3–5 July 2019; pp. 1–8. [Google Scholar]
- Gholamzadeh, B.; Nabovati, H. Fiber Optic Sensors. World Acad. Sci. Eng. Technol. 2008, 42, 297–307. [Google Scholar]
- Du, W.; Tao, X.M.; Tam, H.Y.; Choy, C.L. Fundamentals and applications of optical fiber Bragg grating sensors to textile structural composites. Compos. Struct. 1998, 42, 217–229. [Google Scholar] [CrossRef]
- Ramakrishnan, M. Optical Fiber Sensors for smart composite materials structures. In Optical Fiber Sensors: Advanced Techniques and Applications; CRC Press: Boca Raton, FL, USA, 2015; pp. 491–520. [Google Scholar]
- Marukashan, V.M. On-line health monitoring of smart composite structures using fiber polarimetric sensor. Smart Mater. Struct. 1999, 8, 544–548. [Google Scholar] [CrossRef]
- Rao, Y.J. Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors. Opt. Fiber Technol. 2006, 12, 227–237. [Google Scholar] [CrossRef]
- Lopez-Higuera, J.M.; Cobo, L.R.; Incera, A.Q.; Cobo, A. Fibre optic sensors in structural health monitoring. J. Lightwave Technol. 2011, 29, 587–608. [Google Scholar] [CrossRef]
- Matta, F.; Bastianini, F.; Galati, N.; Casadei, P.; Nanni, A. Distributed strain measurement in steel bridge with fiber optic sensors: Validation through diagnostic load test. J. Perform. Const. Facil. 2008, 22, 264–273. [Google Scholar] [CrossRef]
- Montanini, R.; D’Acquisto, L. Simultaneous measurement of temperature and strain in glass fibre/epoxy composites by embedded fibreoptic sensors: I. Cure monitoring. Smart Mater. Struct. 2007, 16, 1718–1726. [Google Scholar] [CrossRef]
- Morciano, G.; Sarti, A.C.; Marchi, S.; Missiroli, S.; Falzoni, S.; Raffaghello, L.; Pistoia, V.; Giorgi, C.; Virgilio, F.D.; Pinton, P. Use of luciferase probes to measure ATP in living cells and animals. Nat. Protoc. 2017, 12, 1542–1562. [Google Scholar] [CrossRef]
- Yin, S.; Ruffin, P.B.; Yu, F.T.S. Fiber Optic Sensors, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 496. [Google Scholar]
- Yao, S.K.; Asawa, C.K. Fiber optical intensity sensors. IEEE J. Sel. Areas Commun. 1983, 1, 562–575. [Google Scholar]
- Udd, E. Fly-by-light. In Proceedings of the SPIE, San Diego, CA, USA, 24–29 July 1994; Volume 2295. [Google Scholar]
- Fritsch, K. Digital angular position sensor using wavelength division multiplexing. In Proceedings of the SPIE, Boston, MA, USA, 13 February 1990; Volume 1169, pp. 453–460. [Google Scholar]
- Fritsch, K.; Beheim, G. Wavelength division multiplexed digital optical position transducer. Opt. Lett. 1986, 11, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Varshneya, D.; Glomb, W.L. Applications of time and wavelength-division multiplexing to digital optical code plates. In Proceedings of the SPIE, Cambridge, MA, USA, 23 March 1988; Volume 838, pp. 210–215. [Google Scholar]
- Snow, J.W. A fiber optic fluid level sensor: Practical considerations. In Proceedings of the SPIE, Dearborn, MI, USA, 16 January 1989; Volume 954, p. 88. [Google Scholar]
- Clark, T.E.; Burrell, M.W. Thermally switched coupler. In Proceedings of the SPIE, Boston, MA, USA, 16 January 1989; Volume 986, pp. 164–170. [Google Scholar]
- Berthold, J.W.; Ghering, W.L.; Varshneya, D. Design and characterization of a high temperature, fiber optic pressure transducer. IEEE J. Lightwave Technol. 1987, 5, 870–876. [Google Scholar] [CrossRef]
- Miers, D.R.; Raj, D.; Berthold, J.W. Design and characterization of fiber-optic accelerometers. In Proceedings of the SPIE, Cambridge, MA, USA, 23 March 1988; Volume 838, pp. 314–317. [Google Scholar]
- Udd, E.; Turek, P.M. Single mode fiber optic vibration sensor. In Proceedings of the SPIE, San Diego, CA, USA, 3 January 1986; Volume 566, pp. 135–140. [Google Scholar]
- Wei, W.; Xiaotian, S.; Ying, W. Sapphire Fiber-optic Temperature Sensor Based on Black-body Radiation Law. Procedia Eng. 2015, 99, 1179–1184. [Google Scholar] [CrossRef] [Green Version]
- Schwab, S.D.; Levy, R.L. In-service characterization of composite matrices with an embedded fluorescence optrode sensor. In Proceedings of the SPIE, Boston, CA, USA, 5 February 1990; Volume 1170, pp. 230–238. [Google Scholar]
- Gratten, K.T.V.; Selli, R.K.; Palmer, A.W. A miniature fluorescence referenced glass absorption thermometer. In Proceedings of the 4th International Conference Optical Fiber Sensors, Tokyo, Japan, 7–9 October 1986; p. 315. [Google Scholar]
- Ball, G.A.; Meltz, G.; Morey, W.W. Polarimetric heterodyning Bragg–grating fiber laser. Opt. Lett. 1993, 18, 1976–1978. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.E.; Taylor, H.F. Interferometeric fiber optic temperature sensor using a low coherence light source. In Proceedings of the SPIE, San Jose, CA, USA, 1 December 1990; Volume 1370, pp. 356–364. [Google Scholar]
- Dandridge, A. Fiber optic sensors based on the Mach-Zehnder and Michelson interferometers. In Fiber Optic Sensors: An Introduction for Engineers and Scientists; Udd, E., Ed.; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Burns, W.K. (Ed.) Optical Fiber Rotation Sensing; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Udd, E. Sagnac distributed sensor concepts. In Proceedings of the SPIE, Boston, MA, USA, 1 January 1992; Volume 1586, pp. 46–52. [Google Scholar]
- Bucholtz, F.; Dagenais, D.M.; Koo, K.P. High frequency fiber-optic magnetometer with 70 ft per square root Hertz resolution. Electron. Lett. 1989, 25, 1719–1720. [Google Scholar] [CrossRef]
- Saitoh, T.; Nakamura, K.; Takahashi, Y.; Iida, H.; Iki, Y.; Miyagi, K. Ultra-long-distance (230 km) FBG sensor system. In Proceedings of the 19th International Conference on Optical Fibre, Perth, Australia, 16 May 2008; p. 70046. [Google Scholar]
- Fernandez-Vallejo, M.; Rota-Rodrigo, S.; Lopez-Amo, M. Remote (250 km) fiber Bragg grating multiplexing system. Sensors 2011, 11, 8711–8720. [Google Scholar] [CrossRef] [PubMed]
- DeMiguel-Soto, V.; Leandro, D.; Lopez-Amo, M. Ultra-long (290 km) remote interrogation sensor network based on a random distributed feedback fiber laser. Opt. Express 2018, 26, 27189–27200. [Google Scholar] [CrossRef] [PubMed]
- Wild, G.; Allwood, G.; Hinckley, S. Distributed sensing, communications, and power in optical Fibre Smart Sensor networks for structural health monitoring. In Proceedings of the Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Brisbane, Australia, 7–10 December 2010; pp. 139–144. [Google Scholar]
- Udd, E. Fiber Optic Smart Structures. Proc. IEEE 1996, 84, 884–894. [Google Scholar] [CrossRef]
- Saeed, N.; Celik, A.; Al-Naffouri, T.Y.; Alouini, M. Localization of Energy Harvesting Empowered Underwater Optical Wireless Sensor Networks. IEEE Trans. Wirel. Commun. 2018, 18, 2652–2663. [Google Scholar] [CrossRef]
- Díaz, C.A.R.; Leitão, C.; Marques, C.A.; Alberto, N.; Domingues, M.F.; Ribeiro, T.; Pontes, M.J.; Frizera, A.; Antunes, P.F.; André, P.S.; et al. IoToF: A Long-Reach Fully Passive Low-Rate Upstream PHY for IoT over Fiber. Electronics 2019, 8, 359. [Google Scholar] [CrossRef]
- Vazquez, C.; Pena, J.M.S.; Vargas, S.E.; Aranda, A.L.; Perez, I. Optical router for optical fiber sensor networks based on a liquid crystal cell. IEEE Sens. J. 2003, 3, 513–518. [Google Scholar] [CrossRef]
- Xie, R.; Yang, W.H.; Kim, Y.C. Reconfigurable Routing Protocol for Free Space Optical Sensor Networks. Sensors 2012, 12, 4824–4845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okorafor, U.N.; Kundur, D. On the relevance of node isolation to the K-connectivity of wireless optical sensor networks. IEEE Trans. Mob. Comput. 2009, 10, 1427–1440. [Google Scholar] [CrossRef]
- Kahn, J.M.; Katz, R.H.; Pister, K.S.J. Emerging challenges: Mobile networking for ‘smart dust’. J. Commum. Netw. 2000, 9, 188–196. [Google Scholar] [CrossRef]
- Warneke, B.A.; Pister, K.S.J. MEMS for Distributed Wireless Sensor Networks. In Proceedings of the 9th International Conference on Electronics, Circuits and Systems, Dubrovnik, Croatia, 15–18 September 2002; pp. 291–294. [Google Scholar]
- Verma, P.; Ghosh, A.K.; Venugopalan, A. Free-Space Optics Based Wireless Sensor Network Design. In Proceedings of the NATO IST Panel Symposium on Military Communications, Prague, Czech Republic, 21–22 April 2008; pp. 1–12. [Google Scholar]
- Chowdhury, M.Z.; Hasan, M.K.; Shahjalal, M.; Shin, E.B.; Jang, Y.M. Opportunities of Optical Spectrum for Future Wireless Communications. In Proceedings of the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan, 11–13 February 2019; pp. 4–7. [Google Scholar]
- Teramoto, S.; Ohtsuki, T. Optical Wireless Sensor Network System Using Corner Cube Retro-Reflectors. In Proceedings of the IEEE International Conference on Global Telecommunications (GLOBECOM 2004), Dallas, TX, USA, 29 November–3 December 2004; pp. 1035–1039. [Google Scholar]
- Ayyash, M.; Elgala, H.; Khreishah, A.; Jungnickel, V.; Little, T.; Shao, S.; Rahaim, M.; Schulz, D.; Hilt, J.; Freund, R. Coexistence of WiFi and LiFi towards 5G: Concepts, Opportunities, and Challenges. IEEE Commun. Mag. 2016, 54, 64–71. [Google Scholar] [CrossRef]
- Aleksic, S. Towards fifth-generation (5G) optical transport networks. In Proceedings of the 2015 17th International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 5–9 July 2015; pp. 1–4. [Google Scholar]
- Qian, D.; Huang, M.; Ip, E.; Huang, Y.; Shao, Y.; Hu, J.; Wang, T. 101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM Transmission over 3×55-km SSMF using Pilot-based Phase Noise Mitigation. In Proceedings of the OFC 2011, Paper PDPB5, Los Angeles, CA, USA, 6–10 March 2011. [Google Scholar]
- Winzer, P.J.; Neilson, D.T.; Chraplyvy, A.R. Fiber-optic transmission and networking: The previous 20 and the next 20 years. OSA Opt. Express 2018, 26, 24190–24239. [Google Scholar] [CrossRef] [PubMed]
- Jinno, M.; Takara, H.; Kozicki, B.; Tsukishima, Y.; Sone, Y.; Matsuoka, S.; Corporation, N.T.T. Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies. IEEE Commun. Mag. 2009, 47, 66–73. [Google Scholar] [CrossRef]
- Strasser, T.A.; Wagener, J.L. Wavelength-Selective Switches for ROADM Applications. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1150–1157. [Google Scholar] [CrossRef]
- Aleksic, S.; Miladinovic, I. Network virtualization: Paving the way to carrier clouds. In Proceedings of the 16th International Telecommunications Network Strategy and Planning Symposium (Networks), Funchal, Portugal, 17–19 September 2014; pp. 1–6. [Google Scholar]
- Fiorani, M.; Casoni, M.; Aleksic, S. Hybrid Optical Switching for an Energy-Efficient Internet Core. IEEE Internet Comput. 2013, 17, 14–22. [Google Scholar] [CrossRef]
- Fiorani, M.; Casoni, M.; Aleksic, S. Hybrid optical switching for energy-efficiency and QoS differentiation in core networks. IEEE/OSA J. Opt. Commun. Netw. 2013, 5, 484–497. [Google Scholar] [CrossRef]
- Wosinska, L.; Lin, R.; Cheng, Y.; Chen, J. Optical network architectures and technologies for datacenters. In Proceedings of the 2017 IEEE Photonics Society Summer Topical Meeting Series, San Juan, Puerto Rico, 10–12 July 2017; pp. 111–112. [Google Scholar]
- Chen, J.; Gong, Y.; Fiorani, M.; Aleksic, S. Optical interconnects at the top of the rack for energy-efficient data centers. IEEE Commun. Mag. 2015, 53, 140–148. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, L.; Proietti, R.; Yoo, S.J.B. Software Defined Elastic Optical Networks for Cloud Computing. IEEE Netw. 2017, 31, 4–10. [Google Scholar] [CrossRef]
- Alimi, I.A.; Tavares, A.; Pinho, C.; Abdalla, A.M.; Monteiro, P.P.; Teixeira, A.L. Enabling Optical Wired and Wireless Technologies for 5G and Beyond Networks; Intech Open: Rijeka, Croatia, 2019; pp. 1–31. [Google Scholar]
- 3GPP. Radio Access Architecture and Interfaces; Reference: TR38.801V2.0.0, R14; 3GPP: Sophia Antipolis Cedex, France, March 2017. [Google Scholar]
- Terada, J. Optical Network Technologies for 5G Mobile Network. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Wey, J.S.; Zhang, J. Passive Optical Networks for 5G Transport: Technology and Standards. J. Lightwave Technol. 2019, 37, 2830–2837. [Google Scholar] [CrossRef]
- Chvojka, P.; Zvanovec, S.; Haigh, P.A.; Ghassemlooy, Z. Channel Characteristics of Visible Light Communications within Dynamic Indoor Environment. J. Lightwave Technol. 2015, 33, 1719–1725. [Google Scholar] [CrossRef]
- Leitgeb, E. Future applications of Optical Wireless and combination scenarios with RF technology. In Proceedings of the 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017; pp. 404–406. [Google Scholar]
- Figueiredo, M.; Alves, L.N.; Ribeiro, C. Lighting the Wireless World: The Promise and Challenges of Visible Light Communication. IEEE Consum. Electron. Mag. 2017, 6, 28–37. [Google Scholar] [CrossRef]
- Yin, L.; Haas, H. Non-Orthogonal Multiple Access in LiFi Networks. Chapter in the Book Multiple Access Techniques for 5G Wireless Networks and Beyond; Vaezi, M., Ding, Z., Poor, H., Eds.; Springer: New York, NY, USA, 2018. [Google Scholar]
- Aleksic, S. Energy-Efficient Communication Networks for Improved Global Energy Productivity. In Telecommunication Systems; Springer: New York, NY, USA, 2013; Volume 54, pp. 183–199. [Google Scholar]
- Baranov, A.; Spirjakin, D.; Akbari, S.; Somov, A. Optimization of power consumption for gas sensor nodes: A survey. Sens. Actuators A Phys. 2015, 233, 279–289. [Google Scholar] [CrossRef]
- Saeed, N.; Celik, A.; Al-Naffouri, T.Y.; Alouini, M.S. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization. Sensors 2018, 18, 51. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.S. Green Optical Communications—Part I: Energy Limitations in Transport. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 245–260. [Google Scholar] [CrossRef]
- Aleksic, S. Energy Efficiency of Electronic and Optical Network Elements. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 296–308. [Google Scholar] [CrossRef]
- Tucker, R.S. Green Optical Communications—Part II: Energy Limitations in Networks. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 261–274. [Google Scholar] [CrossRef]
- Xu, M.; Diakonikolas, J.; Modiano, E.; Subramaniam, S. A Hierarchical WDM-Based Scalable Data Center Network Architecture. In Proceedings of the IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7. [Google Scholar]
- Aleksic, S.; Fiorani, M. The Future of Switching in Data Centers. In Optical Switching in Next Generation Data Centers; Testa, F., Pavesi, L., Eds.; Springer: New York, NY, USA, 2018; pp. 301–328. [Google Scholar]
- Wiatr, P.; Yuan, D.; Wosinska, L.; Chen, J. Optical Interconnect Architectures for Datacenters. In Proceedings of the 2018 IEEE Photonics Conference (IPC), Reston, VA, USA, 30 September–4 October 2018; pp. 1–2. [Google Scholar]
Quantity | Optical Sensor Principle | ||
---|---|---|---|
Optical Source | Optical Receiver | Method | |
Fluorescence | LED | PD | Frequency-domain measurement |
LD | APD | Impulse-response time-domain measurement | |
PL | PMT | Intensity measurement | |
Phosphorescence | LED | PD | Frequency-domain measurement |
LD | APD PMT | Intensity measurement | |
PL | APD PMT | Impulse-response time-domain measurement | |
Absorbance | LED LD | PD | Intensity measurement |
Reflectance | LED LD | PD | Intensity measurement |
Type of Sensor | Typically Measured Quantity | Ex. Ref. | |
---|---|---|---|
Intensity modulation | Numerical aperture | Closure or vibration | [13] |
Flexible mirror | Position, vibration, or displacements | [14] | |
Reflectance | Rotary position | [15] | |
WDM based | Linear position | [16] | |
TDM based | Linear position | [17] | |
Total internal reflection based | Pressure | [18] | |
Evanescence based | Temperature, pressure, or strain | [19] | |
Microband based | Temperature, vibration, or pressure | [20,21] | |
Grating based | Vibration or acceleration | [4,22] | |
Raman or Brillouin scattering | Distributed measurement of strain or temp. | [8,9] | |
Frequency modulation | Back body sensor | Temperature | [23] |
Absorption based | Temperature | [24] | |
Fluorescence based | Temperature, viscosity, and humidity | [25] | |
Fiber grating based | Strain | [5,26] | |
Etalon based | Pressure, temperature | [27] | |
Phase modulation (Interferometric sensors) | Mach–Zehnder interferometer | Vibration, acoustics, or strain | [28] |
Sagnac interferometer | Optic gyros, vibration, acoustics, or strain | [29,30] | |
Michelson interferometer | Vibration, acoustics, or strain | [28,31] | |
Fabry–Pérot interferometer | Strain, temperature, displacement | [7] |
Optical Network Generation | Description | ||
---|---|---|---|
Examples of Technologies | Main Characteristics | Line Data Rates | |
1st Generation | PDH, FC, Optical Ethernet | bit-wise multiplexing, p-t-p links | 1–140 Mbit/s |
2nd Generation | SDH, SONET | mainly ring topology, APS, byte-wise multiplexing, p-t-p links | 50 Mbit/s–2.5 Gbit/s |
3rd Generation | SDH, SONET over WDM | ring and mesh topologies, APS, fixed wavelength grid, byte-wise multiplexing, p-t-p links | 50 Mbit/s–40 Gbit/s |
4th Generation | OTN, DWDM, ROADM, 100G Ethernet | ring and mesh topologies, fixed wavelength grid, ODU switching | 1–100 Gbit/s |
5th Generation | HOS, EON, NFV, multi-layer SDN, 5G wireless backhaul, Optical cloud | mesh topology, adaptive modulation, flexible grid, adaptability, energy efficiency | 10 Gbit/s–1 Tbit/s |
Name | Characteristics | |||
---|---|---|---|---|
Standard | Data Rates | Comment | ||
Upstream | Downstream | |||
BPON | ITU-T G983.x | 622 Mbit/s | 155 Mbit/s | based on ATM |
GPON | ITU-T G984.x | 2.5 Gbit/s | 1.25 Gbit/s | based on ATM |
EPON | IEEE 802.3ah | 1 Gbit/s | 1 Gbit/s | based on Ethernet |
10G-EPON | IEEE 802.3av | 10 Gbit/s | 10 Gbit/s | based on Ethernet |
XG-PON | ITU-T G987.x | 10 Gbit/s | 2.5 Gbit/s | based on ATM |
NG-PON2 | ITU-T | 10 Gbit/s | 10 Gbit/s | TWDM, 4 λ |
G989.x | 10 Gbit/s | 2.5 Gbit/s | p-t-p WDM, 8 λ | |
XGS-PON | ITU-T | 10 Gbit/s | 10 Gbit/s | Symmetric GPON |
G9807.1 | ||||
NG-PON2 Amd1 | ITU-T | 10 Gbit/s | 10 Gbit/s | TWDM, 8 λ |
G989.x | p-t-p WDM, 16 λ | |||
NG-EPON | IEEE 802.3ca | 25 Gbit/s | 25 Gbit/s | future standard |
50 Gbit/s | 50 Gbit/s | |||
G.hsp.x | ITU-T SG15 | 50 Gbit/s | 50 Gbit/s | future standard |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksic, S. A Survey on Optical Technologies for IoT, Smart Industry, and Smart Infrastructures. J. Sens. Actuator Netw. 2019, 8, 47. https://doi.org/10.3390/jsan8030047
Aleksic S. A Survey on Optical Technologies for IoT, Smart Industry, and Smart Infrastructures. Journal of Sensor and Actuator Networks. 2019; 8(3):47. https://doi.org/10.3390/jsan8030047
Chicago/Turabian StyleAleksic, Slavisa. 2019. "A Survey on Optical Technologies for IoT, Smart Industry, and Smart Infrastructures" Journal of Sensor and Actuator Networks 8, no. 3: 47. https://doi.org/10.3390/jsan8030047
APA StyleAleksic, S. (2019). A Survey on Optical Technologies for IoT, Smart Industry, and Smart Infrastructures. Journal of Sensor and Actuator Networks, 8(3), 47. https://doi.org/10.3390/jsan8030047