A Binary Choice Model with Sample Selection and Covariate-Related Misclassification
Abstract
:1. Introduction
2. Model Specification
3. Monte Carlo Study
4. Application to a Lifetime Migration Model
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Maximum Likelihood Evaluator
program PP_Heckprobit_lf2 |
version 16.1 |
args todo b lnfj g1 g2 g3 H |
tempvar z1 z2 q1 q2 w1 w2 rhos delta v1 v2 k1 k2 bden qf cc d |
tempname a |
mleval `z1’=`b’, eq(1) |
mleval `z2’=`b’, eq(2) |
mleval `a’=`b’, eq(3) scalar |
quietly { |
gen double `q1′=(2*$ML_y1)-1 |
gen double `q2′=(2*$ML_y2)-1 |
gen double `w1′=`q1′*`z1’ |
gen double `w2’=`q2’*`z2’ |
gen double `rhos’=`q1’*`q2’*tanh(`a’) |
gen double `delta’=1/sqrt(1-(`rhos’^2)) |
gen double `v1’=`delta’*(`w2’-(`rhos’*`w1’)) |
gen double `v2’=`delta’*(`w1’-(`rhos’*`w2’)) |
gen double `k1’=normalden(`w1’)*normal(`v1’) |
gen double `k2’=normalden(`w2’)*normal(`v2’) |
gen double `bden’=normalden(`w2’)*normalden(`v2’)*`delta’ |
gen double `qf’=(`delta’^2)*`rhos’*(1-((`delta’^2)*((`w1’^2) +(`w2’^2)-(2*`rhos’*`w1’*`w2’)))) |
gen double `cc’=(alpha0_i*$ML_y1) + (alpha1_i*(1-$ML_y1)) |
gen double `d’=(om_i*binormal(`w1’,`w2’,`rhos’)) + (`cc’*normal(`w2’)) |
replace `lnfj’=ln(`d’) if $ML_y2==1 |
replace `lnfj’=ln(normal(`w2’)) if $ML_y2==0 |
if (`todo’==0) exit |
replace `g1’=om_i*`q1’*`k1’/`d’ if $ML_y2==1 |
replace `g1’=0 if $ML_y2==0 |
replace `g2’=`q2’*((om_i*`k2’)+(`cc’*normalden(`w2’)))/`d’ if $ML_y2==1 |
replace `g2’=`q2’*normalden(`w2’)/normal(`w2’) if $ML_y2==0 |
replace `g3’=(om_i*`q1’*`q2’*`bden’/`d’)*(1-(tanh(`a’)^2)) if $ML_y2==1 |
replace `g3’=0 if $ML_y2==0 |
if (`todo’==1) exit |
tempvar h11 h12 h13 h22 h23 h33 |
gen double `h11’=-om_i*((`w1’*`k1’/`d’)+(`rhos’*`bden’/`d’) + (om_i*((`k1’/`d’)^2))) if /// $ML_y2==1 |
replace `h11’=0 if $ML_y2==0 |
gen double `h12’=om_i*`q1’*`q2’*((`bden’/`d’)-(om_i*`k1’*`k2’/(`d’^2)) ///-(`cc’*normalden(`w2’)*`k1’/(`d’^2))) if $ML_y2==1 |
replace `h12’=0 if $ML_y2==0 |
gen double `h13’=(om_i*`q2’*`bden’*((`rhos’*`delta’*`v1’)-`w1’ ///-(om_i*`k1’/`d’))/`d’)*(1-(tanh(`a’)^2)) if $ML_y2==1 |
replace `h13’=0 if $ML_y2==0 |
gen double `h22’=-(om_i*`w2’*`k2’/`d’)-(om_i*`rhos’*`bden’/`d’) ///-(`cc’*`w2’*normalden(`w2’)/`d’)-((((om_i*`k2’)+(`cc’*normalden(`w2’)))/`d’)^2) if /// $ML_y2==1 |
replace `h22’=-normalden(`w2’)*(`w2’+(normalden(`w2’)/normal(`w2’)))/normal(`w2’) /// if $ML_y2==0 |
gen double `h23’=(om_i*`q1’*`bden’*((`rhos’*`delta’*`v2’)-`w2’-(((om_i*`k2’) ///+(`cc’*normalden (`w2’)))/`d’))/`d’)*(1-(tanh(`a’)^2)) if $ML_y2==1 |
replace `h23’=0 if $ML_y2==0 |
gen double `h33’=(((om_i*`bden’*(`qf’+((`delta’^2)*`w1’*`w2’) ///-(om_i*`bden’/`d’))/`d’)*(1-(tanh(`a’)^2)))-(2*tanh(`a’)*(om_i*`q1’*`q2’*`bden’/`d’))) ///*(1-(tanh(`a’)^2)) if $ML_y2==1 |
replace `h33’=0 if $ML_y2==0 |
tempname d11 d12 d13 d22 d23 d33 |
mlmatsum `lnfj’ `d11’=`h11’, eq(1) |
mlmatsum `lnfj’ `d12’=`h12’, eq(1,2) |
mlmatsum `lnfj’ `d13’=`h13’, eq(1,3) |
mlmatsum `lnfj’ `d22’=`h22’, eq(2) |
mlmatsum `lnfj’ `d23’=`h23’, eq(2,3) |
mlmatsum `lnfj’ `d33’=`h33’, eq(3) |
matrix `H’=(`d11’,`d12’,`d13’\`d12’’,`d22’,`d23’\`d13’’,`d23’’,`d33’) |
} |
end |
1 | |
2 | These derivatives are shown in Appendix A along with the maximum likelihood evaluator. |
3 | Except the coefficient on the intercept included in X1i, which is the LPM estimate of the coefficient on (1 − α0i − α1i) in (14) minus 0.5 multiplied by 2.5 (Amemiya 1981). |
4 | Probit and Heckprobit were implemented using the homonymous Stata commands. The other five estimators were implemented in Stata using programs written by the author and available in the supplementary material. |
5 | Convergence is accepted if the Hessian is negative definite and the scaled gradient is lower than 1−8. |
6 | If all individuals with undisclosed birth region were out-of-birth region residents, the proportion of migrants (in this sense) in the ECF would rise to 17.6%. Given that the ECF is an individual survey, its lower migration rates might be the consequence of a greater probability of survey noncontact among movers, reducing the proportion of migrants in the sample. However, results in Imbens (1992) suggest that small amounts of endogenous sampling are unlikely to substantially alter estimated parameters. In addition, to guard against possible misspecification, our inference is based on robust estimators of variance. |
7 | When a respondent is indifferent between €m1 today and €m2 in a year’s time, the RRR necessary to induce her/him to forgo €m1 immediately is 2((m2/m1)1/2 − 1). This definition assumes semiannual compounding of the annual interest rate as a natural compromise between the types of compounding that Spaniards are most familiar with. |
8 | RRR is treated as a continuous variable by predicting the conditional mean for each RRR group from a lognormal curve fitted to the distribution of RRR data. |
References
- Aller, Carlos, and Jorge González Chapela. 2013. Misclassification of the dependent variable in a debt–repayment behavior context. Journal of Empirical Finance 23: 162–72. [Google Scholar] [CrossRef]
- Amemiya, Takeshi. 1981. Qualitative response models: A survey. Journal of Economic Literature 19: 1483–536. [Google Scholar]
- Arcand, Jean-Louis, and Linguere Mbaye. 2013. Braving the Waves: The Role of Time and Risk Preferences in Illegal Migration from Senegal. IZA Discussion Paper No. 7517. Bonn: Institute for the Study of Labor. [Google Scholar]
- Arezzo, Maria Felice, and Giuseppina Guagnano. 2019. Misclassification in binary choice models with sample selection. Econometrics 7: 32. [Google Scholar] [CrossRef] [Green Version]
- Banco de España and National Securities Market Commission. 2018. Survey of Financial Competences (ECF) 2016. Available online: https://app.bde.es/pmk/en/ecf/2016 (accessed on 17 January 2020).
- Becker, Gary S., and Casey B. Mulligan. 1997. The endogenous determination of time preference. Quarterly Journal of Economics 112: 729–58. [Google Scholar] [CrossRef]
- Bollinger, Christopher R., and Martin H. David. 1997. Modeling discrete choice with response error: Food Stamp participation. Journal of the American Statistical Association 92: 827–35. [Google Scholar] [CrossRef]
- Bollinger, Christopher R., and Martin H. David. 2001. Estimation with response error and nonresponse: Food-Stamp participation in the SIPP. Journal of Business & Economic Statistics 19: 129–41. [Google Scholar]
- Bound, John, Charles Brown, and Nancy Mathiowetz. 2001. Measurement error in survey data. In Handbook of Econometrics. Edited by James J. Heckman and Edward Leamer. Amsterdam: Elsevier, vol. 5, pp. 3705–843. [Google Scholar]
- Bütikofer, Aline, and Giovanni Peri. 2021. How cognitive ability and personality traits affect geographic mobility. Journal of Labor Economics 39: 559–95. [Google Scholar] [CrossRef]
- Butler, John S. 1996. Estimating the correlation in censored probit models. Review of Economics and Statistics 78: 356–58. [Google Scholar] [CrossRef]
- Cameron, A. Colin, and Pravin K. Trivedi. 2005. Microeconometrics. Methods and Applications. Cambridge: CUP. [Google Scholar]
- Cohen, Jonathan, Keith Marzilli Ericson, David Laibson, and John Myles White. 2020. Measuring time preferences. Journal of Economic Literature 58: 299–347. [Google Scholar] [CrossRef]
- Davern, Michael, Jacob A. Klerman, Jeanettec Ziegenfuss, Victoriad Lynch, and Georgee Greenberg. 2009. A partially corrected estimate of medicaid enrollment and uninsurance: Results from an imputational model developed off linked survey and administrative data. Journal of Economic and Social Measurement 34: 219–40. [Google Scholar] [CrossRef]
- Dohmen, Thomas, Armin Falk, David Huffman, and Uwe Sunde. 2010. Are risk aversion and impatience related to cognitive ability? American Economic Review 100: 1238–60. [Google Scholar] [CrossRef] [Green Version]
- Dubin, Jeffrey A., and Douglas Rivers. 1989. Selection bias in linear regression, logit and probit models. Sociological Methods & Research 18: 360–90. [Google Scholar]
- Gibson, John, and David McKenzie. 2011. The microeconomic determinants of emigration and return migration of the best and brightest: Evidence from the Pacific. Journal of Development Economics 95: 18–29. [Google Scholar] [CrossRef] [Green Version]
- Goldbach, Carina, and Achim Schlüter. 2018. Risk aversion, time preferences, and out-migration. Experimental evidence from Ghana and Indonesia. Journal of Economic Behavior and Organization 150: 132–48. [Google Scholar] [CrossRef]
- González Chapela, Jorge. 2022. Is There a Patience Premium on Migration? Empirical Economics. Available online: https://doi.org/10.1007/s00181-021-02196-z (accessed on 10 January 2022).
- Gould, William, Jeffrey Pitblado, and William Sribney. 2010. Maximum Likelihood Estimation with Stata, 4th ed. College Station: Stata Press. [Google Scholar]
- Gourieroux, Christian, Alain Monfort, and Alain Trognon. 1984. Pseudo maximum likelihood methods: Theory. Econometrica 52: 681–700. [Google Scholar] [CrossRef]
- Greene, William H. 2003. Econometric Analysis, 4th ed. Upper Saddle River: Prentice Hall. [Google Scholar]
- Hausman, Jerry A., Jason Abrevaya, and Fiona M. Scott-Morton. 1998. Misclassification of the dependent variable in a discrete-response setting. Journal of Econometrics 87: 239–69. [Google Scholar] [CrossRef] [Green Version]
- Heckman, James. 1974. Shadow prices, market wages, and labor supply. Econometrica 42: 679–94. [Google Scholar] [CrossRef]
- Heckman, James. 1979. Sample selection bias as a specification error. Econometrica 47: 153–62. [Google Scholar] [CrossRef]
- Imbens, Guido W. 1992. An efficient method of moments estimator for discrete choice models with choice-based sampling. Econometrica 60: 1187–214. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, David, Thomas Dohmen, Armin Falk, David Huffman, Uwe Sunde, and Holger Bonin. 2010. Direct evidence on risk attitudes and migration. Review of Economics and Statistics 92: 684–89. [Google Scholar] [CrossRef] [Green Version]
- Katz, Jonathan N., and Gabriel Katz. 2010. Correcting for survey misreports using auxiliary information with an application to estimating turnout. American Journal of Political Science 54: 815–35. [Google Scholar] [CrossRef]
- Krupka, Erin L., and Melvin Stephens Jr. 2013. The stability of measured time preferences. Journal of Economic Behavior and Organization 85: 11–19. [Google Scholar] [CrossRef]
- Levine, Phillip B. 1993. CPS contemporaneous and retrospective unemployment compared. Monthly Labor Review 116: 33–39. [Google Scholar]
- Meyer, Bruce D., and Nikolas Mittag. 2017. Misclassification in binary choice models. Journal of Econometrics 200: 295–311. [Google Scholar] [CrossRef]
- Molloy, Raven, Christopher L. Smith, and Abigail Wozniak. 2011. Internal migration in the United States. Journal of Economic Perspectives 25: 173–96. [Google Scholar] [CrossRef] [Green Version]
- Nowotny, Klaus. 2014. Cross-border commuting and migration intentions: The roles of risk aversion and time preference. Contemporary Economics 8: 137–56. [Google Scholar] [CrossRef] [Green Version]
- Poterba, James M., and Lawrence H. Summers. 1995. Unemployment benefits and labor market transitions: A multinomial logit model with errors in classification. Review of Economics and Statistics 77: 207–16. [Google Scholar] [CrossRef]
- Ramalho, Esmeralda A. 2002. Regression models for choice-based samples with misclassification in the response variable. Journal of Econometrics 106: 171–201. [Google Scholar] [CrossRef] [Green Version]
- StataCorp. 2019. Stata: Release 16. Statistical Software. College Station: StataCorp LLC. [Google Scholar]
- Train, Kenneth E. 2009. Discrete Choice Methods with Simulation, 2nd ed. New York: CUP. [Google Scholar]
- Van de Ven, Wynand, and Bernard van Praag. 1981. The demand for deductibles in private health insurance. Journal of Econometrics 17: 229–52. [Google Scholar] [CrossRef]
- Vella, Francis. 1998. Estimating models with sample selection bias: A survey. Journal of Human Resources 33: 127–69. [Google Scholar] [CrossRef] [Green Version]
X11 Values | X12 Values | |
---|---|---|
0.06, 0.20 | 0.08, 0.16 | |
0.03, 0.18 | 0.04, 0.28 |
Probit | HAS-Probit | PP-Probit | Heckprobit | HAS-Heckprobit1 | HAS-Heckprobit2 | PP-Heckprobit | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
−0.146 | 0.058 | −0.034 | 0.216 | −0.081 | 0.080 | −0.092 | 0.066 | 0.036 | 0.229 | 0.011 | 0.260 | −0.004 | 0.092 | |
−0.416 | 0.018 | 0.071 | 0.055 | 0.005 | 0.024 | −0.418 | 0.017 | 0.042 | 0.053 | 0.087 | 0.070 | −0.002 | 0.024 | |
−0.273 | 0.052 | 0.053 | 0.302 | 0.005 | 0.081 | −0.275 | 0.051 | 0.035 | 0.291 | −0.146 | 0.494 | −0.002 | 0.079 | |
−0.314 | 0.084 | 0.093 | 0.210 | 0.010 | 0.123 | −0.316 | 0.083 | 0.067 | 0.212 | 0.128 | 0.257 | 0.003 | 0.122 | |
0.001 | 0.049 | 0.002 | 0.048 | −0.001 | 0.048 | 0.001 | 0.049 | |||||||
0.004 | 0.026 | 0.003 | 0.026 | 0.003 | 0.024 | 0.004 | 0.026 | |||||||
0.002 | 0.023 | 0.001 | 0.023 | 0.003 | 0.025 | 0.002 | 0.023 | |||||||
−0.328 | 0.076 | −0.023 | 0.124 | 0.152 | 0.152 | −0.008 | 0.109 | |||||||
Convergence | 493 | 491 | 493 | 493 | 409 | 186 | 493 | |||||||
Probit | HAS-Probit | PP-Probit | Heckprobit | HAS-Heckprobit1 | HAS-Heckprobit2 | PP-Heckprobit | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
−0.286 | 0.059 | −0.190 | 0.212 | −0.258 | 0.080 | −0.096 | 0.060 | 0.004 | 0.126 | −0.024 | 0.175 | 0.000 | 0.075 | |
−0.402 | 0.018 | 0.187 | 0.059 | 0.109 | 0.026 | −0.432 | 0.017 | 0.004 | 0.031 | 0.017 | 0.044 | 0.005 | 0.024 | |
−0.230 | 0.052 | 0.168 | 0.330 | 0.113 | 0.090 | −0.262 | 0.051 | 0.001 | 0.154 | −0.060 | 0.301 | 0.003 | 0.082 | |
−0.273 | 0.085 | 0.216 | 0.238 | 0.106 | 0.126 | −0.305 | 0.082 | 0.011 | 0.138 | 0.028 | 0.140 | 0.005 | 0.114 | |
−0.006 | 0.044 | 0.002 | 0.044 | 0.009 | 0.044 | 0.001 | 0.044 | |||||||
0.003 | 0.025 | 0.002 | 0.025 | 0.002 | 0.024 | 0.002 | 0.025 | |||||||
0.002 | 0.022 | 0.000 | 0.023 | 0.002 | 0.024 | 0.000 | 0.023 | |||||||
−0.345 | 0.061 | −0.007 | 0.092 | −0.000 | 0.103 | −0.005 | 0.072 | |||||||
Convergence | 485 | 483 | 485 | 485 | 476 | 169 | 485 | |||||||
Probit | HAS-Probit | PP-Probit | Heckprobit | HAS-Heckprobit1 | HAS-Heckprobit2 | PP-Heckprobit | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
−0.098 | 0.048 | 0.012 | 0.184 | −0.017 | 0.067 | −0.089 | 0.049 | 0.021 | 0.185 | −0.059 | 0.203 | −0.004 | 0.069 | |
−0.411 | 0.014 | 0.043 | 0.045 | 0.005 | 0.019 | −0.412 | 0.014 | 0.038 | 0.045 | 0.025 | 0.056 | 0.001 | 0.019 | |
−0.270 | 0.042 | 0.031 | 0.249 | 0.004 | 0.064 | −0.272 | 0.042 | 0.028 | 0.246 | −0.135 | 0.375 | −0.000 | 0.065 | |
−0.310 | 0.070 | 0.065 | 0.171 | 0.017 | 0.102 | −0.311 | 0.069 | 0.065 | 0.169 | 0.025 | 0.205 | 0.013 | 0.102 | |
0.001 | 0.091 | 0.001 | 0.091 | 0.001 | 0.088 | 0.002 | 0.091 | |||||||
0.003 | 0.045 | 0.004 | 0.045 | 0.002 | 0.044 | 0.003 | 0.045 | |||||||
0.005 | 0.038 | 0.005 | 0.038 | −0.002 | 0.039 | 0.004 | 0.038 | |||||||
−0.323 | 0.156 | 0.112 | 0.258 | 0.108 | 0.246 | 0.038 | 0.239 | |||||||
Convergence | 495 | 496 | 496 | 496 | 466 | 218 | 496 | |||||||
Probit | HAS-Probit | PP-Probit | Heckprobit | HAS-Heckprobit1 | HAS-Heckprobit2 | PP-Heckprobit | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
−0.116 | 0.048 | 0.008 | 0.185 | −0.039 | 0.068 | −0.087 | 0.048 | 0.009 | 0.163 | −0.041 | 0.162 | −0.003 | 0.066 | |
−0.402 | 0.014 | 0.079 | 0.046 | 0.033 | 0.020 | −0.413 | 0.014 | 0.020 | 0.039 | −0.005 | 0.038 | 0.005 | 0.020 | |
−0.255 | 0.043 | 0.064 | 0.255 | 0.032 | 0.066 | −0.265 | 0.043 | 0.010 | 0.207 | −0.083 | 0.352 | 0.003 | 0.066 | |
−0.297 | 0.071 | 0.103 | 0.176 | 0.044 | 0.104 | −0.306 | 0.070 | 0.030 | 0.153 | −0.014 | 0.145 | 0.012 | 0.101 | |
0.002 | 0.090 | 0.003 | 0.090 | 0.005 | 0.091 | 0.003 | 0.089 | |||||||
0.007 | 0.044 | 0.006 | 0.044 | 0.007 | 0.045 | 0.006 | 0.045 | |||||||
−0.002 | 0.040 | −0.004 | 0.040 | −0.004 | 0.039 | −0.003 | 0.040 | |||||||
−0.356 | 0.151 | −0.060 | 0.198 | −0.116 | 0.210 | −0.039 | 0.186 | |||||||
Convergence | 493 | 494 | 494 | 494 | 424 | 162 | 462 |
Probit | HAS-Probit | PP-Probit | Heckprobit | HAS-Heckprobit1 | HAS-Heckprobit2 | PP-Heckprobit | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
−0.177 | 0.057 | −0.067 | 0.251 | −0.079 | 0.081 | −0.123 | 0.066 | 0.016 | 0.262 | −0.014 | 0.244 | −0.002 | 0.094 | |
−0.513 | 0.016 | 0.266 | 0.086 | 0.005 | 0.023 | −0.514 | 0.016 | 0.210 | 0.080 | 0.098 | 0.067 | −0.001 | 0.023 | |
−0.300 | 0.052 | 0.412 | 0.792 | 0.007 | 0.083 | −0.302 | 0.052 | 0.345 | 0.640 | −0.227 | 0.558 | −0.001 | 0.081 | |
−0.321 | 0.080 | 0.595 | 0.420 | 0.005 | 0.118 | −0.323 | 0.080 | 0.518 | 0.387 | 0.187 | 0.299 | −0.001 | 0.117 | |
0.001 | 0.049 | 0.004 | 0.048 | −0.007 | 0.049 | 0.002 | 0.049 | |||||||
0.004 | 0.026 | 0.004 | 0.026 | 0.003 | 0.026 | 0.004 | 0.026 | |||||||
0.002 | 0.023 | 0.002 | 0.023 | 0.004 | 0.023 | 0.002 | 0.023 | |||||||
−0.329 | 0.075 | 0.282 | 0.169 | 0.206 | 0.186 | −0.013 | 0.106 | |||||||
Convergence | 500 | 499 | 500 | 500 | 443 | 197 | 500 | |||||||
Probit | HAS-Probit | PP-Probit | Heckprobit | HAS-Heckprobit1 | HAS-Heckprobit2 | PP-Heckprobit | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
−0.323 | 0.058 | −0.179 | 0.257 | −0.258 | 0.080 | −0.133 | 0.060 | −0.056 | 0.127 | −0.005 | 0.145 | −0.000 | 0.076 | |
−0.503 | 0.017 | 0.493 | 0.088 | 0.109 | 0.025 | −0.528 | 0.016 | −0.008 | 0.032 | 0.021 | 0.040 | 0.005 | 0.022 | |
−0.267 | 0.051 | 0.709 | 0.979 | 0.114 | 0.091 | −0.297 | 0.050 | 0.094 | 0.185 | −0.100 | 0.313 | 0.003 | 0.083 | |
−0.279 | 0.083 | 0.837 | 0.407 | 0.105 | 0.123 | −0.309 | 0.080 | 0.128 | 0.151 | 0.037 | 0.140 | 0.006 | 0.111 | |
−0.006 | 0.044 | 0.002 | 0.044 | 0.005 | 0.045 | 0.002 | 0.044 | |||||||
0.004 | 0.025 | 0.002 | 0.025 | 0.002 | 0.025 | 0.002 | 0.025 | |||||||
0.002 | 0.023 | −0.000 | 0.023 | 0.003 | 0.023 | 0.000 | 0.023 | |||||||
−0.351 | 0.060 | 0.086 | 0.079 | 0.023 | 0.092 | −0.006 | 0.071 | |||||||
Convergence | 500 | 498 | 500 | 500 | 480 | 254 | 500 | |||||||
Probit | HAS-Probit | PP-Probit | Heckprobit | HAS-Heckprobit1 | HAS-Heckprobit2 | PP-Heckprobit | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
−0.129 | 0.047 | −0.020 | 0.213 | −0.015 | 0.067 | −0.119 | 0.048 | −0.017 | 0.211 | −0.066 | 0.173 | −0.003 | 0.069 | |
−0.508 | 0.013 | 0.212 | 0.070 | 0.005 | 0.019 | −0.509 | 0.013 | 0.189 | 0.068 | 0.015 | 0.046 | 0.001 | 0.019 | |
−0.296 | 0.041 | 0.335 | 0.484 | 0.005 | 0.065 | −0.298 | 0.041 | 0.311 | 0.470 | −0.185 | 0.395 | 0.000 | 0.065 | |
−0.320 | 0.068 | 0.521 | 0.338 | 0.011 | 0.101 | −0.321 | 0.068 | 0.490 | 0.335 | 0.109 | 0.209 | 0.006 | 0.101 | |
0.001 | 0.091 | 0.001 | 0.091 | 0.003 | 0.093 | 0.001 | 0.091 | |||||||
0.003 | 0.045 | 0.003 | 0.045 | 0.006 | 0.044 | 0.003 | 0.045 | |||||||
0.005 | 0.038 | 0.005 | 0.038 | 0.009 | 0.038 | 0.005 | 0.038 | |||||||
−0.330 | 0.155 | 0.309 | 0.349 | 0.106 | 0.287 | 0.006 | 0.234 | |||||||
Convergence | 500 | 500 | 500 | 500 | 493 | 203 | 499 | |||||||
Probit | HAS-Probit | PP-Probit | Heckprobit | HAS-Heckprobit1 | HAS-Heckprobit2 | PP-Heckprobit | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
−0.148 | 0.047 | −0.018 | 0.215 | −0.037 | 0.068 | −0.118 | 0.047 | −0.063 | 0.184 | −0.019 | 0.176 | −0.001 | 0.066 | |
−0.501 | 0.013 | 0.267 | 0.072 | 0.033 | 0.019 | −0.509 | 0.013 | 0.085 | 0.055 | 0.032 | 0.044 | 0.007 | 0.019 | |
−0.282 | 0.041 | 0.388 | 0.489 | 0.032 | 0.066 | −0.292 | 0.041 | 0.203 | 0.375 | −0.104 | 0.326 | 0.004 | 0.067 | |
−0.307 | 0.068 | 0.589 | 0.339 | 0.037 | 0.101 | −0.315 | 0.068 | 0.304 | 0.265 | 0.075 | 0.171 | 0.010 | 0.098 | |
0.002 | 0.091 | 0.003 | 0.093 | 0.007 | 0.089 | 0.003 | 0.090 | |||||||
0.006 | 0.045 | 0.010 | 0.045 | 0.012 | 0.042 | 0.005 | 0.044 | |||||||
−0.002 | 0.040 | 0.002 | 0.039 | −0.003 | 0.039 | −0.002 | 0.039 | |||||||
−0.365 | 0.152 | 0.027 | 0.176 | −0.023 | 0.206 | −0.047 | 0.186 | |||||||
Convergence | 500 | 499 | 500 | 500 | 399 | 197 | 466 |
Probit | HAS-Probit | PP-Probit | Heckprobit | HAS-Heckprobit1 | HAS-Heckprobit2 | PP-Heckprobit | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
−0.041 | 0.061 | 0.155 | 0.218 | −0.075 | 0.083 | 0.016 | 0.067 | 0.244 | 0.221 | 0.146 | 0.201 | 0.003 | 0.090 | |
−0.037 | 0.014 | 0.090 | 0.032 | 0.016 | 0.018 | −0.041 | 0.014 | 0.100 | 0.031 | 0.094 | 0.029 | 0.008 | 0.018 | |
−0.184 | 0.053 | −0.081 | 0.172 | 0.009 | 0.075 | −0.187 | 0.053 | −0.075 | 0.166 | −0.137 | 0.192 | 0.002 | 0.076 | |
−0.273 | 0.087 | −0.151 | 0.125 | 0.013 | 0.123 | −0.277 | 0.087 | −0.143 | 0.125 | −0.022 | 0.149 | 0.005 | 0.122 | |
−0.002 | 0.046 | −0.003 | 0.045 | −0.004 | 0.041 | −0.002 | 0.046 | |||||||
0.003 | 0.026 | 0.003 | 0.026 | 0.001 | 0.027 | 0.003 | 0.026 | |||||||
0.001 | 0.023 | 0.001 | 0.023 | −0.002 | 0.025 | 0.001 | 0.023 | |||||||
−0.276 | 0.076 | −0.138 | 0.092 | −0.097 | 0.094 | 0.005 | 0.103 | |||||||
Convergence | 500 | 399 | 500 | 500 | 407 | 92 | 500 | |||||||
Probit | HAS-Probit | PP-Probit | Heckprobit | HAS-Heckprobit1 | HAS-Heckprobit2 | PP-Heckprobit | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
−0.155 | 0.059 | −0.135 | 0.104 | −0.254 | 0.082 | 0.049 | 0.060 | 0.172 | 0.125 | 0.127 | 0.138 | 0.004 | 0.076 | |
0.074 | 0.016 | 0.085 | 0.018 | 0.117 | 0.020 | 0.021 | 0.015 | 0.107 | 0.021 | 0.064 | 0.022 | 0.007 | 0.018 | |
−0.121 | 0.052 | −0.110 | 0.073 | 0.114 | 0.081 | −0.167 | 0.052 | −0.108 | 0.096 | −0.101 | 0.172 | 0.002 | 0.077 | |
−0.230 | 0.089 | −0.216 | 0.091 | 0.106 | 0.130 | −0.271 | 0.085 | −0.191 | 0.105 | −0.131 | 0.105 | 0.003 | 0.116 | |
0.004 | 0.048 | 0.004 | 0.049 | 0.003 | 0.050 | 0.002 | 0.049 | |||||||
0.002 | 0.024 | 0.002 | 0.024 | 0.001 | 0.021 | 0.002 | 0.024 | |||||||
−0.000 | 0.022 | 0.001 | 0.022 | 0.004 | 0.022 | 0.000 | 0.022 | |||||||
−0.265 | 0.062 | −0.201 | 0.081 | −0.141 | 0.085 | −0.000 | 0.068 | |||||||
Convergence | 500 | 350 | 500 | 500 | 477 | 75 | 499 | |||||||
Probit | HAS-Probit | PP-Probit | Heckprobit | HAS-Heckprobit1 | HAS-Heckprobit2 | PP-Heckprobit | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
0.001 | 0.051 | 0.054 | 0.137 | −0.011 | 0.070 | 0.012 | 0.052 | 0.112 | 0.175 | 0.098 | 0.149 | 0.003 | 0.071 | |
−0.054 | 0.012 | −0.019 | 0.019 | 0.008 | 0.015 | −0.057 | 0.012 | 0.009 | 0.026 | 0.043 | 0.027 | 0.003 | 0.015 | |
−0.189 | 0.041 | −0.163 | 0.100 | 0.004 | 0.059 | −0.191 | 0.041 | −0.137 | 0.140 | −0.152 | 0.135 | −0.001 | 0.059 | |
−0.282 | 0.072 | −0.252 | 0.088 | 0.003 | 0.101 | −0.284 | 0.072 | −0.215 | 0.100 | −0.108 | 0.129 | −0.002 | 0.101 | |
0.003 | 0.093 | 0.003 | 0.092 | 0.006 | 0.096 | 0.004 | 0.093 | |||||||
0.001 | 0.044 | 0.001 | 0.044 | −0.010 | 0.039 | 0.001 | 0.044 | |||||||
0.001 | 0.039 | 0.002 | 0.039 | 0.002 | 0.035 | 0.001 | 0.040 | |||||||
−0.200 | 0.173 | −0.286 | 0.181 | −0.067 | 0.198 | 0.077 | 0.230 | |||||||
Convergence | 500 | 356 | 500 | 500 | 387 | 86 | 499 | |||||||
Probit | HAS-Probit | PP-Probit | Heckprobit | HAS-Heckprobit1 | HAS-Heckprobit2 | PP-Heckprobit | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
−0.011 | 0.050 | 0.084 | 0.182 | −0.031 | 0.069 | 0.022 | 0.049 | 0.095 | 0.148 | 0.139 | 0.148 | 0.003 | 0.066 | |
−0.025 | 0.012 | 0.032 | 0.025 | 0.039 | 0.015 | −0.046 | 0.012 | 0.010 | 0.022 | 0.082 | 0.027 | 0.007 | 0.015 | |
−0.168 | 0.042 | −0.119 | 0.134 | 0.033 | 0.060 | −0.185 | 0.042 | −0.143 | 0.117 | −0.134 | 0.185 | 0.002 | 0.061 | |
−0.266 | 0.071 | −0.213 | 0.094 | 0.033 | 0.101 | −0.281 | 0.070 | −0.224 | 0.096 | −0.085 | 0.117 | 0.000 | 0.098 | |
0.003 | 0.090 | 0.006 | 0.095 | 0.008 | 0.087 | 0.003 | 0.090 | |||||||
−0.003 | 0.044 | 0.003 | 0.046 | 0.003 | 0.041 | 0.002 | 0.044 | |||||||
−0.003 | 0.040 | 0.009 | 0.040 | 0.009 | 0.040 | 0.004 | 0.040 | |||||||
−0.186 | 0.168 | −0.170 | 0.200 | −0.139 | 0.201 | −0.017 | 0.165 | |||||||
Convergence | 500 | 377 | 500 | 499 | 294 | 58 | 460 |
HAS-Probit under Misclassification Model 1 | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
0.040 | 0.043 | 0.170 | 0.051 | −0.011 | 0.037 | 0.054 | 0.037 | |
−0.025 | 0.070 | −0.041 | 0.054 | −0.032 | 0.064 | −0.042 | 0.060 | |
Convergence | 491 | 483 | 496 | 494 | ||||
HAS-Heckprobit1 under Misclassification Model 1 | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
0.047 | 0.044 | −0.058 | 0.033 | −0.011 | 0.037 | −0.075 | 0.034 | |
−0.033 | 0.070 | −0.036 | 0.041 | −0.014 | 0.063 | −0.045 | 0.057 | |
Convergence | 409 | 476 | 466 | 424 | ||||
HAS-Heckprobit2 under Misclassification Model 2 | ||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
0.025 | 0.048 | −0.007 | 0.032 | −0.111 | 0.038 | −0.042 | 0.036 | |
0.179 | 0.220 | −0.016 | 0.152 | 0.128 | 0.206 | 0.063 | 0.192 | |
1.771 | 0.176 | 0.953 | 0.156 | 1.237 | 0.162 | 0.885 | 0.135 | |
−0.285 | 0.124 | −0.154 | 0.068 | −0.206 | 0.114 | −0.172 | 0.103 | |
0.061 | 0.048 | 0.004 | 0.035 | −0.280 | 0.039 | −0.087 | 0.037 | |
0.112 | 0.136 | −0.010 | 0.100 | 0.046 | 0.111 | 0.010 | 0.106 | |
3.738 | 0.172 | 2.249 | 0.148 | 2.451 | 0.147 | 2.137 | 0.130 | |
−0.088 | 0.081 | −0.041 | 0.045 | −0.086 | 0.063 | −0.052 | 0.059 | |
Convergence | 197 | 254 | 203 | 197 |
Misclassification Model 1 | ||||||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
0.005 | 0.100 | 0.004 | 0.105 | −0.001 | 0.072 | 0.002 | 0.071 | 0.001 | 0.072 | −0.001 | 0.066 | |
0.008 | 0.022 | 0.006 | 0.023 | 0.010 | 0.023 | 0.000 | 0.019 | 0.000 | 0.019 | 0.008 | 0.019 | |
0.005 | 0.086 | 0.003 | 0.086 | 0.004 | 0.079 | 0.003 | 0.066 | 0.001 | 0.067 | 0.005 | 0.065 | |
0.012 | 0.125 | 0.006 | 0.126 | 0.013 | 0.110 | 0.007 | 0.104 | 0.005 | 0.104 | 0.015 | 0.102 | |
0.001 | 0.047 | −0.003 | 0.045 | 0.003 | 0.044 | 0.001 | 0.089 | 0.002 | 0.094 | 0.005 | 0.089 | |
0.002 | 0.024 | 0.002 | 0.023 | 0.002 | 0.026 | 0.007 | 0.045 | 0.008 | 0.044 | 0.009 | 0.044 | |
0.003 | 0.022 | 0.003 | 0.022 | 0.002 | 0.022 | 0.011 | 0.040 | 0.012 | 0.040 | 0.001 | 0.040 | |
−0.001 | 0.044 | −0.000 | 0.060 | −0.009 | 0.057 | −0.012 | 0.094 | −0.007 | 0.117 | −0.055 | 0.152 | |
Convergence | 498 | 500 | 490 | 432 | 482 | 441 | ||||||
Misclassification Model 2 | ||||||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
0.004 | 0.102 | 0.004 | 0.106 | −0.001 | 0.073 | 0.003 | 0.072 | 0.001 | 0.071 | −0.001 | 0.066 | |
0.006 | 0.022 | 0.004 | 0.023 | 0.008 | 0.022 | 0.001 | 0.019 | 0.002 | 0.019 | 0.007 | 0.019 | |
0.005 | 0.086 | 0.004 | 0.087 | 0.005 | 0.083 | 0.004 | 0.065 | 0.002 | 0.066 | 0.006 | 0.064 | |
0.012 | 0.123 | 0.003 | 0.124 | 0.010 | 0.108 | 0.005 | 0.100 | 0.005 | 0.102 | 0.014 | 0.099 | |
0.001 | 0.047 | −0.003 | 0.045 | 0.003 | 0.045 | 0.000 | 0.091 | 0.001 | 0.094 | 0.005 | 0.091 | |
0.002 | 0.024 | 0.002 | 0.023 | 0.002 | 0.026 | 0.007 | 0.045 | 0.008 | 0.044 | 0.011 | 0.043 | |
0.003 | 0.022 | 0.003 | 0.022 | 0.002 | 0.022 | 0.010 | 0.040 | 0.010 | 0.040 | 0.002 | 0.039 | |
−0.001 | 0.043 | −0.001 | 0.057 | −0.008 | 0.056 | −0.016 | 0.088 | −0.010 | 0.110 | −0.064 | 0.157 | |
Convergence | 499 | 500 | 488 | 425 | 479 | 430 | ||||||
Misclassification Model 3 | ||||||||||||
Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | Bias | SD | |
0.009 | 0.101 | 0.010 | 0.104 | 0.004 | 0.072 | 0.007 | 0.076 | 0.008 | 0.075 | 0.004 | 0.067 | |
0.006 | 0.017 | 0.008 | 0.018 | 0.006 | 0.018 | 0.005 | 0.015 | 0.005 | 0.015 | 0.006 | 0.015 | |
0.005 | 0.080 | 0.004 | 0.080 | 0.002 | 0.076 | 0.004 | 0.059 | 0.003 | 0.061 | 0.003 | 0.060 | |
0.005 | 0.127 | 0.002 | 0.127 | 0.001 | 0.111 | 0.003 | 0.102 | −0.003 | 0.101 | 0.002 | 0.097 | |
0.001 | 0.045 | −0.002 | 0.046 | 0.004 | 0.047 | 0.001 | 0.098 | 0.000 | 0.095 | 0.002 | 0.092 | |
0.003 | 0.026 | 0.004 | 0.026 | 0.003 | 0.024 | 0.007 | 0.045 | 0.005 | 0.044 | 0.005 | 0.043 | |
0.003 | 0.022 | 0.002 | 0.022 | 0.002 | 0.021 | 0.010 | 0.041 | 0.006 | 0.042 | 0.003 | 0.040 | |
−0.001 | 0.041 | −0.003 | 0.056 | −0.000 | 0.052 | −0.016 | 0.091 | −0.017 | 0.120 | −0.022 | 0.127 | |
Convergence | 500 | 500 | 489 | 439 | 477 | 429 |
Condition | Likelihood Function |
---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Explanatory Variables | Selection | Outcome | Selection | Outcome | Selection | Outcome | Selection | Outcome | Selection | Outcome | Selection | Outcome |
1(4.9% < RRR ≤ 9.8%) | −0.040 | 0.009 | −0.062 | 0.001 | ||||||||
(0.089) | (0.184) | (0.091) | (0.191) | |||||||||
1(9.8% < RRR ≤ 44.9%) | 0.057 | −0.250 * | 0.018 | −0.250 | ||||||||
(0.070) | (0.150) | (0.071) | (0.158) | |||||||||
1(44.9% < RRR) | 0.059 | −0.166 | −0.039 | −0.141 | ||||||||
(0.067) | (0.152) | (0.071) | (0.165) | |||||||||
1(9.8% < RRR) | 0.071 | −0.207 * | 0.008 | −0.194 | ||||||||
(0.053) | (0.117) | (0.055) | (0.120) | |||||||||
RRR | 0.340 | −1.334 * | 0.155 | −1.328 * | ||||||||
(0.337) | (0.720) | (0.345) | (0.744) | |||||||||
RRR2 | −0.068 | 0.273 * | −0.034 | 0.273 * | ||||||||
(0.070) | (0.148) | (0.071) | (0.153) | |||||||||
Male | 0.015 | −0.037 | 0.013 | 0.023 | 0.016 | −0.040 | 0.015 | 0.020 | 0.016 | −0.038 | 0.014 | 0.023 |
(0.050) | (0.108) | (0.053) | (0.111) | (0.050) | (0.112) | (0.053) | (0.112) | (0.050) | (0.108) | (0.053) | (0.111) | |
Lower secondary education | −0.364 *** | −0.108 | −0.364 *** | −0.114 | −0.363 *** | −0.108 | ||||||
(0.099) | (0.186) | (0.099) | (0.186) | (0.099) | (0.186) | |||||||
Upper secondary | −0.239 ** | −0.006 | −0.235 ** | −0.011 | −0.239 ** | −0.005 | ||||||
(0.108) | (0.199) | (0.108) | (0.198) | (0.108) | (0.196) | |||||||
Higher education | −0.434 *** | 0.279 | −0.424 *** | 0.264 | −0.431 *** | 0.278 | ||||||
(0.112) | (0.219) | (0.111) | (0.217) | (0.112) | (0.216) | |||||||
11–25 books at home | −0.016 | −0.149 | −0.014 | −0.147 | −0.015 | −0.146 | ||||||
(0.081) | (0.183) | (0.081) | (0.183) | (0.081) | (0.180) | |||||||
26–100 | 0.008 | 0.045 | 0.009 | 0.046 | 0.009 | 0.050 | ||||||
(0.083) | (0.179) | (0.083) | (0.183) | (0.083) | (0.174) | |||||||
101–200 | −0.165 | −0.130 | −0.164 | −0.125 | −0.166 | −0.128 | ||||||
(0.102) | (0.262) | (0.101) | (0.267) | (0.102) | (0.259) | |||||||
>200 | −0.235 ** | −0.200 | −0.236 ** | −0.202 | −0.235 ** | −0.201 | ||||||
(0.096) | (0.270) | (0.096) | (0.268) | (0.096) | (0.265) | |||||||
Numeracy skills | −0.129 ** | 0.076 | −0.127 ** | 0.081 | −0.129 ** | 0.076 | ||||||
(0.055) | (0.146) | (0.055) | (0.147) | (0.055) | (0.145) | |||||||
Reading comprehension | −0.041 | 0.047 | −0.040 | 0.045 | −0.040 | 0.047 | ||||||
(0.036) | (0.068) | (0.036) | (0.068) | (0.036) | (0.068) | |||||||
Cognitive reflection | 0.046 | −0.059 | 0.048 | −0.068 | 0.047 | −0.060 | ||||||
(0.062) | (0.133) | (0.062) | (0.131) | (0.062) | (0.132) | |||||||
Risk score | −0.032 | −0.092* | −0.031 | −0.093 * | −0.033 | −0.093 * | ||||||
(0.020) | (0.049) | (0.020) | (0.049) | (0.020) | (0.048) | |||||||
MPC (÷10) | 0.001 | −0.044 * | 0.001 | −0.043 * | 0.001 | −0.044 * | ||||||
(0.008) | (0.024) | (0.008) | (0.024) | (0.008) | (0.024) | |||||||
Age | −0.001 | −0.006 *** | −0.001 | −0.006 *** | −0.001 | −0.006 *** | ||||||
(0.001) | (0.002) | (0.001) | (0.002) | (0.001) | (0.002) | |||||||
Region population (106) | 0.213 *** | 0.215 *** | 0.213 *** | 0.215*** | 0.213 *** | 0.215 *** | ||||||
(0.019) | (0.019) | (0.019) | (0.019) | (0.019) | (0.019) | |||||||
Intercept | 1.014 *** | −0.897 *** | 1.877 *** | −0.671 | 1.002 *** | −0.886 *** | 1.850 *** | −0.638 | 0.993 *** | −0.847 *** | 1.857 *** | −0.625 |
(0.093) | (0.320) | (0.202) | (0.425) | (0.090) | (0.309) | (0.199) | (0.407) | (0.093) | (0.320) | (0.201) | (0.426) | |
Log-likelihood | −3653.97 | −3609.54 | −3654.31 | −3610.53 | −3654.28 | −3609.91 |
(1) | (2) | (3) | (4) | (5) | (6) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Explanatory Variables | Selection | Outcome | Selection | Outcome | Selection | Outcome | Selection | Outcome | Selection | Outcome | Selection | Outcome |
1(4.9% < RRR ≤ 9.8%) | −0.038 | 0.015 | −0.061 | 0.013 | ||||||||
(0.089) | (0.181) | (0.090) | (0.192) | |||||||||
1(9.8% < RRR ≤ 44.9%) | 0.053 | −0.255 * | 0.011 | −0.248 | ||||||||
(0.069) | (0.150) | (0.071) | (0.156) | |||||||||
1(44.9% < RRR) | 0.055 | −0.173 | −0.045 | −0.131 | ||||||||
(0.067) | (0.155) | (0.071) | (0.166) | |||||||||
1(9.8% < RRR) | 0.066 | −0.216 * | 0.002 | −0.192 | ||||||||
(0.053) | (0.126) | (0.055) | (0.120) | |||||||||
RRR | 0.318 | −1.371 * | 0.118 | −1.325 * | ||||||||
(0.336) | (0.738) | (0.344) | (0.744) | |||||||||
RRR2 | −0.064 | 0.281 * | −0.026 | 0.273 * | ||||||||
(0.070) | (0.152) | (0.071) | (0.153) | |||||||||
Male | 0.014 | −0.040 | 0.008 | 0.023 | 0.015 | −0.045 | 0.011 | 0.018 | 0.015 | −0.044 | 0.009 | 0.023 |
(0.050) | (0.109) | (0.053) | (0.113) | (0.050) | (0.117) | (0.053) | (0.113) | (0.050) | (0.111) | (0.053) | (0.114) | |
Lower secondary education | −0.364 *** | −0.074 | −0.364 *** | −0.081 | −0.363*** | −0.075 | ||||||
(0.098) | (0.189) | (0.098) | (0.189) | (0.098) | (0.190) | |||||||
Upper secondary | −0.237 ** | 0.010 | −0.234 ** | 0.004 | −0.236 ** | 0.009 | ||||||
(0.108) | (0.192) | (0.107) | (0.190) | (0.108) | (0.192) | |||||||
Higher education | −0.432 *** | 0.328 | −0.423 *** | 0.310 | −0.430 *** | 0.325 | ||||||
(0.111) | (0.216) | (0.111) | (0.210) | (0.111) | (0.214) | |||||||
11–25 books at home | −0.016 | −0.146 | −0.013 | −0.144 | −0.014 | −0.142 | ||||||
(0.081) | (0.174) | (0.081) | (0.173) | (0.081) | (0.173) | |||||||
26–100 | 0.015 | 0.052 | 0.016 | 0.054 | 0.015 | 0.059 | ||||||
(0.082) | (0.158) | (0.083) | (0.158) | (0.082) | (0.156) | |||||||
101–200 | −0.155 | −0.119 | −0.155 | −0.113 | −0.156 | −0.116 | ||||||
(0.101) | (0.252) | (0.101) | (0.255) | (0.101) | (0.253) | |||||||
>200 | −0.231 ** | −0.178 | −0.232 ** | −0.180 | −0.231 ** | −0.178 | ||||||
(0.096) | (0.268) | (0.096) | (0.262) | (0.096) | (0.265) | |||||||
Numeracy skills | −0.127 ** | 0.096 | −0.125 ** | 0.101 | −0.127 ** | 0.097 | ||||||
(0.055) | (0.148) | (0.055) | (0.148) | (0.055) | (0.148) | |||||||
Reading comprehension | −0.041 | 0.049 | −0.040 | 0.047 | −0.040 | 0.049 | ||||||
(0.036) | (0.070) | (0.036) | (0.070) | (0.036) | (0.070) | |||||||
Cognitive reflection | 0.047 | −0.070 | 0.049 | −0.080 | 0.048 | −0.071 | ||||||
(0.062) | (0.136) | (0.062) | (0.135) | (0.062) | (0.136) | |||||||
Risk score | −0.031 | −0.090 * | −0.030 | −0.091 * | −0.031 | −0.091 * | ||||||
(0.020) | (0.050) | (0.020) | (0.050) | (0.020) | (0.050) | |||||||
MPC (÷10) | 0.001 | −0.042 * | 0.001 | −0.042 * | 0.001 | −0.043 * | ||||||
(0.008) | (0.025) | (0.008) | (0.025) | (0.008) | (0.025) | |||||||
Age | −0.001 | −0.006 *** | −0.001 | −0.006 *** | −0.001 | −0.006 *** | ||||||
(0.001) | (0.002) | (0.001) | (0.002) | (0.001) | (0.002) | |||||||
Region population (106) | 0.208 *** | 0.210 *** | 0.208 *** | 0.210 *** | 0.208 *** | 0.210 *** | ||||||
(0.019) | (0.019) | (0.019) | (0.019) | (0.019) | (0.019) | |||||||
Intercept | 1.025 *** | −0.927 *** | 1.875 *** | −0.767 * | 1.014 *** | −0.912 *** | 1.848 *** | −0.724 * | 1.006 *** | −0.872 *** | 1.856 *** | −0.717 |
(0.094) | (0.332) | (0.202) | (0.448) | (0.090) | (0.330) | (0.198) | (0.428) | (0.093) | (0.338) | (0.201) | (0.451) | |
Log-likelihood | −1470.68 | −2189.85 | −1438.48 | −2178.17 | −1470.77 | −2190.05 | −1439.06 | −2178.58 | −1470.86 | −2189.96 | −1438.75 | −2178.27 |
Observations | 7129 | 6696 | 7129 | 6696 | 7129 | 6696 | 7129 | 6696 | 7129 | 6696 | 7129 | 6696 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Chapela, J. A Binary Choice Model with Sample Selection and Covariate-Related Misclassification. Econometrics 2022, 10, 13. https://doi.org/10.3390/econometrics10020013
González Chapela J. A Binary Choice Model with Sample Selection and Covariate-Related Misclassification. Econometrics. 2022; 10(2):13. https://doi.org/10.3390/econometrics10020013
Chicago/Turabian StyleGonzález Chapela, Jorge. 2022. "A Binary Choice Model with Sample Selection and Covariate-Related Misclassification" Econometrics 10, no. 2: 13. https://doi.org/10.3390/econometrics10020013
APA StyleGonzález Chapela, J. (2022). A Binary Choice Model with Sample Selection and Covariate-Related Misclassification. Econometrics, 10(2), 13. https://doi.org/10.3390/econometrics10020013