Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Stochastic Frontier Analysis
3.2. Bayesian Estimation
3.3. Empirical Models
3.4. Data and Variables
4. Results and Discussion
4.1. Estimates of Stochastic Production Frontier Function
4.2. Transient and Persistent Efficiency Analysis
5. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter/Variable | Prior |
---|---|
Translog coefficients and intercept shifters | ~ N(0.0, 10), i.e., normally distributed with a precision (variance) of 0.1 (10) |
Noise term | ~ N(0.0, 1/hv), i.e., normally distributed with a precision (variance) parameter of hv (1/hv) ~ G(0.001, 0.001), i.e., the precision parameter is gamma distributed with shape and rate values of 0.001 (i.e., a mean of 1 and a variance of 1000) |
Persistent and transient inefficiency terms | ~ N(0, h.u)T(0,1000), i.e., normally distributed with a precision of h.u truncated to 0 to 1000 ~ G(5, 10*log(rstar)*log(rstar)), where rstar is the expected mode of the efficiency distribution, which is usually set to 0.875 (See Griffin and Steel (2007)), giving the precision parameter a diffuse prior with a mean of 28 and a variance of about 157 |
Heterogeneity term | ~ N(0.0, 1/h.wi), i.e., normally distributed with a precision (variance) parameter of h.wi (1/h.wi) ~ G(0.5, 1/h.wi.prec), where h.wi.prec is set to a relatively high value (4), as in Tsionas and Kumbhakar (2014), with a mean of 2 and a variance of 8 |
References
- Adom, Philip Kofi, Kwaku Amakye, Kennedy Kwabena Abrokwa, and Christopher Quaidoo. 2018. Estimate of transient and persistent energy efficiency in Africa: A stochastic frontier approach. Energy Conversion and Management 166: 556–68. [Google Scholar] [CrossRef]
- Agasisti, Tommaso, and Sabine Gralka. 2019. The transient and persistent efficiency of Italian and German universities: A stochastic frontier analysis. Applied Economics 51: 5012–30. [Google Scholar] [CrossRef]
- Aigner, Dennis, C. A. Knox Lovell, and Peter Schmidt. 1977. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics 6: 21–37. [Google Scholar] [CrossRef]
- Albalate, Daniel, and Jordi Rosell. 2019. On the efficiency of toll motorway companies in Spain. Research in Transportation Economics 76: 100747. [Google Scholar] [CrossRef]
- Alberini, Anna, and Massimo Filippini. 2018. Transient and persistent energy efficiency in the US residential sector: Evidence from household-level data. Energy Efficiency 11: 589–601. [Google Scholar] [CrossRef]
- Andrews, Donald W. K. 2001. Testing When a Parameter is on the Boundary of the Maintained Hypothesis. Econometrica 69: 683–734. [Google Scholar] [CrossRef]
- Anh, Dao The, Thai Van Tinh, and Nguyen Ngoc Vang. 2020. The domestic rice value chain in the Mekong Delta. In White Gold: The Commercialisation of Rice Farming in the Lower Mekong Basin. Edited by Rob Cramb. Singapore: Springer Nature Singapore Pte Ltd., pp. 375–95. [Google Scholar]
- Assaf, A. George, Haemoon Oh, and Mike Tsionas. 2017. Bayesian Approach for the Measurement of Tourism Performance: A Case of Stochastic Frontier Models. Journal of Travel Research 56: 172–86. [Google Scholar] [CrossRef]
- Badunenko, Oleg, and Subal C. Kumbhakar. 2016. When, where and how to estimate persistent and transient efficiency in stochastic frontier panel data models. European Journal of Operational Research 255: 272–87. [Google Scholar] [CrossRef]
- Badunenko, Oleg, and Subal C. Kumbhakar. 2017. Economies of scale, technical change and persistent and time-varying cost efficiency in Indian banking: Do ownership, regulation and heterogeneity matter? European Journal of Operational Research 260: 789–803. [Google Scholar] [CrossRef]
- Battese, George E., and Greg S. Corra. 1977. Estimation of a production frontier model: With application to the pastoral zone of Eastern Australia. Australian Journal of Agricultural Economics 21: 169–79. [Google Scholar] [CrossRef]
- Battese, George E., and T. J. Coelli. 1988. Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. Journal of Econometrics 38: 387–99. [Google Scholar] [CrossRef]
- Battese, George E., and T. J. Coelli. 1992. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. Journal of Productivity Analysis 3: 153–69. [Google Scholar] [CrossRef]
- Bäckman, Stefan, K. M. Zahidul Islam, and John Sumelius. 2011. Determinants of technical efficiency of rice farms in North-Central and North-Western regions in Bangladesh. The Journal of Developing Areas 45: 73–94. [Google Scholar] [CrossRef]
- Biswas, Bangkim, Bishawjit Mallick, Apurba Roy, and Zakia Sultana. 2021. Impact of agriculture extension services on technical efficiency of rural paddy farmers in southwest Bangladesh. Environmental Challenges 5: 100261. [Google Scholar] [CrossRef]
- Bravo-Ureta, Boris E., Daniel Solís, Víctor H. Moreira López, José F. Maripani, Abdourahmane Thiam, and Teodoro Rivas. 2007. Technical efficiency in farming: A meta-regression analysis. Journal of Productivity Analysis 27: 57–72. [Google Scholar] [CrossRef]
- Butler, J. S., and Robert Moffitt. 1982. A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model. Econometrica 50: 761–64. [Google Scholar] [CrossRef]
- Cao, Tuan Minh, Sang Hyeon Lee, and Ji Yong Lee. 2023. The Impact of Natural Disasters and Pest Infestations on Technical Efficiency in Rice Production: A Study in Vietnam. Sustainability 15: 11633. [Google Scholar] [CrossRef]
- Charnes, Abraham, William W. Cooper, and Edwardo Rhodes. 1978. Measuring the efficiency of decision making units. European Journal of Operational Research 2: 429–44. [Google Scholar] [CrossRef]
- Christensen, Laurits R., Dale W. Jorgenson, and Lawrence J. Lau. 1971. Conjugate Duality and the Transcendental Logarithmic Production Functions. Econometrica 39: 225–56. [Google Scholar]
- Cobb, Charles W., and Paul H. Douglas. 1928. A Theory of Production. The American Economic Review 18: 139–65. [Google Scholar]
- Coelli, T. J., D. S. Prasada Rao, Christopher J. O’Donnell, and George E. Battese. 2005. An Introduction to Efficiency and Productivity Analysis, 2nd ed. Boston: Springer US. [Google Scholar]
- Colombi, Roberto. 2010. A skew normal stochastic frontier model for panel data. Paper presented at the 45th Scientific Meeting of the Italian Statistical Society, Padova, Italy, June 16–18. [Google Scholar]
- Colombi, Roberto, Gianmaria Martini, and Giorgio Vittadini. 2011. A Stochastic Frontier Model with Short-Run and Long-Run Inefficiency Random Effects. Bergamo: Department of Economics and Technology Management, Universita Di Bergamo, Italy. [Google Scholar]
- Colombi, Roberto, Gianmaria Martini, and Giorgio Vittadini. 2017. Determinants of transient and persistent hospital efficiency: The case of Italy. Health Economics 26: 5–22. [Google Scholar] [CrossRef] [PubMed]
- Colombi, Roberto, Subal C. Kumbhakar, Gianmaria Martini, and Giorgio Vittadini. 2014. Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency. Journal of Productivity Analysis 42: 123–36. [Google Scholar] [CrossRef]
- Cornwell, Christopher, Peter Schmidt, and Robin C. Sickles. 1990. Production frontiers with cross-sectional and time-series variation in efficiency levels. Journal of Econometrics 46: 185–200. [Google Scholar] [CrossRef]
- Debreu, Gerard. 1951. The Coefficient of Resource Utilization. Econometrica 19: 273–92. [Google Scholar] [CrossRef]
- Farrell, Michael James. 1957. The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General) 120: 253–90. [Google Scholar] [CrossRef]
- Filippini, Massimo, and Lester C. Hunt. 2015. Measurement of energy efficiency based on economic foundations. Energy Economics 52: S5–S16. [Google Scholar] [CrossRef]
- Filippini, Massimo, and William Greene. 2016. Persistent and transient productive inefficiency: A maximum simulated likelihood approach. Journal of Productivity Analysis 45: 187–96. [Google Scholar] [CrossRef]
- Filippini, Massimo, Thomas Geissmann, and William H. Greene. 2018a. Persistent and transient cost efficiency—An application to the Swiss hydropower sector. Journal of Productivity Analysis 49: 65–77. [Google Scholar] [CrossRef]
- Filippini, Massimo, W. Greene, and G. Masiero. 2018b. Persistent and transient productive inefficiency in a regulated industry: Electricity distribution. Energy Economics 69: 325–34. [Google Scholar] [CrossRef]
- Fungáčová, Zuzana, Paul-Olivier Klein, and Laurent Weill. 2020. Persistent and transient inefficiency: Explaining the low efficiency of Chinese big banks. China Economic Review 59: 101368. [Google Scholar] [CrossRef]
- Gralka, Sabine. 2018. Persistent inefficiency in the higher education sector: Evidence from Germany. Education Economics 26: 373–92. [Google Scholar] [CrossRef]
- Greene, Willam. 2005a. Reconsidering heterogeneity in panel data estimators of the stochastic frontier model. Journal of Econometrics 126: 269–303. [Google Scholar] [CrossRef]
- Greene, Willam. 2005b. Fixed and Random Effects in Stochastic Frontier Models. Journal of Productivity Analysis 23: 7–32. [Google Scholar] [CrossRef]
- Griffin, Jim E., and Mark F. J. Steel. 2007. Bayesian stochastic frontier analysis using WinBUGS. Journal of Productivity Analysis 27: 163–76. [Google Scholar] [CrossRef]
- GSO. 2023a. Area, Population and Population Density by Province. In 2011–2022. Hanoi: General Statistics Office of Vietnam. Available online: https://www.gso.gov.vn/en/population (accessed on 25 March 2024).
- GSO. 2023b. Statistical Data: Agriculture, Forestry and Fishing. In 1990–2022; Hanoi: General Statistics Office of Vietnam. Available online: https://www.gso.gov.vn (accessed on 28 March 2024).
- GSO. 2023c. Statistical Data: Trade and Services. In 1995–2022; Hanoi: General Statistics Office of Vietnam. Available online: https://www.gso.gov.vn (accessed on 28 March 2024).
- Gutierrez, Roberto G., Shana Carter, and David M. Drukker. 2001. On boundary-value likelihood-ratio tests. Stata Technical Bulletin 10. [Google Scholar]
- Hailu, Atakelty. 2013. APEAR: A Package for Productivity and Efficiency Analsyis in R. Available online: http://ahailu.are.uwa.edu.au (accessed on 20 March 2023).
- Heshmati, Almas, Subal C. Kumbhakar, and Jungsuk Kim. 2018. Persistent and transient efficiency of international airlines. European Journal of Transport and Infrastructure Research 18: 213–38. [Google Scholar] [CrossRef]
- Hien, Nguen Thi Minh, Tsunemasa Kawaguchi, and Nobuhiro Suzuki. 2003. A study on technical efficiency of rice production in the Mekong Delta-Vietnam by stochastic frontier analysis. Faculty of Agriculture, Kyushu University 48: 325–57. [Google Scholar] [CrossRef] [PubMed]
- Ho, Thanh Tam, and Koji Shimada. 2019. The effects of climate smart agriculture and climate change adaptation on the technical efficiency of rice farming—An empirical study in the Mekong Delta of Vietnam. Agriculture 9: 99. [Google Scholar] [CrossRef]
- Huang, Ho-Chuan. 2004. Estimation of Technical Inefficiencies with Heterogeneous Technologies. Journal of Productivity Analysis 21: 277–96. [Google Scholar] [CrossRef]
- Huy, Huynh Truong. 2009. Technical efficiency of rice-producing households in the Mekong Delta of Vietnam. Asian Journal of Agriculture and Development 6: 35–50. [Google Scholar] [CrossRef]
- Jondrow, James, CA Knox Lovell, Ivan S. Materov, and Peter Schmidt. 1982. On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics 19: 233–38. [Google Scholar] [CrossRef]
- Khai, Huynh Viet, and Mitsuyasu Yabe. 2011. Technical efficiency analysis of rice production in Vietnam. Journal of ISSAAS 17: 135–46. [Google Scholar]
- Koop, Gary. 1994. Recent progress in applied Bayesian econometrics. Journal of Economic Surveys 8: 1–34. [Google Scholar] [CrossRef]
- Koop, Gary, Jacek Osiewalski, and Mark F. J. Steel. 1997. Bayesian efficiency analysis through individual effects: Hospital cost frontiers. Journal of Econometrics 76: 77–105. [Google Scholar] [CrossRef]
- Koop, Gary, Mark Steel, and Jacek Osiewalski. 1995. Posterior Analysis of Stochastic Frontier Models Using Gibbs Sampling. Computational Statistics 10: 353–73. [Google Scholar]
- Koopmans, T. C. 1951. An analysis of production as an efficient combination of activities. In Activity Analysis of Production and Allocation. Edited by T. C. Koop. New York: Wiley. [Google Scholar]
- Kumbhakar, Subal C. 1987. The specification of technical and allocative inefficiency in stochastic production and profit frontiers. Journal of Econometrics 34: 335–48. [Google Scholar] [CrossRef]
- Kumbhakar, Subal C. 1990. Production frontiers, panel data, and time-varying technical inefficiency. Journal of Econometrics 46: 201–11. [Google Scholar] [CrossRef]
- Kumbhakar, Subal C., and Almas Heshmati. 1995. Efficiency measurement in Swedish dairy farms: An application of rotating panel data, 1976-88. American Journal of Agricultural Economics 77: 660–74. [Google Scholar] [CrossRef]
- Kumbhakar, Subal C., and C. A. Knox Lovell. 2003. Stochastic Frontier Analysis. Cambridge: Cambridge University Press. [Google Scholar]
- Kumbhakar, Subal C., and Efthymios G. Tsionas. 2005. Measuring technical and allocative inefficiency in the translog cost system: A Bayesian approach. Journal of Econometrics 126: 355–84. [Google Scholar] [CrossRef]
- Kumbhakar, Subal C., and Hung-Jen Wang. 2005. Estimation of growth convergence using a stochastic production frontier approach. Economics Letters 88: 300–305. [Google Scholar] [CrossRef]
- Kumbhakar, Subal C., and Lennart Hjalmarsson. 1993. Technical efficiency and technical progress in Swedish dairy farms. In The Measurement of Productive Efficiency: Techniques and Applications. Edited by O. Fried Harold, C. A. Knox Lovell and Shelton S. Schmidt. New York: Oxford University Press, pp. 256–70. [Google Scholar]
- Kumbhakar, Subal C., and Lennart Hjalmarsson. 1995. Labour-use efficiency in Swedish social insurance offices. Journal of Applied Econometrics 10: 33–47. [Google Scholar] [CrossRef]
- Kumbhakar, Subal C., Gudbrand Lien, and J. Brian Hardaker. 2014. Technical efficiency in competing panel data models: A study of Norwegian grain farming. Journal of Productivity Analysis 41: 321–37. [Google Scholar] [CrossRef]
- Lai, Hung-pin, and Subal C. Kumbhakar. 2018. Panel data stochastic frontier model with determinants of persistent and transient inefficiency. European Journal of Operational Research 271: 746–55. [Google Scholar] [CrossRef]
- Lee, Young Hoon, and Peter Schmidt. 1993. A production frontier model with flexible temporal variation in technical efficiency. In The Measurement of Productive Efficiency: Techniques and Applications. Edited by O. Fried Harold, C.A. Knox Lovell and Shelton S. Schmidt. New York: Oxford University Press. [Google Scholar]
- Lien, Gudbrand, Subal C. Kumbhakar, and Habtamu Alem. 2018. Endogeneity, heterogeneity, and determinants of inefficiency in Norwegian crop-producing farms. International Journal of Production Economics 201: 53–61. [Google Scholar] [CrossRef]
- Linh, Truong Tuan, Teruaki Nanseki, and Yosuke Chomei. 2015. Productive efficiency of crop farms in Viet Nam: A DEA with a smooth bootstrap application. Journal of Agricultural Science 7: 37. [Google Scholar] [CrossRef]
- Linh, Vu Hoang. 2012. Efficiency of rice farming households in Vietnam. International Journal of Development Issues 11: 60–73. [Google Scholar] [CrossRef]
- Meeusen, Wim, and Julien van den Broeck. 1977. Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. International Economic Review 18: 435–44. [Google Scholar] [CrossRef]
- Nguyen, Thanh-Tung, Trung Thanh Nguyen, and Ulrike Grote. 2023. Credit, shocks and production efficiency of rice farmers in Vietnam. Economic Analysis and Policy 77: 780–91. [Google Scholar] [CrossRef]
- Nguyen, Thi Thu Ha, C.A.J.M. De Bie, Amjad Ali, E.M.A. Smaling, and Thai Hoanh Chu. 2012. Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis. International Journal of Remote Sensing 33: 415–34. [Google Scholar] [CrossRef]
- Nielsen, Chantal Pohl. 2003. Vietnam’s rice policy: Recent reforms and future opportunities. Asian Economic Journal 17: 1–26. [Google Scholar] [CrossRef]
- Njuki, Eric, and Boris E. Bravo-Ureta. 2015. The Economic Costs of Environmental Regulation in U.S. Dairy Farming: A Directional Distance Function Approach. American Journal of Agricultural Economics 97: 1087–106. [Google Scholar] [CrossRef]
- Pisulewski, Andrzej, and Jerzy Marzec. 2019. Heterogeneity, transient and persistent technical efficiency of Polish crop farms. Spanish Journal of Agricultural Research 17: 1–14. [Google Scholar] [CrossRef]
- Pitt, Mark M., and Lung-Fei Lee. 1981. The measurement and sources of technical inefficiency in the Indonesian weaving industry. Journal of Development Economics 9: 43–64. [Google Scholar] [CrossRef]
- Rahman, Sanzidur. 2003. Profit efficiency among Bangladeshi rice farmers. Food Policy 28: 487–503. [Google Scholar] [CrossRef]
- Salas-Velasco, Manuel. 2020. Assessing the performance of Spanish secondary education institutions: Distinguishing between transient and persistent inefficiency, separated from heterogeneity. The Manchester School 88: 531–55. [Google Scholar] [CrossRef]
- Schmidt, Peter, and Robin C. Sickles. 1984. Production frontiers and panel data. Journal of Business & Economic Statistics 2: 367–74. [Google Scholar] [CrossRef]
- Shephard, Ronald W. 1953. Cost and Production Functions. Princeton: Princeton University Press. [Google Scholar]
- Thang, Tran Cong, and Vu Huy Phuc. 2016. Vietnam’s Rice Policy Review. Available online: http://ap.fftc.agnet.org/ap_db.php?id=704 (accessed on 1 January 2019).
- Thiam, Abdourahmane, Boris E. Bravo-Ureta, and Teodoro E Rivas. 2001. Technical efficiency in developing country agriculture: A meta-analysis. Agricultural Economics 25: 235–43. [Google Scholar] [CrossRef]
- Titus, Marvin A., Adriana Vamosiu, and Kevin R. McClure. 2017. Are Public Master’s Institutions Cost Efficient? A Stochastic Frontier and Spatial Analysis. Research in Higher Education 58: 469–96. [Google Scholar] [CrossRef]
- Tsionas, Efthymios G. 2002. Stochastic frontier models with random coefficients. Journal of Applied Econometrics 17: 127–47. [Google Scholar] [CrossRef]
- Tsionas, Efthymios G., and Subal C. Kumbhakar. 2014. Firm heterogeneity, persistent and transient technical inefficiency: A generalized true random-effects model. Journal of Applied Econometrics 29: 110–32. [Google Scholar] [CrossRef]
- Tung, Diep Thanh. 2013. Changes in the technical and scale efficiency of rice production activities in the Mekong Delta, Vietnam. Agricultural and Food Economics 1: 1–11. [Google Scholar] [CrossRef]
- van den Broeck, Julien, Gary Koop, Jacek Osiewalski, and Mark FJ Steel. 1994. Stochastic frontier models: A Bayesian perspective. Journal of Econometrics 61: 273–303. [Google Scholar] [CrossRef]
- Van Long, Hoang, and Mitsuyasu Yabe. 2011. The Impact of Environmental Factors on the Productivity and Efficiency of Rice Production: A Study in Vietnam’s Red River Delta. European Journal of Social Sciences 26: 218–30. [Google Scholar]
- Villano, R., and E. Fleming. 2006. Technical inefficiency and production risk in rice farming: Evidence from Central Luzon Philippines. Asian Economic Journal 20: 29–46. [Google Scholar] [CrossRef]
- Wang, Hung-Jen, and Chia-Wen Ho. 2010. Estimating fixed-effect panel stochastic frontier models by model transformation. Journal of Econometrics 157: 286–96. [Google Scholar] [CrossRef]
Disturbance | Pooled | RE | TRE | GTRE |
---|---|---|---|---|
No | No | Yes | Yes | |
No | Yes | No | Yes | |
Transient inefficiency | Yes | No | Yes | Yes |
Yes | Yes | Yes | Yes | |
Definitions | Variables | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
Outputs and inputs | |||||
Revenue from paddy (USD) | 3440.56 | 3426.92 | 114.54 | 31,982.38 | |
Land (the planted rice area, Ha) | 2.37 | 2.11 | 0.13 | 16.90 | |
Seed (expenditure on seed, USD) | 197.44 | 200.98 | 5.29 | 2233.48 | |
Fertilizer (expenditure on all used fertilizers, USD) | 442.33 | 433.51 | 12.33 | 3303.97 | |
Labor (expenditure on hired and family labor, USD) | 247.37 | 174.07 | 21.15 | 1651.98 | |
Chemical (expenditure on pesticides and herbicides, USD) | 568.91 | 550.07 | 19.12 | 4507.71 | |
Capital (expenditure on land preparation, seeding, irrigation, and harvesting, USD) | 511.86 | 489.85 | 21.81 | 4460.13 | |
Winter–Spring (S1) | Baseline | 0.36 | 0.48 | 0 | 1 |
Summer–Autumn (S2) | D_S2 | 0.36 | 0.48 | 0 | 1 |
Autumn–Winter (S3) | D_S3 | 0.27 | 0.45 | 0 | 1 |
Conventional rice varieties | Baseline | 0.57 | 0.49 | 0 | 1 |
High-quality rice varieties | D_HQRV | 0.43 | 0.49 | 0 | 1 |
Variable | Pooled | RE | TRE | MGTRE | BGTRE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coef. † | S.E. | Coef. † | S.E. | Coef. † | S.E. | Coef. † | S.E. | Coef. ‡ | S.D. | [95% C.I.] | |||||||
0.427 | *** | 0.019 | 0.332 | *** | 0.024 | 0.413 | *** | 0.019 | 0.523 | *** | 0.019 | 0.519 | s | 0.027 | 0.468 | 0.573 | |
0.975 | *** | 0.075 | 0.991 | *** | 0.096 | 0.905 | *** | 0.088 | 0.919 | *** | 0.068 | 0.479 | s | 0.060 | 0.353 | 0.596 | |
–0.068 | * | 0.038 | –0.112 | ** | 0.045 | –0.064 | 0.041 | –0.071 | ** | 0.033 | 0.057 | s | 0.018 | 0.027 | 0.093 | ||
0.073 | ** | 0.033 | 0.096 | ** | 0.044 | 0.086 | ** | 0.038 | 0.098 | *** | 0.031 | 0.145 | s | 0.038 | 0.077 | 0.228 | |
–0.075 | *** | 0.024 | –0.068 | ** | 0.031 | –0.082 | *** | 0.028 | –0.070 | *** | 0.023 | 0.060 | s | 0.021 | 0.022 | 0.100 | |
0.007 | 0.042 | 0.045 | 0.053 | 0.015 | 0.047 | 0.020 | 0.038 | 0.076 | s | 0.023 | 0.029 | 0.120 | |||||
0.095 | ** | 0.047 | 0.053 | 0.060 | 0.154 | *** | 0.053 | 0.115 | *** | 0.044 | 0.240 | s | 0.044 | 0.151 | 0.327 | ||
–1.019 | * | 0.575 | –0.628 | 0.662 | –0.738 | 0.619 | –0.920 | * | 0.538 | 0.060 | 0.175 | –0.313 | 0.306 | ||||
0.642 | *** | 0.208 | 0.524 | ** | 0.246 | 0.459 | ** | 0.227 | 0.571 | *** | 0.186 | 0.005 | 0.032 | –0.062 | 0.062 | ||
0.224 | 0.211 | 0.176 | 0.243 | 0.165 | 0.232 | 0.207 | 0.199 | 0.030 | 0.073 | –0.127 | 0.150 | ||||||
0.385 | ** | 0.165 | 0.247 | 0.208 | 0.385 | ** | 0.184 | 0.349 | ** | 0.154 | –0.005 | 0.047 | –0.097 | 0.089 | |||
–0.139 | 0.159 | –0.142 | 0.192 | –0.184 | 0.164 | –0.135 | 0.162 | 0.010 | 0.047 | –0.060 | 0.097 | ||||||
0.224 | 0.273 | 0.146 | 0.337 | 0.204 | 0.287 | 0.201 | 0.285 | –0.039 | 0.108 | –0.261 | 0.148 | ||||||
–0.156 | 0.102 | –0.177 | 0.129 | –0.094 | 0.110 | –0.134 | 0.093 | 0.001 | 0.023 | –0.042 | 0.046 | ||||||
–0.096 | 0.075 | –0.139 | 0.090 | –0.108 | 0.080 | –0.093 | 0.069 | –0.002 | 0.020 | –0.042 | 0.037 | ||||||
–0.022 | 0.074 | 0.014 | 0.086 | 0.018 | 0.078 | –0.012 | 0.065 | 0.002 | 0.017 | –0.031 | 0.035 | ||||||
0.081 | 0.080 | 0.080 | 0.091 | 0.061 | 0.082 | 0.067 | 0.077 | –0.015 | 0.019 | –0.051 | 0.018 | ||||||
–0.492 | *** | 0.115 | –0.361 | ** | 0.142 | –0.362 | *** | 0.125 | –0.436 | *** | 0.115 | 0.010 | 0.022 | –0.037 | 0.051 | ||
–0.092 | 0.107 | 0.027 | 0.121 | –0.051 | 0.114 | –0.069 | 0.103 | 0.014 | 0.050 | –0.099 | 0.109 | ||||||
0.114 | 0.093 | 0.214 | * | 0.116 | 0.106 | 0.102 | 0.107 | 0.089 | 0.004 | 0.023 | –0.038 | 0.051 | |||||
0.103 | 0.064 | 0.095 | 0.074 | 0.105 | 0.066 | 0.093 | 0.065 | –0.008 | 0.025 | –0.050 | 0.037 | ||||||
–0.160 | 0.135 | –0.234 | 0.155 | –0.122 | 0.151 | –0.142 | 0.130 | –0.022 | 0.067 | –0.110 | 0.108 | ||||||
–0.162 | * | 0.089 | –0.101 | 0.112 | –0.164 | 0.103 | –0.141 | 0.090 | 0.001 | 0.024 | –0.049 | 0.048 | |||||
–0.141 | ** | 0.063 | –0.152 | * | 0.079 | –0.145 | ** | 0.068 | –0.131 | * | 0.071 | –0.010 | 0.018 | –0.047 | 0.021 | ||
–0.229 | ** | 0.109 | –0.267 | * | 0.139 | –0.251 | ** | 0.122 | –0.214 | ** | 0.107 | 0.007 | 0.031 | –0.062 | 0.063 | ||
0.012 | 0.053 | 0.056 | 0.065 | 0.017 | 0.058 | 0.027 | 0.054 | 0.017 | 0.016 | –0.014 | 0.048 | ||||||
–0.052 | 0.115 | –0.098 | 0.140 | 0.016 | 0.120 | –0.046 | 0.117 | –0.005 | 0.035 | –0.069 | 0.058 | ||||||
0.527 | ** | 0.222 | 0.626 | ** | 0.260 | 0.341 | 0.230 | 0.473 | * | 0.243 | 0.010 | 0.128 | –0.191 | 0.231 | |||
–0.035 | * | 0.018 | –0.082 | *** | 0.020 | –0.024 | 0.019 | –0.038 | ** | 0.015 | –0.027 | 0.022 | –0.072 | 0.016 | |||
–0.284 | *** | 0.017 | –0.318 | *** | 0.017 | –0.277 | *** | 0.015 | –0.287 | *** | 0.018 | –0.292 | s | 0.015 | –0.322 | –0.264 | |
–0.297 | *** | 0.020 | –0.364 | *** | 0.020 | –0.294 | *** | 0.018 | –0.305 | *** | 0.020 | –0.309 | s | 0.017 | –0.341 | –0.276 | |
Model properties | |||||||||||||||||
3.396 | *** | 0.021 | 0.895 | *** | 0.017 | 6.614 | *** | 0.024 | 3.561 | *** | 0.424 | 12.184 | s | 3.914 | 4.986 | 18.799 | |
0.362 | *** | 0.014 | – | 0.353 | *** | 0.013 | 0.328 | – | – | 0.342 | s | 0.011 | 0.320 | 0.364 | |||
0.107 | *** | 0.009 | 0.216 | *** | 0.006 | 0.053 | *** | 0.015 | 0.092 | – | – | 0.033 | s | 0.011 | 0.017 | 0.058 | |
– | – | –0.106 | *** | 0.011 | 0.044 | *** | 0.006 | 0.237 | s | 0.011 | 0.216 | 0.257 | |||||
– | 0.193 | *** | 0.019 | – | 0.455 | ** | 0.222 | 0.125 | s | 0.014 | 0.099 | 0.152 | |||||
N | 945 | 945 | 945 | 945 | 945 |
Inputs | Pooled | RE | TRE | MGTRE | BGTRE | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | |
Land | 0.85 | 0.30 | 0.87 | 0.29 | 0.82 | 0.24 | 0.82 | 0.27 | 0.46 | 0.06 |
Seed | –0.03 | 0.12 | –0.06 | 0.12 | –0.03 | 0.09 | –0.04 | 0.10 | 0.06 | 0.01 |
Fertilizer | 0.07 | 0.08 | 0.09 | 0.11 | 0.08 | 0.08 | 0.09 | 0.08 | 0.14 | 0.01 |
Labor | –0.06 | 0.09 | –0.06 | 0.09 | –0.07 | 0.09 | –0.06 | 0.08 | 0.06 | 0.00 |
Chemicals | 0.02 | 0.09 | 0.06 | 0.10 | 0.02 | 0.08 | 0.03 | 0.08 | 0.08 | 0.01 |
Capital | 0.17 | 0.27 | 0.12 | 0.25 | 0.21 | 0.20 | 0.18 | 0.24 | 0.25 | 0.03 |
RTS | 1.02 | 0.07 | 1.02 | 0.08 | 1.02 | 0.07 | 1.02 | 0.06 | 1.05 | 0.02 |
Model | Mean | S.D. | Min | Max |
---|---|---|---|---|
Pooled | 0.77 | 0.14 | 0.25 | 0.97 |
RE | 0.86 | 0.07 | 0.59 | 0.96 |
TRE | 0.77 | 0.14 | 0.25 | 0.98 |
MGTRE_T | 0.84 | 0.11 | 0.28 | 0.97 |
MGTRE_P | 0.91 | 0.04 | 0.68 | 0.97 |
MGTRE_O | 0.76 | 0.11 | 0.27 | 0.94 |
BGTRE_T | 0.78 | 0.13 | 0.28 | 0.95 |
BGTRE_P | 0.91 | 0.01 | 0.86 | 0.94 |
BGTRE_O | 0.71 | 0.12 | 0.25 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, P.T.; Burton, M.; Hailu, A.; Ma, C. Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach. Econometrics 2024, 12, 23. https://doi.org/10.3390/econometrics12030023
Ho PT, Burton M, Hailu A, Ma C. Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach. Econometrics. 2024; 12(3):23. https://doi.org/10.3390/econometrics12030023
Chicago/Turabian StyleHo, Phuc Trong, Michael Burton, Atakelty Hailu, and Chunbo Ma. 2024. "Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach" Econometrics 12, no. 3: 23. https://doi.org/10.3390/econometrics12030023
APA StyleHo, P. T., Burton, M., Hailu, A., & Ma, C. (2024). Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach. Econometrics, 12(3), 23. https://doi.org/10.3390/econometrics12030023