Generalized Recentered Influence Function Regressions
Abstract
:1. Introduction
2. RIF Regression
2.1. RIF Regression Framework for Pure Location-Shifts
2.2. General Unconditional Effects
- Location shift This is the case developed above taken from Firpo et al. (2009) analysis that consider a location shift change in one covariate of the form
- Location–scale shift
- Asymmetric shift
- Location shiftThis is indeed the estimand of Firpo et al. (2009) and the most popular amongst RIF regression empirical applications.
- Location–scale shiftAs in Martínez-Iriarte et al. (2024) we can define the location shift effect as
- Asymmetric shift
2.3. Empirical Examples to Motivate the Estimands
3. Generalized RIF Estimator
4. Monte Carlo Experiments
- Pure location shift: and .
- Pure scale shift: and .
- Location–Scale shift: and .
- Asymmetric shift: and . Here we set such that no values in the simulations will exceed this.
5. Empirical Application
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Functionals and Their RIF
Appendix A.1. Gini Index
Sample Estimator
Appendix A.2. Theil Index
Sample Estimator
Appendix A.3. Atkinson Index
Sample Estimator
1 | For an introduction to influence functions, see van der Vaart (1998). |
2 | Martinez-Iriarte (2024) develops a sensitivity analysis procedure that accounts for both marginal and non-marginal (global) effects on unconditional quantiles, specifically when covariates are discrete. |
3 | Various methods exist for estimating unconditional quantile effects (UQEs). Indeed, Firpo et al. (2009) rigorously derive three distinct estimation methods. |
References
- Alejo, J., Galvao, A. F., Martinez-Iriarte, J., & Montes-Rojas, G. (2024). Unconditional quantile partial effects via conditional quantile regression. Journal of Econometrics, 105678. [Google Scholar] [CrossRef]
- Battiston, D., Garcia-Domench, C., & Gasparini, L. (2014). Could an increase in education raise income inequality? Evidence for Latin America. Latin American Journal of Economics, 51(1), 1–39. [Google Scholar] [CrossRef]
- Bourguignon, F., Lustig, N., & Ferreira, F. (2024). The microeconomics of income distribution dynamics. Oxford University Press. [Google Scholar]
- Chernozhukov, V., Fernández-Val, I., & Melly, B. (2013). Inference on counterfactual distributions. Econometrica, 81(6), 2205–2268. [Google Scholar] [CrossRef]
- Essama-Nssah, B., & Lambert, P. (2012). Influence functions for policy impact analysis. In J. Bishop, & R. Salas (Eds.), Inequality, mobility and segregation: Essays in honor of jacques silber research on economic inequality (Vol. 20, pp. 135–159). Emerald Group Publishing. [Google Scholar]
- Firpo, S., Fortin, N., & Lemieux, T. (2009). Unconditional quantile regression. Econometrica, 77(3), 953–973. [Google Scholar]
- Firpo, S., Fortin, N., & Lemieux, T. (2018). Decomposing wage distributions using recentered influence function regressions. Econometrics, 6(2), 28. [Google Scholar] [CrossRef]
- Firpo, S., & Pinto, C. (2016). Identification and estimation of distributional impacts of interventions using changes in inequality measures. Journal of Applied Econometrics, 31(3), 457–486. [Google Scholar] [CrossRef]
- Fortin, N., Lemieux, T., & Firpo, S. (2011). Decomposition methods in economics. In O. Ashenfelter, & D. Card (Eds.), Handbook of labor economics (Vol. 4, pp. 1–12). Elsevier. [Google Scholar]
- Inoue, A., Li, T., & Xu, Q. (2021). Two sample unconditional quantile effect. arXiv, arXiv:2105.09445. [Google Scholar]
- Lambert, P. (2001). The distribution and redistribution of income. Manchester University Press. [Google Scholar]
- Lemieux, T. (2006). Increasing residual wage inequality: Composition effects, noisy data, or rising demand for skill? American Economic Review, 96(3), 461–498. [Google Scholar] [CrossRef]
- Martinez-Iriarte, J. (2024). Sensitivity analysis in unconditional quantile effects. arXiv, arXiv:2105.09445. [Google Scholar]
- Martínez-Iriarte, J., Montes-Rojas, G., & Sun, Y. (2024). Unconditional effects of general policy interventions. Journal of Econometrics, 238(2), 105570. [Google Scholar] [CrossRef]
- Newey, W. K., & McFadden, D. (1994). Large sample estimation and hypothesis testing. In R. F. Engle, & D. L. McFadden (Eds.), Handbook of econometrics (Vol. 4, pp. 2111–2245). Elsevier. [Google Scholar]
- Oaxaca, R. L. (1973). Male-female wage differentials in urban labor markets. International Economic Review, 14(3), 693–709. [Google Scholar] [CrossRef]
- Oaxaca, R. L., & Ransom, M. R. (1994). On discrimination and the decomposition of the wage differentials. Journal of Econometrics, 61, 5–21. [Google Scholar] [CrossRef]
- Pagan, A., & Ullah, A. (1999). Nonparametric econometrics. Cambridge University Press. [Google Scholar]
- Sasaki, Y., Ura, T., & Zhang, Y. (2022). Unconditional quantile regression with high-dimensional data. Quantitative Economics, 13(3), 955–978. [Google Scholar] [CrossRef]
- van der Vaart, A. (1998). Asymptotic statistics. Cambridge University Press. [Google Scholar]
- Vickers, C., & Ziebarth, N. L. (2022). The effects of the national war labor board on labor income inequality. Forthcoming American Economic Review. Available online: https://www.aeaweb.org/conference/2022/preliminary/paper/9B7GT7BY (accessed on 1 April 2025).
Effect | n | ||||||
---|---|---|---|---|---|---|---|
Bias | Var | MSE | Bias | Var | MSE | ||
50 | −0.0044 | 0.7563 | 0.7564 | −0.1031 | 2.9639 | 2.9745 | |
100 | 0.0081 | 0.3482 | 0.3483 | −0.0416 | 1.3842 | 1.3860 | |
Location | 500 | −0.0086 | 0.0547 | 0.0548 | −0.0260 | 0.2176 | 0.2183 |
1000 | −0.0066 | 0.0299 | 0.0299 | −0.0184 | 0.1153 | 0.1157 | |
5000 | −0.0005 | 0.0062 | 0.0062 | 0.0020 | 0.0252 | 0.0252 | |
50 | −0.1141 | 2.2196 | 2.2326 | 0.0156 | 6.9623 | 6.9625 | |
100 | −0.1114 | 1.0436 | 1.0560 | 0.0144 | 3.3553 | 3.3555 | |
Scale | 500 | −0.0601 | 0.2052 | 0.2088 | −0.0307 | 0.6320 | 0.6329 |
1000 | −0.0418 | 0.1078 | 0.1096 | −0.0195 | 0.3407 | 0.3411 | |
5000 | −0.0088 | 0.0205 | 0.0206 | −0.0039 | 0.0606 | 0.0606 | |
50 | −0.1185 | 3.5751 | 3.5891 | −0.0876 | 10.4689 | 10.4766 | |
100 | −0.1033 | 1.7181 | 1.7288 | −0.0273 | 5.2379 | 5.2387 | |
Both | 500 | −0.0688 | 0.2923 | 0.2970 | −0.0568 | 0.8887 | 0.8920 |
1000 | −0.0485 | 0.1612 | 0.1635 | −0.0379 | 0.4704 | 0.4718 | |
5000 | −0.0094 | 0.0324 | 0.0325 | −0.0019 | 0.0882 | 0.0883 | |
50 | 0.0048 | 0.1453 | 0.1453 | −0.0455 | 0.5998 | 0.6019 | |
100 | 0.0112 | 0.0658 | 0.0659 | −0.0179 | 0.2760 | 0.2763 | |
Asymmetric | 500 | 0.0016 | 0.0107 | 0.0107 | −0.0098 | 0.0439 | 0.0440 |
() | 1000 | 0.0019 | 0.0057 | 0.0057 | −0.0066 | 0.0235 | 0.0236 |
5000 | 0.0033 | 0.0012 | 0.0012 | 0.0018 | 0.0052 | 0.0052 | |
50 | −0.0044 | 0.7563 | 0.7564 | −0.1031 | 2.9639 | 2.9745 | |
100 | 0.0081 | 0.3482 | 0.3483 | −0.0416 | 1.3842 | 1.3860 | |
Asymmetric | 500 | −0.0086 | 0.0547 | 0.0548 | −0.0260 | 0.2176 | 0.2183 |
() | 1000 | −0.0066 | 0.0299 | 0.0299 | −0.0184 | 0.1153 | 0.1157 |
5000 | −0.0005 | 0.0062 | 0.0062 | 0.0020 | 0.0252 | 0.0252 | |
50 | −0.0365 | 4.3397 | 4.3410 | −0.2329 | 16.0205 | 16.0748 | |
100 | −0.0086 | 2.0279 | 2.0280 | −0.0939 | 7.6135 | 7.6223 | |
Asymmetric | 500 | −0.0350 | 0.3114 | 0.3127 | −0.0665 | 1.1873 | 1.1917 |
() | 1000 | −0.0270 | 0.1729 | 0.1737 | −0.0473 | 0.6259 | 0.6281 |
5000 | −0.0059 | 0.0362 | 0.0363 | 0.0031 | 0.1357 | 0.1357 |
Effect | n | ||||||
---|---|---|---|---|---|---|---|
Bias | Var | MSE | Bias | Var | MSE | ||
50 | 0.0126 | 0.7075 | 0.7077 | 0.0170 | 3.8324 | 3.8327 | |
100 | 0.0100 | 0.2943 | 0.2944 | 0.0197 | 1.6137 | 1.6140 | |
Location | 500 | 0.0077 | 0.0566 | 0.0567 | 0.0074 | 0.3119 | 0.3119 |
1000 | 0.0036 | 0.0266 | 0.0266 | 0.0085 | 0.1438 | 0.1439 | |
5000 | 0.0002 | 0.0057 | 0.0057 | −0.0035 | 0.0298 | 0.0299 | |
50 | −0.1601 | 1.8447 | 1.8704 | −0.0454 | 7.8484 | 7.8505 | |
100 | −0.1201 | 0.9508 | 0.9652 | −0.0340 | 3.9788 | 3.9800 | |
Scale | 500 | −0.0499 | 0.2079 | 0.2104 | −0.0449 | 0.8343 | 0.8364 |
1000 | −0.0381 | 0.0933 | 0.0947 | 0.0000 | 0.3934 | 0.3934 | |
5000 | −0.0040 | 0.0209 | 0.0209 | 0.0034 | 0.0845 | 0.0845 | |
50 | −0.1477 | 2.2522 | 2.2741 | −0.0286 | 5.7489 | 5.7497 | |
100 | −0.1104 | 1.2147 | 1.2268 | −0.0144 | 3.1012 | 3.1014 | |
Both | 500 | −0.0424 | 0.2608 | 0.2626 | −0.0375 | 0.6949 | 0.6963 |
1000 | −0.0347 | 0.1159 | 0.1171 | 0.0084 | 0.3021 | 0.3022 | |
5000 | −0.0040 | 0.0265 | 0.0265 | −0.0002 | 0.0645 | 0.0645 | |
50 | 0.0137 | 0.1493 | 0.1495 | 0.0089 | 0.8879 | 0.8880 | |
100 | 0.0118 | 0.0617 | 0.0618 | 0.0109 | 0.3816 | 0.3817 | |
Asymmetric | 500 | 0.0084 | 0.0118 | 0.0119 | 0.0065 | 0.0728 | 0.0729 |
() | 1000 | 0.0063 | 0.0056 | 0.0056 | 0.0048 | 0.0342 | 0.0343 |
5000 | 0.0036 | 0.0012 | 0.0012 | 0.0000 | 0.0071 | 0.0071 | |
50 | 0.0126 | 0.7075 | 0.7077 | 0.0170 | 3.8324 | 3.8327 | |
100 | 0.0100 | 0.2943 | 0.2944 | 0.0197 | 1.6137 | 1.6140 | |
Asymmetric | 500 | 0.0077 | 0.0566 | 0.0567 | 0.0074 | 0.3119 | 0.3119 |
() | 1000 | 0.0036 | 0.0266 | 0.0266 | 0.0085 | 0.1438 | 0.1439 |
5000 | 0.0002 | 0.0057 | 0.0057 | −0.0035 | 0.0298 | 0.0299 | |
50 | −0.0075 | 3.6517 | 3.6517 | 0.0299 | 17.5340 | 17.5348 | |
100 | −0.0053 | 1.5628 | 1.5629 | 0.0385 | 7.3357 | 7.3372 | |
Asymmetric | 500 | 0.0035 | 0.3033 | 0.3033 | 0.0060 | 1.4437 | 1.4437 |
() | 1000 | −0.0031 | 0.1410 | 0.1410 | 0.0189 | 0.6523 | 0.6526 |
5000 | −0.0038 | 0.0307 | 0.0307 | −0.0088 | 0.1349 | 0.1349 |
Effect | Gini | Theil | Atkinson(1) | Atkinson(2) |
---|---|---|---|---|
Location | 0.6086 * | 0.5699 * | 0.6282 * | 1.2625 * |
(0.0173) | (0.0218) | (0.0151) | (0.0233) | |
Scale | −4.8003 * | −4.7931 * | −4.1004 * | −6.4685 * |
(0.0824) | (0.1074) | (0.0714) | (0.1047) | |
Both | −4.1918 * | −4.2232 * | −3.4722 * | −5.2060 * |
(0.0777) | (0.1019) | (0.0681) | (0.1031) | |
Asymmetric () | 0.3303 * | 0.3111 * | 0.3347 * | 0.6600 * |
(0.0086) | (0.0109) | (0.0075) | (0.0115) | |
Asymmetric () | 0.6086 * | 0.5699 * | 0.6282 * | 1.2625 * |
(0.0173) | (0.0218) | (0.0151) | (0.0233) | |
Asymmetric () | −0.1681 * | −0.2530 * | 0.0941 * | 0.7458 * |
(0.0383) | (0.0494) | (0.0343) | (0.0563) |
Effect | Gini | Theil | Atkinson(1) | Atkinson(2) |
---|---|---|---|---|
Location | −0.4025 * | −0.3963 * | −0.3291 * | −0.4686 * |
(0.0059) | (0.0068) | (0.0053) | (0.0092) | |
Scale | −4.5253 * | −4.5701 * | −3.7068 * | −5.2172 * |
(0.0929) | (0.1259) | (0.0826) | (0.1267) | |
Both | −4.9278 * | −4.9664 * | −4.0358 * | −5.6858 * |
(0.0959) | (0.1292) | (0.0853) | (0.1314) | |
Asymmetric () | −0.0620 * | −0.0607 * | −0.0512 * | −0.0744 * |
(0.0010) | (0.0011) | (0.0009) | (0.0015) | |
Asymmetric () | −0.4025 * | −0.3963 * | −0.3291 * | −0.4686 * |
(0.0059) | (0.0068) | (0.0053) | (0.0092) | |
Asymmetric () | −2.8433 * | −2.8099 * | −2.3207 * | −3.2877 * |
(0.0410) | (0.0482) | (0.0370) | (0.0626) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alejo, J.; Galvao, A.; Martínez-Iriarte, J.; Montes-Rojas, G. Generalized Recentered Influence Function Regressions. Econometrics 2025, 13, 19. https://doi.org/10.3390/econometrics13020019
Alejo J, Galvao A, Martínez-Iriarte J, Montes-Rojas G. Generalized Recentered Influence Function Regressions. Econometrics. 2025; 13(2):19. https://doi.org/10.3390/econometrics13020019
Chicago/Turabian StyleAlejo, Javier, Antonio Galvao, Julián Martínez-Iriarte, and Gabriel Montes-Rojas. 2025. "Generalized Recentered Influence Function Regressions" Econometrics 13, no. 2: 19. https://doi.org/10.3390/econometrics13020019
APA StyleAlejo, J., Galvao, A., Martínez-Iriarte, J., & Montes-Rojas, G. (2025). Generalized Recentered Influence Function Regressions. Econometrics, 13(2), 19. https://doi.org/10.3390/econometrics13020019