Selecting the Lag Length for the MGLS Unit Root Tests with Structural Change: A Warning Note for Practitioners Based on Simulations †
Abstract
:1. Introduction
2. DGP, GLS Detrending, Tests with Structural Change, Rules for Selecting the Lag Length, and Methods for Selecting the Breakpoint
2.1. The DGP
2.2. GLS Detrending and Statistics
2.3. Rules for Selecting the Lag Length (k)
2.4. Selecting the Breakpoint
3. Finite Sample Simulations
3.1. Setup
3.2. The Problem of Size
3.3. Some Additional Results10
3.4. The Statistic
3.5. The Supremum Method and a Single Breakpoint
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Agiakloglou, Christos, and Paul Newbold. 1992. Empirical Evidence on Dickey-Fuller-Type Tests. Journal of Time Series Analysis 13: 471–83. [Google Scholar] [CrossRef]
- Agiakloglou, Christos, and Paul Newbold. 1996. The balance between size and power in Dickey-Fuller tests with data-dependent rules for the choice of truncation lag. Economics Letters 52: 229–34. [Google Scholar] [CrossRef]
- Bhargava, Alok. 1986. On the theory of testing for unit root in observed time series. Review of Economic Studies 53: 369–84. [Google Scholar] [CrossRef]
- Campbell, John Y., and Pierre Perron. 1991. Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots. In NBER Macroeconomics Annual. Edited by Olivier J. Blanchard and Stanley Fischer. New York: MIT Press, Volume 6, pp. 141–201. [Google Scholar]
- Carrión-i-Silvestre, Josep Lluís, Dukpa Kim, and Pierre Perron. 2009. GLS-based Unit Root Tests with Multiple Structural Breaks both Under the Null and Alternative Hypotheses. Econometric Theory 25: 1754–92. [Google Scholar] [CrossRef]
- Choi, In. 2015. Almost All about Unit Roots. Series: Themes in Modern Econometrics; New York: Cambridge University Press. [Google Scholar]
- Del Barrio Castro, Tomás, Paulo M. M. Rodrigues, and A. M. Robert Taylor. 2011. The Impact of Persistent Cycles on Zero Frequency Unit Root Tests. Working Paper 24. Lisbon: Banco de Portugal. [Google Scholar]
- Del Barrio Castro, Tomás, Paulo M. M. Rodrigues, and A. M. Robert Taylor. 2013. The Impact of Persistent Cycles on Zero Frequency Unit Root Tests. Econometric Theory 29: 1289–313. [Google Scholar] [CrossRef]
- Del Barrio Castro, Tomás, Paulo M. M. Rodrigues, and A. M. Robert Taylor. 2015. On the Behaviour of Phillips-Perron Tests in the Presence of Persistent Cycles. Oxford Bulletin of Economics and Statistics 77: 495–511. [Google Scholar] [CrossRef]
- Elliott, Graham, Thomas J. Rothenberg, and James H. Stock. 1996. Efficient tests for an autoregressive unit root. Econometrica 64: 813–39. [Google Scholar] [CrossRef]
- Fossati, Sebastian. 2012. Covariate unit root tests with good size and power. Computational Statistics and Data Analysis 56: 3070–79. [Google Scholar] [CrossRef]
- Haldrup, Niels, and Michael Jansson. 2006. Improving Size and Power in Unit Root Testing. In Palgrave Handbook of Econometrics, Volume 1: Econometric Theory. Edited by Terence C. Mills and Kerry Patterson. Basingstoke: Palgrave Macmillan, pp. 252–77. [Google Scholar]
- Hall, Alastair R. 1994. Testing for a Unit Root in Time Series with Pretest Data-Based Model Selection. Journal of Business & Economic Statistics 12: 461–70. [Google Scholar] [CrossRef]
- Harvey, David I., Stephen J. Leybourne, and A. M. Robert Taylor. 2013. Testing for unit roots in the possible presence of multiple trend breaks using minimum Dickey-Fuller statistics. Journal of Econometrics 177: 265–84. [Google Scholar] [CrossRef]
- Kim, Dukpa, and Pierre Perron. 2009. Unit root tests allowing for a break in the trend function at an unknown time under both the null and alternative hypotheses. Journal of Econometrics 148: 1–13. [Google Scholar] [CrossRef]
- Maddala, Gangadharrao S., and In-Moo Kim. 1998. Unit Roots Cointegration, and Structural Change. Cambridge: Cambridge University Press. [Google Scholar]
- Ng, Serena, and Pierre Perron. 1995. Unit root tests in ARMA models with data dependent methods for the selection of the truncation lag. Journal of the American Statistical Association 90: 268–81. [Google Scholar] [CrossRef]
- Ng, Serena, and Pierre Perron. 2001. Lag length selection and the construction of unit root tests with good size and power. Econometrica 69: 1519–54. [Google Scholar] [CrossRef]
- Ng, Serena, and Pierre Perron. 2005. A note on the selection of time series models. Oxford Bulletin of Economics and Statistics 67: 115–34. [Google Scholar] [CrossRef]
- Perron, Pierre. 1989. The great crash, the oil price shock and the unit root hypothesis. Econometrica 57: 1361–401. [Google Scholar] [CrossRef]
- Perron, Pierre. 1997. Further evidence of breaking trend functions in macroeconomic variables. Journal of Econometrics 80: 355–85. [Google Scholar] [CrossRef]
- Perron, P. 2006. Dealing with Structural Breaks. In Palgrave Handbook of Econometrics, Volume 1: Econometric Theory. Edited by Terence C. Mills and Kerry Patterson. Basingstoke: Palgrave Macmillan, pp. 278–352. [Google Scholar]
- Perron, Pierre, and Serena Ng. 1996. Useful Modifications to Unit Root Tests with Dependent Errors and their Local Asymptotic Properties. Review of Economic Studies 63: 435–65. [Google Scholar] [CrossRef]
- Perron, Pierre, and Serena Ng. 1998. An Autoregressive Spectral Density Estimator at Frequency Zero for Nonstationarity Tests. Econometric Theory 14: 560–603. [Google Scholar] [CrossRef]
- Perron, Pierre, and Zhongjun Qu. 2007. A simple modification to improve the infinite sample properties of Ng and Perron’s unit root tests. Economics Letters 94: 12–19. [Google Scholar] [CrossRef]
- Perron, Pierre, and Gabriel Rodríguez. 2003. GLS Detrending, Efficient Unit Root Tests and Structural Change. Journal of Econometrics 115: 1–27. [Google Scholar] [CrossRef]
- Phillips, Peter C. B., and Pierre Perron. 1988. Testing for a unit root in time series regression. Biometrika 75: 335–46. [Google Scholar] [CrossRef]
- Phillips, Peter C. B., and Zhijie Xiao. 1998. A primer on unit root testing. Journal of Economic Surveys 12: 423–70. [Google Scholar] [CrossRef]
- Quineche, Ricardo, and Gabriel Rodríguez. 2015. Data-Dependent Methods for the Lag Length Selection in Unit Root Tests with Structural Change. Working Paper 404. Lima, Peru: Department of Economics, Pontificia Universidad Católica del Perú. [Google Scholar]
- Rodríguez, Gabriel. 2007. Finite Sample Behaviour of the Level Shift Model using Quasi-Differenced Data. Journal of Statistical Computation and Simulation 77: 889–905. [Google Scholar] [CrossRef]
- Schwert, G. William. 1989. Tests for unit roots: A Monte Carlo Investigation. Journal of Business and Economics Statistics 7: 147–59. [Google Scholar] [CrossRef]
- Stock, James H. 1994. Unit Roots, Structural Breaks and Trends. In Handbook of Econometrics. Edited by Daniel L. McFaden and Robert F. Engle. Amsterdam: Elsevier, vol. IV, pp. 2740–841. [Google Scholar]
- Stock, James H. 1999. A Class of Tests for Integration and Cointegration. In Cointegration, Causality and Forecasting. A Festschrift in Honour of Clive W. J. Granger. Edited by Robert F. Engle and Halbert White. Oxford: Oxford University Press, pp. 137–67. [Google Scholar]
- Vogelsang, Timothy J., and Pierre Perron. 1998. Additional Tests for a Unit Root Allowing the Possibility of Breaks in the Trend Function at an Unknown Time. International Economic Review 39: 1073–100. [Google Scholar] [CrossRef]
- Zivot, Eric, and Donald W. K. Andrews. 1992. Further evidence on the great crash, the oil-price shock and the unit root hypothesis. Journal of Business and Economics Statistics 10: 251–70. [Google Scholar] [CrossRef]
1. | For excellent surveys, see Stock (1994), Maddala and Kim (1998), Phillips and Xiao (1998), Haldrup and Jansson (2006), Perron (2006), and Choi (2015). |
2. | Quartely data covering the period Q3 1976–Q2 2012 ( observations). |
3. | The sample size for Galicia and Murcia are the same as for Cantabria. For Peru’s monetary policy rate, the data are monthly for February 2002–August 2010 ( observations). |
4. | We recognize the limitations of this note, which is only based on simulations. We agree with a Referee that formal proofs are needed in the spirit of Del Barrio Castro et al. (2013). Hence, further work in the direction of a formal treatment will be addressed in a future research project. |
5. | |
6. | Following Elliott et al. (1996) and Ng and Perron (2001), the parameter is selected in such a way that 50% of the Gaussian power envelope is attained. |
7. | Note that in all experiments we use as the available number of observations, which is fixed, as suggested by Ng and Perron (2005). |
8. | See also Hall (1994) and Ng and Perron (1995). |
9. | We are agree with the Editor that our scenario is the worst possible scenario because we are using the Infimum method jointly (in some cases) with the t-sig(10) rule. However, this worst scenario is widely used in typical empirical applications. Furthermore, it is a regular or natural option in many statistical packages used by practitioners. Minimizing SSR (or Supremum) is better, as we mention later. |
10. | We present a summary of the Tables from the Working Paper version of this Note (see Quineche and Rodríguez (2015)). All other tables are available upon request. |
11. | They explain both issues (in particular the undersizing feature) in the context of time series admitting for (near-) unit roots at cyclical frequencies. They suggest that the degree of undersizing is worst when is used. The problem is aggravated if detrended data are used. See these references for further details. |
AR(1) Case | MA(1) Case | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.22 | 0.17 | 0.23 | 0.30 | 0.49 | 0.73 | 0.30 | 0.30 | 0.66 | |
0.03 | 0.01 | 0.07 | 0.09 | 0.19 | 0.90 | 0.41 | 0.09 | 0.40 | |
0.00 | 0.00 | 0.00 | 0.01 | 0.10 | 0.23 | 0.04 | 0.01 | 0.06 | |
0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.24 | 0.04 | 0.00 | 0.00 | |
0.27 | 0.21 | 0.27 | 0.33 | 0.53 | 0.80 | 0.36 | 0.33 | 0.70 | |
0.03 | 0.01 | 0.09 | 0.09 | 0.20 | 0.93 | 0.45 | 0.10 | 0.42 | |
0.00 | 0.00 | 0.00 | 0.01 | 0.11 | 0.32 | 0.04 | 0.00 | 0.05 | |
0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.33 | 0.04 | 0.00 | 0.00 | |
0.63 | 0.54 | 0.60 | 0.67 | 0.82 | 0.64 | 0.57 | 0.66 | 0.76 | |
0.43 | 0.23 | 0.36 | 0.46 | 0.64 | 0.42 | 0.30 | 0.45 | 0.58 | |
0.53 | 0.36 | 0.48 | 0.57 | 0.71 | 0.44 | 0.40 | 0.55 | 0.46 | |
0.64 | 0.48 | 0.60 | 0.67 | 0.79 | 0.49 | 0.51 | 0.65 | 0.71 | |
0.70 | 0.57 | 0.65 | 0.73 | 0.84 | 0.51 | 0.58 | 0.71 | 0.68 | |
0.77 | 0.66 | 0.75 | 0.80 | 0.89 | 0.55 | 0.67 | 0.79 | 0.81 | |
0.82 | 0.73 | 0.81 | 0.82 | 0.91 | 0.62 | 0.73 | 0.83 | 0.80 |
AR(1) Case | MA(1) Case | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.091 | 0.054 | 0.102 | 0.129 | 0.197 | 0.345 | 0.154 | 0.155 | 0.373 | |
0.026 | 0.002 | 0.024 | 0.053 | 0.077 | 0.697 | 0.246 | 0.087 | 0.203 | |
0.017 | 0.000 | 0.008 | 0.033 | 0.056 | 0.038 | 0.025 | 0.040 | 0.089 | |
0.015 | 0.000 | 0.012 | 0.008 | 0.058 | 0.046 | 0.029 | 0.003 | 0.007 | |
0.112 | 0.074 | 0.124 | 0.155 | 0.217 | 0.445 | 0.173 | 0.173 | 0.390 | |
0.027 | 0.001 | 0.026 | 0.053 | 0.078 | 0.802 | 0.259 | 0.088 | 0.211 | |
0.016 | 0.000 | 0.010 | 0.035 | 0.057 | 0.057 | 0.028 | 0.041 | 0.077 | |
0.015 | 0.000 | 0.013 | 0.006 | 0.060 | 0.059 | 0.029 | 0.001 | 0.005 | |
0.379 | 0.266 | 0.345 | 0.395 | 0.514 | 0.233 | 0.312 | 0.392 | 0.467 | |
0.161 | 0.051 | 0.122 | 0.188 | 0.229 | 0.229 | 0.075 | 0.173 | 0.259 | |
0.204 | 0.081 | 0.173 | 0.223 | 0.261 | 0.143 | 0.110 | 0.202 | 0.136 | |
0.244 | 0.126 | 0.216 | 0.251 | 0.320 | 0.152 | 0.159 | 0.244 | 0.315 | |
0.283 | 0.168 | 0.265 | 0.293 | 0.359 | 0.152 | 0.202 | 0.278 | 0.221 | |
0.304 | 0.204 | 0.284 | 0.333 | 0.421 | 0.140 | 0.219 | 0.317 | 0.371 | |
0.357 | 0.243 | 0.329 | 0.381 | 0.461 | 0.162 | 0.258 | 0.363 | 0.335 | |
0.407 | 0.287 | 0.378 | 0.424 | 0.507 | 0.157 | 0.302 | 0.419 | 0.459 | |
0.459 | 0.343 | 0.431 | 0.479 | 0.540 | 0.173 | 0.354 | 0.452 | 0.447 | |
0.496 | 0.406 | 0.462 | 0.533 | 0.602 | 0.191 | 0.416 | 0.517 | 0.537 |
AR(1) Case | MA(1) Case | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.136 | 0.117 | 0.149 | 0.128 | 0.167 | 0.826 | 0.362 | 0.145 | 0.147 | |
0.072 | 0.069 | 0.173 | 0.069 | 0.089 | 0.976 | 0.568 | 0.095 | 0.151 | |
0.031 | 0.024 | 0.039 | 0.008 | 0.042 | 0.315 | 0.106 | 0.005 | 0.004 | |
0.034 | 0.025 | 0.040 | 0.000 | 0.034 | 0.326 | 0.109 | 0.004 | 0.000 | |
0.145 | 0.130 | 0.163 | 0.132 | 0.177 | 0.881 | 0.402 | 0.152 | 0.152 | |
0.076 | 0.070 | 0.196 | 0.070 | 0.092 | 0.985 | 0.633 | 0.097 | 0.155 | |
0.033 | 0.030 | 0.042 | 0.008 | 0.042 | 0.435 | 0.123 | 0.006 | 0.003 | |
0.038 | 0.030 | 0.043 | 0.000 | 0.031 | 0.444 | 0.127 | 0.004 | 0.000 | |
0.146 | 0.129 | 0.154 | 0.141 | 0.193 | 0.516 | 0.256 | 0.148 | 0.136 | |
0.058 | 0.056 | 0.052 | 0.061 | 0.058 | 0.243 | 0.063 | 0.056 | 0.094 | |
0.054 | 0.052 | 0.053 | 0.054 | 0.068 | 0.148 | 0.054 | 0.055 | 0.029 | |
0.053 | 0.055 | 0.061 | 0.047 | 0.059 | 0.122 | 0.057 | 0.052 | 0.060 | |
0.041 | 0.037 | 0.036 | 0.039 | 0.063 | 0.097 | 0.039 | 0.037 | 0.035 | |
0.049 | 0.031 | 0.037 | 0.049 | 0.071 | 0.075 | 0.034 | 0.045 | 0.060 | |
0.047 | 0.038 | 0.047 | 0.054 | 0.069 | 0.059 | 0.043 | 0.050 | 0.036 |
AR(1) Case | MA(1) Case | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.088 | 0.078 | 0.075 | 0.089 | 0.098 | 0.527 | 0.190 | 0.102 | 0.102 | |
0.054 | 0.049 | 0.052 | 0.061 | 0.059 | 0.831 | 0.351 | 0.092 | 0.095 | |
0.032 | 0.028 | 0.027 | 0.033 | 0.041 | 0.115 | 0.054 | 0.036 | 0.011 | |
0.036 | 0.030 | 0.031 | 0.007 | 0.044 | 0.128 | 0.062 | 0.003 | 0.004 | |
0.097 | 0.085 | 0.084 | 0.096 | 0.107 | 0.612 | 0.205 | 0.106 | 0.111 | |
0.054 | 0.050 | 0.053 | 0.061 | 0.059 | 0.900 | 0.373 | 0.093 | 0.099 | |
0.034 | 0.029 | 0.029 | 0.035 | 0.041 | 0.156 | 0.064 | 0.037 | 0.011 | |
0.039 | 0.033 | 0.033 | 0.006 | 0.047 | 0.162 | 0.069 | 0.003 | 0.004 | |
0.092 | 0.091 | 0.095 | 0.100 | 0.107 | 0.309 | 0.153 | 0.104 | 0.104 | |
0.054 | 0.054 | 0.052 | 0.059 | 0.068 | 0.501 | 0.059 | 0.061 | 0.099 | |
0.052 | 0.054 | 0.055 | 0.052 | 0.058 | 0.361 | 0.050 | 0.057 | 0.036 | |
0.058 | 0.052 | 0.055 | 0.056 | 0.056 | 0.275 | 0.056 | 0.055 | 0.083 | |
0.059 | 0.056 | 0.055 | 0.058 | 0.054 | 0.214 | 0.063 | 0.057 | 0.042 | |
0.056 | 0.055 | 0.054 | 0.053 | 0.058 | 0.171 | 0.051 | 0.049 | 0.064 | |
0.046 | 0.056 | 0.052 | 0.046 | 0.066 | 0.136 | 0.053 | 0.048 | 0.036 | |
0.044 | 0.050 | 0.050 | 0.050 | 0.061 | 0.117 | 0.049 | 0.043 | 0.061 | |
0.044 | 0.047 | 0.052 | 0.058 | 0.064 | 0.117 | 0.049 | 0.043 | 0.061 | |
0.053 | 0.053 | 0.050 | 0.056 | 0.054 | 0.089 | 0.055 | 0.054 | 0.052 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quineche, R.; Rodríguez, G. Selecting the Lag Length for the MGLS Unit Root Tests with Structural Change: A Warning Note for Practitioners Based on Simulations. Econometrics 2017, 5, 17. https://doi.org/10.3390/econometrics5020017
Quineche R, Rodríguez G. Selecting the Lag Length for the MGLS Unit Root Tests with Structural Change: A Warning Note for Practitioners Based on Simulations. Econometrics. 2017; 5(2):17. https://doi.org/10.3390/econometrics5020017
Chicago/Turabian StyleQuineche, Ricardo, and Gabriel Rodríguez. 2017. "Selecting the Lag Length for the MGLS Unit Root Tests with Structural Change: A Warning Note for Practitioners Based on Simulations" Econometrics 5, no. 2: 17. https://doi.org/10.3390/econometrics5020017
APA StyleQuineche, R., & Rodríguez, G. (2017). Selecting the Lag Length for the MGLS Unit Root Tests with Structural Change: A Warning Note for Practitioners Based on Simulations. Econometrics, 5(2), 17. https://doi.org/10.3390/econometrics5020017