A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade
Abstract
:1. Introduction
2. The Gravity Model of Trade: Recent Developments
- Linear spatial econometric models (LeSage and Pace 2008; Behrens et al. 2012; Fischer and Griffith 2008; Baltagi et al. 2007; Koch and LeSage 2015): these models apply and adapt traditional (linear) spatial econometric techniques to the count data case.
- Spatial generalized linear models (GLMs) (Sellner et al. 2013; Lambert et al. 2010): these models extend the previous approaches by allowing for estimation based on Poisson-type models, therefore accommodating the concerns expressed in Santos Silva and Tenreyro (2006).
- Semi-parametric (ESF) models (Fischer and Griffith 2008; Scherngell and Lata 2013; Krisztin and Fischer 2015; Chun 2008; Patuelli et al. 2016): these models mix a parametric and a non-parametric approach, by employing ESF within Poisson-type models.
3. A Methodological Approach
3.1. Zero-Inflated Gravity Models of Trade
3.2. Spatial Filters
3.3. A Backward Stepwise Algorithm
4. An Empirical Application
4.1. The Model Specification
4.2. Estimation Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. List of the Countries Used in the Empirical Application
Appendix B. Further Results
(1) | (2) | (3) | |
---|---|---|---|
ZIP ESF | ZIP | Poisson FE | |
First Step (logit) | |||
Distance | 0.57 (0.16) *** | 0.36 (0.08) *** | – |
Common language | −0.73 (0.30) ** | 0.28 (0.22) | – |
Contiguity | 0.54 (0.52) | 0.16 (0.53) | – |
Common history | −0.09 (0.76) | −1.42 (0.80) * | – |
FTA | −2.51 (0.50) *** | −1.43 (0.35) *** | – |
Area importer | 0.32 (0.08) *** | 0.05 (0.05) | – |
Area exporter | 0.09 (0.06) | 0.28 (0.05) *** | – |
GDP per cap. imp | −1.35 (0.11) *** | −0.74 (0.05) *** | – |
GDP per cap. exp | −0.89 (0.09) | −0.84 (0.07) *** | – |
Population imp | −1.02 (0.12) *** | −0.45 (0.08) *** | – |
Population exp | −1.01 (0.10) *** | −1.16 (0.08) *** | – |
Island imp | −0.48 (0.64) | −1.16 (0.41) *** | – |
Island exp | 0.44 (0.54) | −1.73 (0.47) *** | – |
Landlocked imp | 3.74 (0.48) *** | −0.14 (0.18) | – |
Landlocked exp | −0.15 (0.31) | −1.06 (0.22) *** | – |
Constant | 38.69 (3.27) *** | 31.10 (2.30) *** | – |
Eigenvectors (exp) | 10 | – | – |
Eigenvectors (imp) | 16 | – | – |
Eigenvectors (network) | 28 | – | – |
Second Step (Poisson) | |||
Distance | −0.58 (0.04) *** | −0.39 (0.04) *** | −0.62 (0.03) *** |
Common language | 0.09 (0.08) | 0.40 (0.11) *** | 0.10 (0.07) |
Contiguity | 0.56 (0.10) *** | 0.66 (0.15) *** | 0.58 (0.07) *** |
Common history | 0.19 (0.09) ** | 0.13 (0.10) | 0.06 (0.08) |
FTA | 0.45 (0.08) *** | 0.72 (0.08) *** | 0.44 (0.06) *** |
Area imp | −0.19 (0.02) *** | −0.07 (0.02) *** | −0.26 (0.14) * |
Area exp | −0.003 (0.02) | −0.05 (0.02) ** | 0.37 (0.16) ** |
GDP per cap. imp | 0.77 (0.03) *** | 0.80 (0.03) *** | 0.77 (0.14) ** |
GDP per cap. exp | 0.77 (0.02) *** | 0.67 (0.03) *** | 0.92 (0.23) |
Population imp | 0.91 (0.03) *** | 0.84 (0.02) *** | 1.44 (0.14) *** |
Population exp | 0.73 (0.03) *** | 0.76 (0.03) *** | 0.29 (0.26) |
Island imp | −0.03 (0.07) | −0.13 (0.08) * | −0.47 (0.43) |
Island exp | −0.49 (0.08) *** | −0.23 (0.08) *** | 0.30 (0.63) |
Landlocked imp | 0.002 (0.10) | −0.05 (0.10) | 0.50 (0.76) |
Landlocked exp | 0.14 (0.10) | −0.19 (0.12) | 0.09 (1.27) |
Constant | −28.48 (0.71) *** | −29.52 (0.91) *** | −35.32 (3.71) *** |
Eigenvectors (exp) | 6 | – | – |
Eigenvectors (imp) | 7 | – | – |
Eigenvectors (network) | 24 | – | – |
Fixed Effects (exp) | No | No | Yes |
Fixed Effects (imp) | No | No | Yes |
AIC | 1,477,400 | 2,545,233 | 1,467,313 |
Log-likelihood | −738,577 | −1,272,584 | −733,525 |
McFadden’s pseudo-R2 | 0.935 | 0.888 | 0.935 |
Observations | 4032 | 4032 | 4032 |
Residual dof | 3910 | 4000 | 3872 |
Trade Flow (in US$ Millions, Rounded) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Observed | 484 | 136 | 112 | 76 | 64 | 39 | 42 | 49 | 35 | 29 |
ZIP ESF | 485 | 8 | 12 | 15 | 18 | 19 | 20 | 20 | 20 | 20 |
ZIP | 484 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Poisson FE | 68 | 11 | 17 | 20 | 22 | 23 | 24 | 24 | 24 | 24 |
References
- Anderson, James E. 1979. A theoretical foundation for the gravity equation. The American Economic Review 69: 106–16. [Google Scholar]
- Anderson, James E., and Eric van Wincoop. 2003. Gravity with gravitas: A solution to the border puzzle. American Economic Review 93: 170–92. [Google Scholar] [CrossRef]
- Anderson, James E., and Eric van Wincoop. 2004. Trade costs. Journal of Economic Literature 42: 691–751. [Google Scholar] [CrossRef]
- Baier, Scott L., and Jeffrey H. Bergstrand. 2009. Bonus vetus OLS: A simple method for approximating international trade-cost effects using the gravity equation. Journal of International Economics 77: 77–85. [Google Scholar] [CrossRef]
- Baltagi, Badi H., and Petter Egger. 2016. Estimation of structural gravity quantile regression models. Empirical Economics 50: 5–15. [Google Scholar] [CrossRef]
- Baltagi, Badi H., Peter Egger, and Michael Pfaffermayr. 2007. Estimating models of complex FDI: Are there third-country effects? Journal of Econometrics 140: 260–81. [Google Scholar] [CrossRef]
- Behrens, Kristian, Cem Ertur, and Wilfried Koch. 2012. ‘Dual’ gravity: Using spatial econometrics to control for multilateral resistance. Journal of Applied Econometrics 25: 773–94. [Google Scholar] [CrossRef]
- Burger, Martijn, Frank van Oort, and Gert-Jan Linders. 2009. On the specification of the gravity model of trade: Zeros, excess zeros and zero-inflated estimation. Spatial Economic Analysis 4: 167–90. [Google Scholar] [CrossRef]
- Buu, Anne, Norman J. Johnson, Runze Li, and Xianming Tan. 2011. New variable selection methods for zero-inflated count data with applications to the substance abuse field. Statistics in Medicine 30: 2326–40. [Google Scholar] [CrossRef] [PubMed]
- Chen, Tian, Pan Wu, Wan Tang, Hui Zhang, Changyong Feng, Jeanne Kowalski, and Xin M. Tu. 2016. Variable selection for distribution-free models for longitudinal zero-inflated count responses. Statistics in Medicine 35: 2770–85. [Google Scholar] [CrossRef] [PubMed]
- Chun, Yongwan. 2008. Modeling network autocorrelation within migration flows by eigenvector spatial filtering. Journal of Geographical Systems 10: 317–44. [Google Scholar] [CrossRef]
- Chun, Yongwan, and Daniel A. Griffith. 2011. Modeling network autocorrelation in space–time migration flow data: An eigenvector spatial filtering approach. Annals of the Association of American Geographers 101: 523–36. [Google Scholar] [CrossRef]
- Chun, Yongwan, and Daniel A. Griffith. 2013. Spatial Statistics and Geostatistics: Theory and Applications for Geographic Information Science and Technology. London: Sage. [Google Scholar]
- Chun, Yongwan, Daniel A. Griffith, Monghyeon Lee, and Parmanand Sinha. 2016. Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters. Journal of Geographical Systems 18: 67–85. [Google Scholar] [CrossRef]
- Cliff, Andrew David, and J. K. Ord. 1981. Spatial Processes: Models & Applications. London: Pion. [Google Scholar]
- Cliff, Andrew, and Keith Ord. 1972. Testing for spatial autocorrelation among regression residuals. Geographical Analysis 4: 267–84. [Google Scholar] [CrossRef]
- Curry, L. 1972. A spatial analysis of gravity flows. Regional Studies 6: 131–47. [Google Scholar] [CrossRef]
- Curry, Leslie, Daniel A. Griffith, and Eric S. Sheppard. 1975. Those gravity parameters again. Regional Studies 9: 289–96. [Google Scholar] [CrossRef]
- Efroymson, M. A. 1960. Multiple regression analysis. In Mathematical Methods for Digital Computers. Edited by Anthony Ralston and Herbert S. Wilf. New York: Wiley, pp. 191–203. [Google Scholar]
- Egger, Peter H., and Kevin E. Staub. 2016. GLM estimation of trade gravity models with fixed effects. Empirical Economics 50: 137–75. [Google Scholar] [CrossRef]
- Egger, Peter H., and Filip Tarlea. 2015. Multi-way clustering estimation of standard errors in gravity models. Economics Letters 134: 144–47. [Google Scholar] [CrossRef]
- Feenstra, Robert C., Robert E. Lipsey, Haiyan Deng, Alyson C. Ma, and Hengyong Mo. 2005. World Trade Flows: 1962–2000. NBER Working paper No. 11040, National Bureau of Economic Research, Cambridge, MA, USA. [Google Scholar]
- Fischer, Manfred M., and Daniel A. Griffith. 2008. Modeling spatial autocorrelation in spatial interaction data: An application to patent citation data in the european union. Journal of Regional Science 48: 969–89. [Google Scholar] [CrossRef]
- Flowerdew, Robin, and Murray Aitkin. 1982. A method of fitting the gravity model based on the poisson distribution. Journal of Regional Science 22: 191–202. [Google Scholar] [CrossRef] [PubMed]
- Gilles, Rodica, and Seik Kim. 2017. Distribution-free estimation of zero-inflated models with unobserved heterogeneity. Statistical Methods in Medical Research 26: 1532–42. [Google Scholar] [CrossRef] [PubMed]
- Greene, William H. 1994. Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models. NYU working paper No. EC-94-10, New York University, New York, NY, USA. [Google Scholar]
- Griffith, Daniel A. 2003. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization. Berlin, Heidelberg, and New York: Springer-Verlag. [Google Scholar]
- Griffith, Daniel A. 2007. Spatial structure and spatial interaction: 25 years later. The Review of Regional Studies 37: 28–38. [Google Scholar]
- Griffith, Daniel A. 2009. Spatial autocorrelation in spatial interaction: Complexity-to-simplicity in journey-to-work flows. In Complexity and Spatial Networks: In Search of Simplicity. Edited by Aura Reggiani and Peter Nijkamp. Berlin and Heidelberg: Springer-Verlag, pp. 221–37. [Google Scholar]
- Griffith, Daniel A., and Yongwan Chun. 2016. Evaluating eigenvector spatial filter corrections for omitted georeferenced variables. Econometrics 4: 29. [Google Scholar] [CrossRef]
- Head, Keith, and Thierry Mayer. 2014. Chapter 3—Gravity equations: Workhorse, toolkit, and cookbook. In Handbook of International Economics. Edited by Gita Gopinath, Elhanan Helpman and Kenneth Rogoff. Amsterdam and Oxford: Elsevier, vol. 4, pp. 131–95. [Google Scholar]
- Helpman, Elhanan, Marc Melitz, and Yona Rubinstein. 2008. Estimating trade flows: Trading partners and trading volumes. The Quarterly Journal of Economics 123: 441–87. [Google Scholar] [CrossRef]
- Jansen, Marion, and Hildegunn Kyvik Nordås. 2004. Institutions, Trade Policy and Trade Flows. CEPR discussiong paper No. 4418, Centre for Economic Policy Research, Lodon, UK. [Google Scholar]
- Kitazawa, Yoshitsugu. 2014. Consistent Estimation for the Full-Fledged Fixed Effects Zero-Inflated Poisson Model. Discussion paper No. 66, Faculty of Economics, Kyushu Sangyo University, Fukuoka, Japan. [Google Scholar]
- Koch, Wilfried, and James P. LeSage. 2015. Latent multilateral trade resistance indices: Theory and evidence. Scottish Journal of Political Economy 62: 264–90. [Google Scholar] [CrossRef]
- Krisztin, Tamás, and Manfred M. Fischer. 2015. The gravity model for international trade: Specification and estimation issues. Spatial Economic Analysis 10: 451–70. [Google Scholar] [CrossRef]
- Lambert, Diane. 1992. Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics 34: 1–14. [Google Scholar] [CrossRef]
- Lambert, Dayton M., Jason P. Brown, and Raymond J.G.M. Florax. 2010. A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application. Regional Science and Urban Economics 40: 241–52. [Google Scholar] [CrossRef]
- LeSage, James P., and Manfred M. Fischer. 2016. Spatial regression-based model specifications for exogenous and endogenous spatial interaction. In Spatial Econometric Interaction Modelling. Edited by Roberto Patuelli and Giuseppe Arbia. Heidelberg and Berlin: Springer. [Google Scholar]
- LeSage, James P., and R. Kelley Pace. 2008. Spatial econometric modeling of origin-destination flows. Journal of Regional Science 48: 941–67. [Google Scholar] [CrossRef]
- Leung, Siu Fai, and Shihti Yu. 1996. On the choice between sample selection and two-part models. Journal of Econometrics 72: 197–229. [Google Scholar] [CrossRef]
- Linders, Gert-Jan M., Martijn J. Burger, and Frank G. van Oort. 2008. A rather empty world: The many faces of distance and the persistent resistance to international trade. Cambridge Journal of Regions, Economy and Society 1: 439–58. [Google Scholar] [CrossRef]
- Long, J. Scott. 1997. Regression Models for Categorical And Limited Dependent Variables. Thousand Oaks: Sage Publications. [Google Scholar]
- Majo, M.C., and A. van Soest. 2011. The fixed-effects zero-inflated poisson model with an application to health care utilization. CentER Working Paper No. 2011–083, CentER, Tilburg University, Tilburg, The Netherlands. [Google Scholar]
- Martin, William J., and Cong S. Pham. 2015. Estimating the Gravity Model When Zero Trade Flows Are Frequent and Economically Determined. Policy Research working paper No. WPS 7308, World Bank Group, Washington, DC, USA. [Google Scholar]
- Martínez-Zarzoso, Inmaculada. 2013. The log of gravity revisited. Applied Economics 45: 311–27. [Google Scholar] [CrossRef]
- Nordås, Hildegunn Kyvik. 2008. Gatekeepers to consumer markets: The role of retailers in international trade. The International Review of Retail, Distribution and Consumer Research 18: 449–72. [Google Scholar] [CrossRef]
- Papadopoulos, Georgios, and J.M.C Santos Silva. 2012. Identification issues in some double-index models for non-negative data. Economics Letters 117: 365–67. [Google Scholar] [CrossRef]
- Patuelli, Roberto, and Giuseppe Arbia, eds. 2016. Spatial Econometric Interaction Modelling. Cham: Springer. [Google Scholar]
- Patuelli, Roberto, Norbert Schanne, Daniel A. Griffith, and Peter Nijkamp. 2012. Persistence of regional unemployment: Application of a spatial filtering approach to local labour markets in germany. Journal of Regional Science 52: 300–23. [Google Scholar] [CrossRef]
- Patuelli, Roberto, Gert-Jan M. Linders, Rodolfo Metulini, and Daniel A. Griffith. 2016. The space of gravity: Spatially filtered estimation of a gravity model for bilateral trade. In Spatial Econometric Interaction Modelling. Edited by Roberto Patuelli and Giuseppe Arbia. Cham: Springer International Publishing, pp. 145–69. [Google Scholar]
- Philippidis, George, Helena Resano-Ezcaray, and Ana I. Sanjuán-López. 2013. Capturing zero-trade values in gravity equations of trade: An analysis of protectionism in agro-food sectors. Agricultural Economics 44: 141–59. [Google Scholar] [CrossRef]
- Preisser, John S., John W. Stamm, D. Leann Long, and Megan E. Kincade. 2012. Review and recommendations for zero-inflated count regression modeling of dental caries indices in epidemiological studies. Caries Research 46: 413–23. [Google Scholar] [CrossRef] [PubMed]
- Santos Silva, João M.C., and Silvana Tenreyro. 2006. The log of gravity. Review of Economics and Statistics 88: 641–58. [Google Scholar] [CrossRef]
- Santos Silva, J.M.C., and Silvana Tenreyro. 2011. Further simulation evidence on the performance of the poisson pseudo-maximum likelihood estimator. Economics Letters 112: 220–22. [Google Scholar] [CrossRef]
- Scherngell, Thomas, and Rafael Lata. 2013. Towards an integrated european research area? Findings from eigenvector spatially filtered spatial interaction models using european framework programme data. Papers in Regional Science 92: 555–77. [Google Scholar] [CrossRef]
- Sellner, Richard, Manfred Fischer, and Matthias Koch. 2013. A spatial autoregressive poisson gravity model. Geographical Analysis 45: 180–201. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, Eric S., Daniel A. Griffith, and Leslie Curry. 1976. A final comment on mis-specification and autocorrelation in those gravity parameters. Regional Studies 10: 337–39. [Google Scholar] [CrossRef]
- Wang, Zhu, Shuangge Ma, and Ching-Yun Wang. 2015. Variable selection for zero-inflated and overdispersed data with application to health care demand in germany. Biometrical Journal 57: 867–84. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Bo, and John Beghin. 2012. Does european aflatoxin regulation hurt groundnut exporters from africa? European Review of Agricultural Economics 39: 589–609. [Google Scholar] [CrossRef]
- Zeng, Ping, Yongyue Wei, Yang Zhao, Jin Liu, Liya Liu, Ruyang Zhang, Jianwei Gou, Shuiping Huang, and Feng Chen. 2014. Variable selection approach for zero-inflated count data via adaptive lasso. Journal of Applied Statistics 41: 879–94. [Google Scholar] [CrossRef]
1 | The equation formulated by Chun et al. (2016), based on residual SAC, predicts the ideal size of the set of candidate eigenvectors, and demonstrates that such size is positively correlated to the amount of spatial autocorrelation to account for. |
2 | An ever-updated list of trade agreements can be accessed from the World Bank website at https://wits.worldbank.org/gptad.html. |
3 | Additional benchmark models based on simple origin and destination fixed effects (as in Patuelli et al. 2016) were tested, but in a zero-inflated setting appear to cause multicollinearity issues. Indeed, the current econometric literature is very sparse with regard to the use of fixed effects in ZIP models, with only Gilles and Kim (2017) and still-unpublished work (Kitazawa 2014; Majo and van Soest 2011) providing first-ever solutions. Additionally, the bilateral nature of trade data and its consequent fixed effects configuration makes such an endeavour further complicated. Consequently, the fixed effects were dropped and we chose to focus, in our comparison, on the role of spatial filters in the zero-inflation part of the models. |
Stats | Tr_mil | log(dist) | comlang | contig | hist | fta | log(area) | log(gdpcap) | log(pop) | island | landl |
---|---|---|---|---|---|---|---|---|---|---|---|
Min | 0 | 4.088 | 0.000 | 0.000 | 0.000 | 0.000 | 6.507 | 5.969 | 13.32 | 0.000 | 0.000 |
1st Q | 8 | 8.013 | 0.000 | 0.000 | 0.000 | 0.000 | 11.419 | 7.570 | 15.90 | 0.000 | 0.000 |
Med. | 84 | 8.830 | 0.000 | 0.000 | 0.000 | 0.000 | 12.675 | 8.734 | 16.89 | 0.000 | 0.000 |
Mean | 1351 | 8.566 | 0.091 | 0.036 | 0.032 | 0.138 | 12.773 | 8.664 | 16.91 | 0.047 | 0.094 |
3rd Q | 524 | 9.237 | 0.000 | 0.000 | 0.000 | 0.000 | 14.043 | 10.024 | 17.91 | 0.000 | 0.000 |
Max | 232,700 | 9.892 | 1.000 | 1.000 | 1.000 | 1.000 | 16.612 | 10.523 | 20.96 | 1.000 | 1.000 |
(1) | (2) | (3) | |
---|---|---|---|
ZIP ESF | ZIP ESFc | Poisson ESF | |
First Step (logit) | |||
Distance | 0.57 (0.16) *** | 0.34 (0.08) *** | – |
Common language | −0.73 (0.30) ** | 0.29 (0.22) | – |
Contiguity | 0.54 (0.52) | 0.13 (0.53) | – |
Common history | −0.09 (0.76) | −1.43 (0.80) * | – |
FTA | −2.51 (0.50) *** | −1.44 (0.35) *** | – |
Area imp | 0.32 (0.08) *** | 0.05 (0.05) | – |
Area exp | 0.09 (0.06) | 0.29 (0.05) *** | – |
GDP per cap. imp | −1.35 (0.11) *** | −0.73 (0.05) *** | – |
GDP per cap. exp | −0.89 (0.09) *** | −0.83 (0.07) *** | – |
Population imp | −1.02 (0.12) *** | −0.43 (0.08) *** | – |
Population exp | −1.01 (0.10) *** | −1.15 (0.08) *** | – |
Island imp | −0.48 (0.64) | −1.12 (0.41) *** | – |
Island exp | 0.44 (0.54) | −1.71 (0.47) *** | – |
Landlocked imp | 3.74 (0.48) *** | −0.12 (0.18) | – |
Landlocked exp | −0.15 (0.31) | −1.08 (0.23) *** | – |
Constant | 38.69 (3.27) *** | 30.48 (2.32) *** | – |
Eigenvectors (exp) | 10 | – | – |
Eigenvectors (imp) | 16 | – | – |
Eigenvectors (network) | 28 | – | – |
Second Step (Poisson) | |||
Distance | −0.58 (0.04) *** | −0.58 (0.04) *** | −0.58 (0.04) *** |
Common language | 0.09 (0.08) | 0.09 (0.08) | 0.09 (0.08) |
Contiguity | 0.56 (0.10) *** | 0.56 (0.10) *** | 0.56 (0.10) *** |
Common history | 0.19 (0.09) ** | 0.19 (0.09) ** | 0.19 (0.09) ** |
FTA | 0.45 (0.08) *** | 0.45 (0.08) *** | 0.45 (0.08) *** |
Area imp | −0.19 (0.02) *** | −0.19 (0.02) *** | −0.19 (0.02) *** |
Area exp | −0.003 (0.02) | −0.003 (0.02) | −0.003 (0.02) |
GDP per cap. imp | 0.77 (0.03) *** | 0.77 (0.03) *** | 0.77 (0.03) *** |
GDP per cap. exp | 0.77 (0.02) *** | 0.77 (0.02) *** | 0.77 (0.02) |
Population imp | 0.91 (0.03) *** | 0.91 (0.03) *** | 0.91 (0.03) *** |
Population exp | 0.73 (0.03) *** | 0.73 (0.03) *** | 0.73 (0.03) *** |
Island imp | −0.03 (0.07) | −0.03 (0.07) | −0.0 3 (0.07) |
Island exp | −0.49 (0.08) *** | −0.49 (0.08) *** | −0.49 (0.08) *** |
Landlocked imp | 0.002 (0.10) | 0.002 (0.10) | 0.002 (0.10) |
Landlocked exp | 0.14 (0.10) | 0.14 (0.10) | 0.14 (0.10) |
Constant | −28.48 (0.71) *** | −28.48 (0.71) *** | −28.48 (0.71) *** |
Eigenvectors (exp) | 6 | 6 | 6 |
Eigenvectors (imp) | 7 | 7 | 7 |
Eigenvectors (network) | 24 | 24 | 24 |
AIC | 1,477,400 | 1,477,988 | 1,478,688 |
Log-likelihood | −738,577 | −738,925 | −739,290 |
McFadden’s pseudo-R2 | 0.935 | 0.935 | 0.935 |
Observations | 4032 | 4032 | 4032 |
Residual dof | 3910 | 3963 | 3978 |
Trade Flow (in US$ Millions, Rounded) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Observed | 484 | 136 | 112 | 76 | 64 | 39 | 42 | 49 | 35 | 29 |
ZIP ESF | 485 | 8 | 12 | 15 | 18 | 19 | 20 | 20 | 20 | 20 |
ZIP ESFc | 483 | 10 | 15 | 18 | 20 | 21 | 21 | 21 | 21 | 21 |
Poisson ESF | 470 | 17 | 24 | 27 | 29 | 29 | 29 | 29 | 28 | 27 |
Comparison | Eigenvectors | Comparison | Eigenvectors | |
---|---|---|---|---|
Exporter vs. Importer | Exporter/importer, logit (common) | e12, e17, e20, −e10, e24 | Exporter/importer, count (common) | e1, e7 |
Exporter, logit (unique) | e1, e3, e5, e9, e10, e15 | Exporter, count (unique) | e4, e5, e10, e19 | |
Importer, logit (unique) | e2, e4, e7, e13, e14, e19, e20, e22, e25–e29 | Importer, count (unique) | e8, e14, e20, e23, e25 | |
Logit vs. Count | Logit/count, exporter (common) | e1, e5, e10 | Logit/count, importer (common) | e7, e14, e20, e25 |
Logit, exporter (unique) | e3, e9, e12, e15, e17, e20, e24 | Logit, importer (unique) | e2, e4, e12, e13, e17, e19, e22, e24, e27–e29 | |
Count, exporter (unique) | e4, e7, e19 | Count, importer (unique) | e1, e8, e23 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metulini, R.; Patuelli, R.; Griffith, D.A. A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade. Econometrics 2018, 6, 9. https://doi.org/10.3390/econometrics6010009
Metulini R, Patuelli R, Griffith DA. A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade. Econometrics. 2018; 6(1):9. https://doi.org/10.3390/econometrics6010009
Chicago/Turabian StyleMetulini, Rodolfo, Roberto Patuelli, and Daniel A. Griffith. 2018. "A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade" Econometrics 6, no. 1: 9. https://doi.org/10.3390/econometrics6010009
APA StyleMetulini, R., Patuelli, R., & Griffith, D. A. (2018). A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade. Econometrics, 6(1), 9. https://doi.org/10.3390/econometrics6010009