Estimating Type 2 Diabetes Prevalence: A Model of Drug Consumption Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Population
- The total DDD consumed per year was calculated as follows:
- 2.
- DID: This indicates the number of people per 1000 who receive antidiabetic drugs daily and was calculated using the following equation.
2.3. Literature Data
2.4. Prevalence Estimation Model
- The treatment of the pathology is mainly pharmacological;
- The drugs used are specific for the pathology considered;
- The administration of the drugs is not seasonal.
- Step (1) The number of patients undergoing treatment for DM based on DID estimations.
- Step (2) The adjustment to treatment adherence.
- Step (3) The adjustment to NADs in monotherapy or polytherapy.
- Step (4) The exclusion of insulin AD users.
- Step (5) The prevalence estimation of T2DM patients under pharmacological treatment
- Step (6) The prevalence estimation of T2DM.
2.5. Sensitivity Analysis
3. Results
3.1. Characterization of AD Consumption in Portugal
3.2. Estimated Prevalence of Diabetes in Portugal
3.3. Sensitivity Analysis
4. Discussion
4.1. Characterization of AD Consumption
4.2. Prevalence Estimation
4.3. Prevalence Estimation Model: Adherence to Medication in DM
4.4. Prevalence Estimation Model: Concomitant Use of AD Drugs
4.5. Sensitivity Analysis
4.6. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wulsin, L.; Dougherty, A.; California State Library, California Research Bureau. A Briefing on Health Technology Assessment; California State Library, California Research Bureau: Sacramento, CA, USA, 2008. [Google Scholar]
- Commission, E. Health Technology Assessment. Available online: https://health.ec.europa.eu/health-technology-assessment_en (accessed on 11 January 2024).
- Johnson, L.L. Chapter 17—Design of Observational Studies. In Principles and Practice of Clinical Research, 4th ed.; Gallin, J.I., Ognibene, F.P., Johnson, L.L., Eds.; Academic Press: Boston, MA, USA, 2018; pp. 231–248. [Google Scholar]
- Wickham, R.J. Secondary Analysis Research. J. Adv. Pract. Oncol. 2019, 10, 395–400. [Google Scholar] [CrossRef]
- Pederson, L.; Vingilis, E.; Wickens, C.; Koval, J.; Re, M. Use of secondary data analyses in research: Pros and Cons. J. Addict. Med. Ther. Sci. 2020, 6, 58–60. [Google Scholar] [CrossRef]
- Silman, A.J.; Macfarlane, G.J.; Macfarlane, T.; Silman, A.J.; Macfarlane, G.J.; Macfarlane, T. 90Use of secondary data. In Epidemiological Studies: A Practical Guide; Silman, A.J., Macfarlane, G.J., Macfarlane, T., Eds.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Wettermark, B.; Zoëga, H.; Furu, K.; Korhonen, M.; Hallas, J.; Nørgaard, M.; Almarsdottir, A.; Andersen, M.; Andersson Sundell, K.; Bergman, U.; et al. The Nordic prescription databases as a resource for pharmacoepidemiological research—A literature review. Pharmacoepidemiol. Drug Saf. 2013, 22, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Hallas, J.; Hellfritzsch, M.; Rix, M.; Olesen, M.; Reilev, M.; Pottegård, A. Odense Pharmacoepidemiological Database: A Review of Use and Content. Basic Clin. Pharmacol. Toxicol. 2017, 120, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wettermark, B.; Elseviers, M.; Almarsdottir, A.B.; Andersen, M.; Benko, R.; Bennie, M.; Eriksson, I.; Godman, B.; Krska, J.; Poluzzi, E.; et al. Introduction to Drug Utilization Research. In Drug Utilization Research: Methods and Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 1–12. [Google Scholar]
- Elseviers, M.; Wettermark, B.; Almarsdottir, A.B.; Andersen, M.; Benko, R.; Bennie, M.; Eriksson, I.; Godman, B.; Krska, J.; Poluzzi, E.; et al. Drug Utilization Research: Methods and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Wettermark, B.; Vlahović-Palčevski, V.; Lee, D.; Bergman, U. Studies of Drug Utilization. In Pharmacoepidemiology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 373–410. [Google Scholar]
- WHO. Classification of Diabetes Mellitus; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- IDF. International Diabetes Federation. In Diabetes Atlas; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC Classification and DDD Assignment 2022. Available online: https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/ (accessed on 26 June 2022).
- Draznin, B.; Aroda, V.R.; Bakris, G.; Benson, G.; Brown, F.M.; Freeman, R.; Green, J.; Huang, E.; Isaacs, D.; Kahan, S.; et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S125–S143. [Google Scholar] [CrossRef]
- Rui Duarte, M.M.; Silva Nunes, J.; Melo, P.C.; Raposo, J.F.; Carvalho, D.; Pelo Grupo de Trabalho para as Recomendações Nacionais da SPD sobre a Terapêutica da Diabetes Tipo 2. SPD National Recommendations for the Treatment of Hyperglycemia in Type 2 Diabetes—Update Based in the ADA/EASD Joint Position Statement. Rev. Port. Diabetes 2018, 4, 154–180. [Google Scholar]
- Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018, 41, 2669–2701. [Google Scholar] [CrossRef] [PubMed]
- IDF. International Diabetes Federation: Global Guideline for Type 2 Diabetes; International Diabetes Federation: Brussels, Belgium, 2012. [Google Scholar]
- Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R. Management of hyperglycemia in type 2 diabetes: A patient-centered approach: Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012, 35, 1364–1379. [Google Scholar] [CrossRef]
- Cho, Y.K.; Lee, J.; Kim, H.S.; Park, J.-Y.; Jung, C.H.; Lee, W.J. Clinical Efficacy of Quadruple Oral Therapy for Type 2 Diabetes in Real-World Practice: A Retrospective Observational Study. Diabetes Ther. 2020, 11, 2029–2039. [Google Scholar] [CrossRef]
- Moon, J.S.; Suh, S.; Kim, S.S.; Jin, H.Y.; Kim, J.M.; Jang, M.H.; Lee, K.A.; Lee, J.H.; Chung, S.M.; Lyu, Y.S.; et al. Efficacy and Safety of Treatment with Quadruple Oral Hypoglycemic Agents in Uncontrolled Type 2 Diabetes Mellitus: A Multi-Center, Retrospective, Observational Study. Diabetes Metab. J. 2021, 45, 675–683. [Google Scholar] [CrossRef]
- Ku, E.J.; Lee, D.H.; Jeon, H.J.; Oh, T.K. Long-term effectiveness and safety of quadruple combination therapy with empagliflozin versus dapagliflozin in patients with type 2 diabetes: 3-year prospective observational study. Diabetes Res. Clin. Pract. 2021, 182, 109123. [Google Scholar] [CrossRef] [PubMed]
- INE (Instituto Nacional de Estatística). População residente em Portugal. Available online: http://www.ine.pt (accessed on 26 June 2022).
- Bachhav, S.S.; Kshirsagar, N.A. Systematic review of drug utilization studies & the use of the drug classification system in the WHO-SEARO Region. Indian J. Med. Res. 2015, 142, 120–129. [Google Scholar] [CrossRef] [PubMed]
- SPD. Relatório Anual do Observatório Nacional da Diabetes; Sociedade Portuguesa de Diabetologia: Lisboa, Portugal, 2019. [Google Scholar]
- Sabaté, E. Adherence to Long-Term Therapies: Evidence for Action; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Fernandez-Lazaro, C.I.; García-González, J.M.; Adams, D.P.; Fernandez-Lazaro, D.; Mielgo-Ayuso, J.; Caballero-Garcia, A.; Moreno Racionero, F.; Córdova, A.; Miron-Canelo, J.A. Adherence to treatment and related factors among patients with chronic conditions in primary care: A cross-sectional study. BMC Fam. Pract. 2019, 20, 132. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Ramos, F.; Cabrita, J. Using a pharmaco-epidemiological approach to estimate diabetes type 2 prevalence in Portugal. Pharmacoepidemiol. Drug Saf. 2006, 15, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Yudkin, J.S.; Kehlenbrink, S.; Davies, J.I.; Wild, S.H.; Lipska, K.J.; Sussman, J.B.; Beran, D. Estimation of global insulin use for type 2 diabetes, 2018–2030: A microsimulation analysis. Lancet Diabetes Endocrinol. 2019, 7, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Sartor, F.; Walckiers, D. Estimate of disease prevalence using drug consumption data. Am. J. Epidemiol. 1995, 141, 782–787. [Google Scholar] [CrossRef]
- Wabe, N.T.; Angamo, M.T.; Hussein, S. Medication adherence in diabetes mellitus and self management practices among type-2 diabetics in Ethiopia. N. Am. J. Med. Sci. 2011, 3, 418–423. [Google Scholar] [CrossRef]
- Spadea, T.; Onorati, R.; Baratta, F.; Pignata, I.; Parente, M.; Pannacci, L.; Ancona, D.; Ribecco, P.; Costa, G.; Gnavi, R.; et al. Monitoring adherence to pharmacological therapy and follow-up examinations among patients with type 2 diabetes in community pharmacies. Results from an experience in Italy. PLoS ONE 2021, 16, e0256478. [Google Scholar] [CrossRef]
- Masaryková, L.; Tesař, T.; Lehocká, U.; Bernáthová, K. Evaluation of adherence to treatment in patients suffering from diabetes mellitus. Ceska Slov. Farm. 2020, 69, 67–74. [Google Scholar]
- Cortez-Dias, N.; Martins, S.; Belo, A.; Fiuza, M. Prevalence, management and control of diabetes mellitus and associated risk factors in primary health care in Portugal. Rev. Port. Cardiol. 2010, 29, 509–537. [Google Scholar]
- Heintjes, E.M.; Overbeek, J.A.; Hall, G.C.; Prieto-Alhambra, D.; Lapi, F.; Hammar, N.; Bezemer, I.D. Factors Associated with Type 2 Diabetes Mellitus Treatment Choice Across Four European Countries. Clin. Ther. 2017, 39, 2296–2310.e2214. [Google Scholar] [CrossRef] [PubMed]
- OECD Statistics. OECD Health Statistics. Available online: http://www.oecd.org/health/health-data.htm (accessed on 26 June 2022).
- Pot, G.K.; Battjes-Fries, M.C.; Patijn, O.N.; Zijl, N.v.d.; Pijl, H.; Voshol, P. Lifestyle medicine for type 2 diabetes: Practice-based evidence for long-term efficacy of a multicomponent lifestyle intervention (Reverse Diabetes2 Now). BMJ Nutr. Prev. Health 2020, 3, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, G.; Goodwin, S.M.; Staffier, K.L.; Karlsen, M. Remission of Type 2 Diabetes after Treatment with a High-Fiber, Low-Fat, Plant-Predominant Diet Intervention: A Case Series. Am. J. Lifestyle Med. 2023, 17, 839–846. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Huang, Q.; Zhang, Q.; Li, M.; Wu, Y. The effectiveness of lifestyle interventions for diabetes remission on patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Worldviews Evid. Based Nurs. 2023, 20, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Churuangsuk, C.; Hall, J.; Reynolds, A.; Griffin, S.J.; Combet, E.; Lean, M.E.J. Diets for weight management in adults with type 2 diabetes: An umbrella review of published meta-analyses and systematic review of trials of diets for diabetes remission. Diabetologia 2022, 65, 14–36. [Google Scholar] [CrossRef]
- Kelly, J.; Karlsen, M.; Steinke, G. Type 2 Diabetes Remission and Lifestyle Medicine: A Position Statement From the American College of Lifestyle Medicine. Am. J. Lifestyle Med. 2020, 14, 406–419. [Google Scholar] [CrossRef]
- Mardetko, N.; Nabergoj Makovec, U.; Locatelli, I.; Janez, A.; Kos, M. Uptake of new antidiabetic medicines in 11 European countries. BMC Endocr. Disord. 2021, 21, 127. [Google Scholar] [CrossRef]
- Kansra, A.R.; Lakkunarajah, S.; Jay, M.S. Childhood and Adolescent Obesity: A Review. Front. Pediatr. 2020, 8, 581461. [Google Scholar] [CrossRef]
- Agency, E.M. European Medicines Agency. Medicines. Available online: https://www.ema.europa.eu/en/medicines (accessed on 11 January 2024).
- Wojtara, M.; Mazumder, A.; Syeda, Y.; Mozgała, N. Glucagon-Like Peptide-1 Receptor Agonists for Chronic Weight Management. Adv. Med. 2023, 2023, 9946924. [Google Scholar] [CrossRef]
- Abbasi, J. FDA Green-Lights Tirzepatide, Marketed as Zepbound, for Chronic Weight Management. JAMA 2023, 330, 2143–2144. [Google Scholar] [CrossRef]
- DATS (Departamento de Avaliação de Tecnologias da Saúde). Relatório Público de Avaliação: FORXIGA (Dapaglifozina) INFARMED. Available online: https://www.infarmed.pt/documents/15786/3368817/Relat%C3%B3rio+de+avalia%C3%A7%C3%A3o+de+financiamento+p%C3%BAblico+de+Forxiga+%28dapagliflozina%29/bb0f8fc4-b164-ad19-66d8-67d1b2d70b88 (accessed on 26 June 2022).
- de Sousa-Uva, M.; Antunes, L.; Nunes, B.; Rodrigues, A.P.; Simões, J.A.; Ribeiro, R.T.; Boavida, J.M.; Matias-Dias, C. Trends in diabetes incidence from 1992 to 2015 and projections for 2024: A Portuguese General Practitioner’s Network study. Prim. Care Diabetes 2016, 10, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Barreto, M.; Kislaya, I.; Gaio, V.; Rodrigues, A.P.; Santos, A.J.; Namorado, S.; Antunes, L.; Gil, A.P.; Boavida, J.M.; Ribeiro, R.T.; et al. Prevalence, awareness, treatment and control of diabetes in Portugal: Results from the first National Health examination Survey (INSEF 2015). Diabetes Res. Clin. Pract. 2018, 140, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Gardete-Correia, L.; Boavida, J.M.; Raposo, J.F.; Mesquita, A.C.; Fona, C.; Carvalho, R.; Massano-Cardoso, S. First diabetes prevalence study in Portugal: PREVADIAB study. Diabet. Med. 2010, 27, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Aschner, P.; Karuranga, S.; James, S.; Simmons, D.; Basit, A.; Shaw, J.E.; Wild, S.H.; Ogurtsova, K.; Saeedi, P. The International Diabetes Federation’s guide for diabetes epidemiological studies. Diabetes Res. Clin. Pract. 2021, 172, 108630. [Google Scholar] [CrossRef]
- Raebel, M.A.; Schmittdiel, J.; Karter, A.J.; Konieczny, J.L.; Steiner, J.F. Standardizing terminology and definitions of medication adherence and persistence in research employing electronic databases. Med. Care 2013, 51, S11–S21. [Google Scholar] [CrossRef]
- Pasina, L.; Brucato, A.L.; Falcone, C.; Cucchi, E.; Bresciani, A.; Sottocorno, M.; Taddei, G.C.; Casati, M.; Franchi, C.; Djade, C.D.; et al. Medication non-adherence among elderly patients newly discharged and receiving polypharmacy. Drugs Aging 2014, 31, 283–289. [Google Scholar] [CrossRef]
- Yap, A.F.; Thirumoorthy, T.; Kwan, Y.H. Systematic review of the barriers affecting medication adherence in older adults. Geriatr. Gerontol. Int. 2016, 16, 1093–1101. [Google Scholar] [CrossRef]
- McGovern, A.; Tippu, Z.; Hinton, W.; Munro, N.; Whyte, M.; de Lusignan, S. Comparison of medication adherence and persistence in type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes. Metab. 2018, 20, 1040–1043. [Google Scholar] [CrossRef]
- Evans, M.; Engberg, S.; Faurby, M.; Fernandes, J.; Hudson, P.; Polonsky, W. Adherence to and persistence with antidiabetic medications and associations with clinical and economic outcomes in people with type 2 diabetes mellitus: A systematic literature review. Diabetes Obes. Metab. 2022, 24, 377–390. [Google Scholar] [CrossRef]
- Lee, D.S.U.; Lee, H. Adherence and persistence rates of major antidiabetic medications: A review. Diabetol. Metab. Syndr. 2022, 14, 12. [Google Scholar] [CrossRef]
- Raebel, M.A.; Ellis, J.L.; Carroll, N.M.; Bayliss, E.A.; McGinnis, B.; Schroeder, E.B.; Shetterly, S.; Xu, S.; Steiner, J.F. Characteristics of patients with primary non-adherence to medications for hypertension, diabetes, and lipid disorders. J. Gen. Intern. Med. 2012, 27, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Moreno Juste, A.; Menditto, E.; Orlando, V.; Monetti, V.M.; Gimeno Miguel, A.; González Rubio, F.; Aza-Pascual-Salcedo, M.M.; Cahir, C.; Prados Torres, A.; Riccardi, G. Treatment Patterns of Diabetes in Italy: A Population-Based Study. Front. Pharmacol. 2019, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Juste, A.; Poblador-Plou, B.; Aza-Pascual-Salcedo, M.; González-Rubio, F.; Malo, S.; Librero López, J.; Pico-Soler, V.; Giménez Labrador, E.; Mucherino, S.; Orlando, V.; et al. Initial Therapy, Regimen Change, and Persistence in a Spanish Cohort of Newly Treated Type 2 Diabetes Patients: A Retrospective, Observational Study Using Real-World Data. Int. J. Environ. Res. Public Health 2020, 17, 3742. [Google Scholar] [CrossRef] [PubMed]
- Ingrasciotta, Y.; Bertuccio, M.P.; Crisafulli, S.; Ientile, V.; Muscianisi, M.; L’Abbate, L.; Pastorello, M.; Provenzano, V.; Scorsone, A.; Scondotto, S.; et al. Real World Use of Antidiabetic Drugs in the Years 2011–2017: A Population-Based Study from Southern Italy. Int. J. Environ. Res. Public Health 2020, 17, 9514. [Google Scholar] [CrossRef] [PubMed]
- Wallia, A.; Molitch, M.E. Insulin Therapy for Type 2 Diabetes Mellitus. JAMA 2014, 311, 2315–2325. [Google Scholar] [CrossRef]
- Holden, S.E.; Gale, E.A.; Jenkins-Jones, S.; Currie, C.J. How many people inject insulin? UK estimates from 1991 to 2010. Diabetes Obes. Metab. 2014, 16, 553–559. [Google Scholar] [CrossRef]
- Ni, X.; Zhang, L.; Feng, X.; Tang, L. New Hypoglycemic Drugs: Combination Drugs and Targets Discovery. Front. Pharmacol. 2022, 13, 877797. [Google Scholar] [CrossRef]
- Azevedo, L.F.; Magro, F.; Portela, F.; Lago, P.; Deus, J.; Cotter, J.; Cremers, I.; Vieira, A.; Peixe, P.; Caldeira, P.; et al. Estimating the prevalence of inflammatory bowel disease in Portugal using a pharmaco-epidemiological approach. Pharmacoepidemiol. Drug Saf. 2010, 19, 499–510. [Google Scholar] [CrossRef]
- Rasmussen, L.; Wettermark, B.; Steinke, D.; Pottegård, A. Core concepts in pharmacoepidemiology: Measures of drug utilization based on individual-level drug dispensing data. Pharmacoepidemiol. Drug Saf. 2022, 31, 1015–1026. [Google Scholar] [CrossRef]
- Caetano, P.A.; Lam, J.M.; Morgan, S.G. Toward a standard definition and measurement of persistence with drug therapy: Examples from research on statin and antihypertensive utilization. Clin. Ther. 2006, 28, 1411–1424; discussion 1410. [Google Scholar] [CrossRef]
- Lin, Y.-Y.; Weng, S.-F.; Hsu, C.-H.; Huang, C.-L.; Lin, Y.-P.; Yeh, M.-C.; Han, A.-Y.; Hsieh, Y.-S. Effect of metformin monotherapy and dual or triple concomitant therapy with metformin on glycemic control and lipid profile management of patients with type 2 diabetes mellitus. Front. Med. 2022, 9, 995944. [Google Scholar] [CrossRef] [PubMed]
- Rusz, C.-M.; Ősz, B.-E.; Jîtcă, G.; Miklos, A.; Bătrînu, M.-G.; Imre, S. Off-Label Medication: From a Simple Concept to Complex Practical Aspects. Int. J. Environ. Res. Public Health 2021, 18, 10447. [Google Scholar] [CrossRef] [PubMed]
- Tsushima, Y.; Zhou, K.; Bena, J.F.; Kashyap, S.R. Prevalence and Clinical Determinants of Obesity in Adults with Type 1 Diabetes Mellitus: A Single-Center Retrospective Observational Study. Endocr. Pract. 2022, 28, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.S.; Bailey, R.; Calhoun, P.; Shah, V.N.; Lyons, S.K.; DeSalvo, D.J. Off-label use of sodium glucose co-transporter inhibitors among adults in type 1 diabetes exchange registry. Diabetes Obes. Metab. 2022, 24, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Sjöholm, Å. Using adjuvant pharmacotherapy in the treatment of type 1 diabetes. Expert Opin. Pharmacother. 2021, 22, 2143–2148. [Google Scholar] [CrossRef] [PubMed]
- Lane, K.; Freeby, M. Adjunctive therapies in type 1 diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 8–13. [Google Scholar] [CrossRef] [PubMed]
- El Hage, L.; Kashyap, S.R.; Rao, P. Use of SGLT-2 Inhibitors in Patients with Type 1 Diabetes Mellitus. J. Prim. Care Community Health 2019, 10, 2150132719895188. [Google Scholar] [CrossRef] [PubMed]
- Bayona Cebada, A.; Nattero-Chávez, L.; Alonso Díaz, S.; Escobar-Morreale, H.F.; Luque-Ramírez, M. Efficacy and Safety of SGLT2 Inhibitors in Type 1 Diabetes After the Introduction of an Off-Label Use Protocol for Clinical Practice. Diabetes Technol. Ther. 2020, 22, 208–215. [Google Scholar] [CrossRef]
- Sari, C.; Seip, R.L.; Umashanker, D. Case Report: Off Label Utilization of Topiramate and Metformin in Patients with BMI ≥ 50 kg/m2 Prior to Bariatric Surgery. Front. Endocrinol. 2021, 12, 588016. [Google Scholar] [CrossRef]
- Ayub, M.; Gul, S.; Zehra, F. Report: Metformin potential in predisposing arthralgia, type II cross reactivity secondary to group A streptococcus infection & other comorbidities in treating PCOS. Pak. J. Pharm. Sci. 2019, 32, 1107–1110. [Google Scholar]
- Nathan, N.; Sullivan, S.D. The utility of metformin therapy in reproductive-aged women with polycystic ovary syndrome (PCOS). Curr. Pharm. Biotechnol. 2014, 15, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, F.; Orrù, B.; Grandi, G.; Unfer, V. Short-term effects of metformin and myo-inositol in women with polycystic ovarian syndrome (PCOS): A meta-analysis of randomized clinical trials. Gynecol. Endocrinol. 2019, 35, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.T.; Chao, T.; Lee, A.; Foulad, D.P.; Choi, F.; Juhasz, M.; Dobry, A.; Mesinkovska, N.A. Oral Metformin for Treating Dermatological Diseases: A Systematic Review. J. Drugs Dermatol. 2020, 19, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Stanescu, A.M.A.; Simionescu, A.A.; Florea, M.; Diaconu, C.C. Is Metformin a Possible Beneficial Treatment for Psoriasis? A Scoping Review. J. Pers. Med. 2021, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Piskovatska, V.; Storey, K.B.; Vaiserman, A.M.; Lushchak, O. The Use of Metformin to Increase the Human Healthspan. Adv. Exp. Med. Biol. 2020, 1260, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, I.; Hollenberg, M.D.; Ding, H.; Triggle, C.R. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front. Endocrinol. 2021, 12, 718942. [Google Scholar] [CrossRef]
- Piskovatska, V.; Stefanyshyn, N.; Storey, K.B.; Vaiserman, A.M.; Lushchak, O. Metformin as a geroprotector: Experimental and clinical evidence. Biogerontology 2019, 20, 33–48. [Google Scholar] [CrossRef]
- European Medicines Agency. New Add-On Treatment to Insulin for Treatment of Certain Patients with Type 1 Diabetes; EMA/141347/2019; European Medicines Agency: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Chini, F.; Pezzotti, P.; Orzella, L.; Borgia, P.; Guasticchi, G. Can we use the pharmacy data to estimate the prevalence of chronic conditions? a comparison of multiple data sources. BMC Public Health 2011, 11, 688. [Google Scholar] [CrossRef]
- Maio, V.; Yuen, E.; Rabinowitz, C.; Louis, D.; Jimbo, M.; Donatini, A.; Mall, S.; Taroni, F. Using pharmacy data to identify those with chronic conditions in Emilia Romagna, Italy. J. Health Serv. Res. Policy 2005, 10, 232–238. [Google Scholar] [CrossRef]
- Purkiss, S.F.; Keegel, T.; Vally, H.; Wollersheim, D. A comparison of Australian chronic disease prevalence estimates using administrative pharmaceutical dispensing data with international and community survey data. Int. J. Popul. Data Sci. 2020, 5, 1347. [Google Scholar] [CrossRef]
- Slobbe, L.C.J.; Füssenich, K.; Wong, A.; Boshuizen, H.C.; Nielen, M.M.J.; Polder, J.J.; Feenstra, T.L.; van Oers, H.A.M. Estimating disease prevalence from drug utilization data using the Random Forest algorithm. Eur. J. Public Health 2019, 29, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Walckiers, D.; Sartor, F. Results of an epidemiological study on drug-treated intraocular hypertension in Belgium. J. Clin. Epidemiol. 1996, 49, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Vaes, B.; Ruelens, C.; Saikali, S.; Smets, A.; Henrard, S.; Renard, F.; van den Akker, M.; Van Pottelbergh, G.; Goderis, G.; Van der Heyden, J. Estimating the prevalence of diabetes mellitus and thyroid disorders using medication data in Flanders, Belgium. Eur. J. Public Health 2018, 28, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; Fontbonne, A.; Weitzman, S.; Eschwege, E. Estimation of the prevalence of diabetes mellitus in Israel based on hypoglycemic drug supply and consumption. Diabete Metab. 1990, 16, 59–63. [Google Scholar]
- Purkiss, S.; Keegel, T.; Vally, H.; Wollersheim, D. Estimates of drug treated diabetes incidence and prevalence using Australian administrative pharmaceutical data. Int. J. Popul. Data Sci. 2021, 6, 1398. [Google Scholar] [CrossRef]
Region | 2018 | 2021 |
---|---|---|
Aveiro | 695,702 | 700,957 |
Beja | 141,178 | 144,465 |
Braga | 828,650 | 846,418 |
Bragança | 124,571 | 122,826 |
Castelo Branco | 179,038 | 177,995 |
Coimbra | 405,267 | 408,609 |
Évora | 152,865 | 152,511 |
Faro | 438,864 | 467,475 |
Guarda | 144,354 | 142,998 |
Leiria | 454,592 | 458,672 |
Lisboa | 2,271,772 | 2,275,846 |
Portalegre | 105,479 | 104,930 |
Porto | 1,778,146 | 1,785,627 |
Santarém | 429,719 | 425,025 |
Setubal | 852,328 | 874,926 |
Viana do Castelo | 230,954 | 231,293 |
Vila Real | 191,894 | 185,705 |
Viseu | 354,453 | 351,315 |
Madeira | 253,945 | 250,769 |
Açores | 242,846 | 236,440 |
Total | 10,276,617 | 10,344,802 |
2018 | 2021 | References | ||
---|---|---|---|---|
Adult diabetes prevalence estimates (20–79 years old) | Global | 9.3% | 10.5% | [13] |
Europe | 8.9% | 9.2% | [13] | |
Portugal | 14.2% | 13% | [13] | |
Portugal | 13.6% | [25] | ||
Non-diagnosed DM | Global | 50.1% | 44.7% | [13] |
Europe | 40.7% | 35.7% | [13] | |
Portugal/TID | 475.2 | 433.3 | [13] | |
Portugal | 44% | [25] | ||
T2DM treatment adherence | 60% | 60% | [26,27] | |
T2DM concomitance factor | 0.608 | 0.608 | [28] | |
T2DM insulin users | 7.5% | 7.5% | [29] |
DID (%) 1 | ||||
---|---|---|---|---|
ATC Code | Description of the ATC Code | 2018 | 2021 | Variation 2 (2018–2021, %) |
A10AB | Fast-acting insulins | 2.8 (3.1%) | 3.3 (3.1%) | 16.8 |
A10AC | Intermediate-acting insulins | 1.8 (2.0%) | 1.3 (1.2%) | −26.8 |
A10AD | Combined-acting insulins | 4.0 (4.3%) | 3.3 (3.1%) | −16.8 |
A10AE | Long-acting insulins | 7.0 (7.7%) | 8.1 (7.7%) | 15.3 |
A10A | Insulins | 15.5 (17.0%) | 16.0 (15.2%) | 2.6 |
A10BA | Biguanides | 24.2 26.6%) | 24.5 (23.4%) | 1.4 |
A10BB | Sulphonylureas | 14.5 (15.9%) | 11.5 (11.0%) | −20.5 |
A10BD | Oral fixed-dose combinations | 22.4 (24.6%) | 28.3 (27.0%) | 26.5 |
A10BF | α-glucosidase inhibitors | 0.7 (0.8%) | 0.4 (0.4%) | −45.7 |
A10BG | Glitazones | 0.4 (0.4%) | 0.4 (0.4%) | −11.7 |
A10BH | DPP-4 inhibitors | 7.0 (7.7%) | 7.6 (7.2%) | 8.9 |
A10BJ | GLP-1 analogues | 1.6 (1.8%) | 4.9 (4.7%) | 196.8 |
A10BK | SGLT2 inhibitors | 4.4 (4.8%) | 11.2 (10.7%) | 153.0 |
A10BX | Other non-insulin antidiabetics | 0.2 (0.2%) | 0.1 (0.1%) | −40.1 |
A10 B | Non-insulin antidiabetics | 75.4 (82.9%) | 88.9 (84.8%) | 17.9 |
Total A10 | Antidiabetics | 91.0 | 104.9 | 15.3 |
N. Patients in Treatment for DM 1 | N. Patients under Treatment for T2DM 2 | Prevalence of Treated T2DM Patients (%) 3 | Overall Prevalence of T2DM (%) 4 | |||||
---|---|---|---|---|---|---|---|---|
Region | 2018 | 2021 | 2018 | 2021 | 2018 | 2021 | 2018 | 2021 |
Aveiro | 65,315 | 75,645 | 54,322 | 64,443 | 7.8 | 9.2 | 13.9 | 14.3 |
Beja | 14,173 | 15,723 | 12,159 | 13,542 | 8.6 | 9.4 | 15.4 | 14.6 |
Braga | 74,463 | 89,563 | 63,971 | 78,413 | 7.7 | 9.3 | 13.8 | 14.4 |
Bragança | 14,678 | 16,368 | 12,379 | 14,070 | 9.9 | 11.5 | 17.7 | 17.8 |
Castelo Branco | 17,882 | 20,991 | 14,429 | 17,555 | 8.1 | 9.9 | 14.4 | 15.3 |
Coimbra | 41,017 | 45,944 | 32,594 | 37,924 | 8.0 | 9.3 | 14.4 | 14.4 |
Évora | 16,286 | 18,073 | 14,000 | 15,766 | 9.2 | 10.3 | 16.4 | 16.1 |
Faro | 34,275 | 40,214 | 28,303 | 34,120 | 6.4 | 7.3 | 11.5 | 11.4 |
Guarda | 14,510 | 15,904 | 12,101 | 13,615 | 8.4 | 9.5 | 15.0 | 14.8 |
Leiria | 45,654 | 54,204 | 38,138 | 46,200 | 8.4 | 10.1 | 15.0 | 15.7 |
Lisboa | 181,282 | 205,529 | 153,755 | 177,216 | 6.8 | 7.8 | 12.1 | 12.1 |
Portalegre | 11,007 | 12,126 | 9340 | 10,482 | 8.9 | 10.0 | 15.8 | 15.5 |
Porto | 169,066 | 199,690 | 143,733 | 173,001 | 8.1 | 9.7 | 14.4 | 15.1 |
Santarém | 47,601 | 54,357 | 40,418 | 46,830 | 9.4 | 11.0 | 16.8 | 17.1 |
Setúbal | 74,195 | 85,955 | 62,095 | 73,303 | 7.3 | 8.4 | 13.0 | 13.0 |
Viana do Castelo | 24,114 | 28,366 | 20,824 | 24,827 | 9.0 | 10.7 | 16.1 | 16.7 |
Vila Real | 22,214 | 25,621 | 19,369 | 22,760 | 10.1 | 12.3 | 18.0 | 19.1 |
Viseu | 33,572 | 40,745 | 28,179 | 35,033 | 7.9 | 10.0 | 14.2 | 15.5 |
Madeira | 20,411 | 23,940 | 17,904 | 21,493 | 7.1 | 8.6 | 12.6 | 13.3 |
Açores | 23,377 | 27,908 | 19,295 | 23,595 | 7.9 | 10.0 | 14.2 | 15.5 |
Total | 945,090 | 1,096,864 | 797,307 | 944,187 | 7.8 | 9.1 | 13.9 | 14.2 |
Prevalence of Treated T2DM Patients (%) | Overall Prevalence of T2DM (%) | ||||
---|---|---|---|---|---|
Parameters | Scenario | 2018 | 2021 | 2018 | 2021 |
Base estimated prevalence 1 | 7.8 | 9.1 | 13.9 | 14.2 | |
Medication adherence | 50% | 9.3 | 10.9 | ||
92% | 5.1 | 6.0 | |||
T2DM insulin users | 6.0% | 7.9 | 9.3 | ||
15.8% | 7.7 | 9.1 | |||
Concomitance factor (w) | 0.596 | 7.6 | 9.0 | ||
Non-diagnosed T2DM patients | 9.8% | 8.6 | 10.1 | ||
50% | 15.5 | 18.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, R.; Monteiro-Soares, M.; Guerreiro, J.P.; Pereira, R.; Teixeira-Rodrigues, A. Estimating Type 2 Diabetes Prevalence: A Model of Drug Consumption Data. Pharmacy 2024, 12, 18. https://doi.org/10.3390/pharmacy12010018
Oliveira R, Monteiro-Soares M, Guerreiro JP, Pereira R, Teixeira-Rodrigues A. Estimating Type 2 Diabetes Prevalence: A Model of Drug Consumption Data. Pharmacy. 2024; 12(1):18. https://doi.org/10.3390/pharmacy12010018
Chicago/Turabian StyleOliveira, Rita, Matilde Monteiro-Soares, José Pedro Guerreiro, Rúben Pereira, and António Teixeira-Rodrigues. 2024. "Estimating Type 2 Diabetes Prevalence: A Model of Drug Consumption Data" Pharmacy 12, no. 1: 18. https://doi.org/10.3390/pharmacy12010018