Cardiovascular Diseases and Metabolic Medications in the Lebanese Population: A Post Hoc Analysis from a Nationwide Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Design and Population
2.2. Sample Size
2.3. Data Collection
2.4. Definitions
Cardiovascular Disease Definition
2.5. Definitions of Risk Factors for CVD
2.6. Anthropometric Measurements
2.7. Statistical Analysis
3. Results
3.1. Sociodemographic Characteristics of the Sample Population
3.2. Risks Factors
3.3. Multivariable Analysis
3.4. Stratified Analysis
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
ASCVD | Atherosclerotic cardiovascular diseases |
BDS-22 | Beirut Distress Scale |
BMI | Body mass index |
CV | Cardiovascular |
CVD | Cardiovascular diseases |
DM | Diabetes mellitus |
DPP4 | Dipeptidylpeptidase-4 inhibitors |
GLP-1 RA | Glucagon-like peptide-1 receptor agonists |
HbA1c | Hemoglobin A1c |
HF | Heart failure |
LDL | Low-density lipoprotein |
LLT | Lipid-lowering therapy |
LMDS | Lebanese Mediterranean Diet Score |
MedDiet | Mediterranean diet |
MI | Myocardial infarction |
ORa | Adjusted odds ratio |
RCBG | Random capillary blood glucose |
RCT | Randomized controlled trials |
SD | Standard deviation |
SGLT2 | Sodium-glucose cotransporter-2 inhibitors |
SES | Socioeconomic status |
TG | Triglyceride |
T2DM | Type 2 diabetes mellitus |
US | United States |
WC | Waist circumference |
References
- Wang, T.; Li, Y.; Zheng, X. Association of Socioeconomic Status with Cardiovascular Disease and Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. J. Public Health 2023, 32, 385–399. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 12 November 2024).
- CDC Heart Disease Facts. Available online: https://www.cdc.gov/heart-disease/data-research/facts-stats/index.html (accessed on 12 November 2024).
- Jebari-Benslaiman, S.; Galicia-García, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Martín, C. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [Google Scholar] [CrossRef] [PubMed]
- Drożdż, D.; Drożdż, M.; Wójcik, M. Endothelial Dysfunction as a Factor Leading to Arterial Hypertension. Pediatr. Nephrol. 2023, 38, 2973–2985. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Li, S.; Lv, J. Endothelial Dysfunction and Diabetic Cardiomyopathy. Front. Endocrinol. 2022, 13, 851941. [Google Scholar] [CrossRef]
- Lam, S.H.M.; Alam, U.; Lip, G.Y.H. Refining the Cardiovascular Health Score in Patients with Type 2 Diabetes: Challenges and Opportunities. JACC Asia 2024, 4, 465–467. [Google Scholar] [CrossRef]
- Debele, G.R.; Kefeni, B.T.; Kanfe, S.G.; Ayele, T.A.; Wolde, H.F.; Yenit, M.K.; Ahmed, M.H. Incidence and Predictors of Cardiovascular Disease among Type 1 and Type 2 Diabetes Mellitus in a Tertiary Health Care Setting of Ethiopia: 8-Year Retrospective Follow-Up Study. Risk Manag. Healthc. Policy 2021, 14, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, A.; Cassani, G.; Puggioni, A.; Rossi, A.; Colombo, A.; Onodera, T.; Ferrannini, E. The Diabetes Pandemic and Associated Infections: Suggestions for Clinical Microbiology. Rev. Res. Med. Microbiol. 2019, 30, 1–17. [Google Scholar] [CrossRef]
- Sharma, A.; Mittal, S.; Aggarwal, R.; Chauhan, M.K. Diabetes and Cardiovascular Disease: Inter-Relation of Risk Factors and Treatment. Future J. Pharm. Sci. 2020, 6, 130. [Google Scholar] [CrossRef]
- Simonen, P.; Öörni, K.; Sinisalo, J.; Strandberg, T.E.; Wester, I.; Gylling, H. High Cholesterol Absorption: A Risk Factor of Atherosclerotic Cardiovascular Diseases? Atherosclerosis 2023, 376, 53–62. [Google Scholar] [CrossRef]
- Lu, Y.; Cui, X.; Zhang, L.; Wang, X.; Xu, Y.; Qin, Z.; Liu, G.; Wang, Q.; Tian, K.; Lim, K.S.; et al. The Functional Role of Lipoproteins in Atherosclerosis: Novel Directions for Diagnosis and Targeting Therapy. Aging Dis. 2022, 13, 491. [Google Scholar] [CrossRef] [PubMed]
- Gebreegziabiher, G.; Belachew, T.; Mehari, K.; Tamiru, D. Magnitude and Associated Factors of Metabolic Syndrome Among Adult Urban Dwellers of Northern Ethiopia. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 589–600. [Google Scholar] [CrossRef]
- Thongtang, N.; Sukmawan, R.; Llanes, E.J.B.; Lee, Z.-V. Dyslipidemia Management for Primary Prevention of Cardiovascular Events: Best in-Clinic Practices. Prev. Med. Rep. 2022, 27, 101819. [Google Scholar] [CrossRef]
- Marson, A.; Raffoul, N.; Osman, R.; Deed, G. Management of Patients with Type 2 Diabetes and Cardiovascular Disease in Primary Care. Aust. J. Gen. Pract. 2021, 50, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.-X.; Ma, X.-N.; Guan, C.-H.; Li, Y.-D.; Mauricio, D.; Fu, S.-B. Cardiovascular Disease in Type 2 Diabetes Mellitus: Progress toward Personalized Management. Cardiovasc. Diabetol. 2022, 21, 74. [Google Scholar] [CrossRef]
- Stevenson-Hoare, J.; Leonenko, G.; Escott-Price, V. Comparison of Long-Term Effects of Metformin on Longevity between People with Type 2 Diabetes and Matched Non-Diabetic Controls. BMC Public Health 2023, 23, 804. [Google Scholar] [CrossRef]
- Han, Y.; Xie, H.; Liu, Y.; Gao, P.; Yang, X.; Shen, Z. Effect of Metformin on All-Cause and Cardiovascular Mortality in Patients with Coronary Artery Diseases: A Systematic Review and an Updated Meta-Analysis. Cardiovasc. Diabetol. 2019, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.; Tendal, B.; Mustafa, R.A.; Vandvik, P.O.; Li, S.; Hao, Q.; Tunnicliffe, D.; Ruospo, M.; Natale, P.; Saglimbene, V.; et al. Sodium-Glucose Cotransporter Protein-2 (SGLT-2) Inhibitors and Glucagon-like Peptide-1 (GLP-1) Receptor Agonists for Type 2 Diabetes: Systematic Review and Network Meta-Analysis of Randomised Controlled Trials. BMJ 2021, 372, m4573. [Google Scholar] [CrossRef]
- Her, A.-Y.; Choi, B.G.; Rha, S.-W.; Kim, Y.H.; Jeong, M.H. Dipeptidyl Peptidase-4 Inhibitors versus Sulfonylureas on the Top of Metformin in Patients with Diabetes and Acute Myocardial Infarction. Cardiovasc. Diagn. Ther. 2024, 14, 38–50. [Google Scholar] [CrossRef]
- Rados, D.V.; Falcetta, M.R.R.; Pinto, L.C.; Leitão, C.B.; Gross, J.L. All-Cause Mortality and Cardiovascular Safety of Basal Insulin Treatment in Patients with Type 2 Diabetes Mellitus: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. Diabetes Res. Clin. Pract. 2021, 173, 108688. [Google Scholar] [CrossRef]
- Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease: Pathophysiological, Genetic, and Therapeutic Insights: A Consensus Statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, A.; Casula, M.; Olmastroni, E.; Norata, G.D.; Catapano, A.L. Global Epidemiology of Dyslipidaemias. Nat. Rev. Cardiol. 2021, 18, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Balling, M.; Nordestgaard, B.G.; Langsted, A.; Varbo, A.; Kamstrup, P.R.; Afzal, S. Small Dense Low-Density Lipoprotein Cholesterol Predicts Atherosclerotic Cardiovascular Disease in the Copenhagen General Population Study. J. Am. Coll. Cardiol. 2020, 75, 2873–2875. [Google Scholar] [CrossRef] [PubMed]
- Mhaimeed, O.; Burney, Z.A.; Schott, S.L.; Kohli, P.; Marvel, F.A.; Martin, S.S. The Importance of LDL-C Lowering in Atherosclerotic Cardiovascular Disease Prevention: Lower for Longer Is Better. Am. J. Prev. Cardiol. 2024, 18, 100649. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Tokgözoğlu, L.; Libby, P. The Dawn of a New Era of Targeted Lipid-Lowering Therapies. Eur. Heart J. 2022, 43, 3198–3208. [Google Scholar] [CrossRef]
- Wilson, P.W.F.; Polonsky, T.S.; Miedema, M.D.; Khera, A.; Kosinski, A.S.; Kuvin, J.T. Systematic Review for the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, E1144–E1161. [Google Scholar] [CrossRef]
- Kim, N.H.; Kim, S.G. Fibrates Revisited: Potential Role in Cardiovascular Risk Reduction. Diabetes Metab. J. 2020, 44, 213. [Google Scholar] [CrossRef]
- Toth, P.P.; Banach, M. Statins: Then and Now. Methodist DeBakey Cardiovasc. J. 2019, 15, 23. [Google Scholar] [CrossRef]
- Toth, P.P.; Granowitz, C.; Hull, M.; Anderson, A.; Philip, S. Long-Term Statin Persistence Is Poor among High-Risk Patients with Dyslipidemia: A Real-World Administrative Claims Analysis. Lipids Health Dis. 2019, 18, 175. [Google Scholar] [CrossRef]
- Colantonio, L.D.; Rosenson, R.S.; Deng, L.; Monda, K.L.; Dai, Y.; Farkouh, M.E.; Safford, M.M.; Philip, K.; Mues, K.E.; Muntner, P. Adherence to Statin Therapy Among US Adults Between 2007 and 2014. J. Am. Heart Assoc. 2019, 8, e010376. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A. Non Adherence to Lipid-Lowering Therapy and Strategies to Improve Adherence. Indian Heart J. 2024, 76, S138–S140. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.J.; Spencer, G.; Nugent, R.; Kostova, D.; Richter, P. The Cost-Effectiveness of Hyperlipidemia Medication in Low- and Middle-Income Countries: A Review. Glob. Heart 2022, 17, 18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, C.; Xu, Y.; Wang, Y.; Dai, F.; Hu, H.; Jiang, T.; Lu, Y.; Zhang, Q. The Management Correlation between Metabolic Index, Cardiovascular Health, and Diabetes Combined with Cardiovascular Disease. Front. Endocrinol. 2023, 13, 1036146. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Lee, J.-K. Effects of SGLT2 Inhibitors with and without Metformin in High-Risk, Treatment-Naïve Patients with Diabetes. J. Clin. Med. 2024, 13, 1387. [Google Scholar] [CrossRef]
- Chang, H.; Chen, Y.; Kuo, T.; Lin, Y.; Chien, K.; Chang, H.; Hung, C.; Chung, F. Sodium Glucose Transporter 2 Inhibitors Versus Metformin on Cardiovascular and Renal Outcomes in Patients with Diabetes with Low Cardiovascular Risk: A Nationwide Cohort Study. J. Am. Heart Assoc. 2024, 13, e032397. [Google Scholar] [CrossRef]
- Farah, R.; Zeidan, R.K.; Chahine, M.N.; Asmar, R.; Chahine, R.; Salameh, P.; Hosseini, H. Prevalence of Stroke Symptoms among Stroke-Free Residents: First National Data from Lebanon. Int. J. Stroke 2015, 10, 83–88. [Google Scholar] [CrossRef]
- Zeidan; Farah, R.; Chahine, M.N.; Asmar, R.; Hosseini, H.; Salameh, P.; Pathak, A. Prevalence and Correlates of Coronary Heart Disease: First Population-Based Study in Lebanon. Vasc. Health Risk Manag. 2016, 12, 75–84. [Google Scholar] [CrossRef]
- Zeenny, R.M.; Haddad, C.; Hajj, A.; Zeidan, R.K.; Salameh, P.; Ferrières, J. Adherence to the Mediterranean Diet and Cardiovascular Risk Factors among the Lebanese Population: A Nationwide Cross-Sectional Post Hoc Study. Nutrients 2024, 16, 2426. [Google Scholar] [CrossRef]
- Ministry of Social Affairs Central Administration of Statistics—Demographic and Social. Available online: http://www.cas.gov.lb/index.php/demographic-and-social-en (accessed on 29 June 2023).
- Introduction|StatCalc|User Guide|Support|Epi InfoTM|CDC. Available online: https://www.cdc.gov/epiinfo/user-guide/statcalc/statcalcintro.html (accessed on 29 June 2023).
- Sibai, A.; Tohme, R.A.; Mahfoud, Z.; Chaaya, M.; Hwalla, N. Noncommunicable Diseases and Behavioral Risk Factor Survey Comparison of Estimates Based on Cell Phone Interviews with Face to Face Interviews, 2009. Am. Univ. Beirut 2009. Available online: https://www.moph.gov.lb/DynamicPages/download_file/563 (accessed on 12 November 2024).
- Barbour, B.; Saadeh, N.; Salameh, P.R. Psychological Distress in Lebanese Young Adults: Constructing the Screening Tool ‘BDS-22’. Int. J. Cult. Ment. Health 2012, 5, 94–108. [Google Scholar] [CrossRef]
- Issa, C.; Jomaa, L.; Salamé, J.; Waked, M.; Barbour, B.; Zeidan, N.; Baldi, I.; Salameh, P. Females Are More Adherent to Lebanese Mediterranean Diet than Males among University Students. Asian Pac. J. Health Sci. 2014, 1, 345–353. [Google Scholar] [CrossRef]
- Rose, G.A. The Diagnosis of Ischaemic Heart Pain and Intermittent Claudication in Field Surveys. Bull. World Health Organ. 1962, 27, 645–658. [Google Scholar]
- O’Donnell, M.J.; Xavier, D.; Liu, L.; Zhang, H.; Chin, S.L.; Rao-Melacini, P.; Rangarajan, S.; Islam, S.; Pais, P.; McQueen, M.J.; et al. Risk Factors for Ischaemic and Intracerebral Haemorrhagic Stroke in 22 Countries (the INTERSTROKE Study): A Case-Control Study. Lancet 2010, 376, 112–123. [Google Scholar] [CrossRef]
- Howard, V.J. High Prevalence of Stroke Symptoms Among Persons without a Diagnosis of Stroke or Transient Ischemic Attack in a General Population: The REasons for Geographic And Racial Differences in Stroke (REGARDS) Study. Arch. Intern. Med. 2006, 166, 1952. [Google Scholar] [CrossRef]
- Talwalkar, P.G.; Sreenivas, C.G.; Gulati, A.; Baxi, H. Journey in Guidelines for Lipid Management: From Adult Treatment Panel (ATP)-I to ATP-III and What to Expect in ATP-IV. Indian J. Endocrinol. Metab. 2013, 17, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; De Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, 3168–3209. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health. Recomm. Mond. Sur Act. Phys. Pour Santé 2010, 58. Available online: https://www.who.int/publications/i/item/9789241599979 (accessed on 12 November 2024).
- Ibrahim, M.M.; Elamragy, A.A.; Girgis, H.; Nour, M.A. Cut off Values of Waist Circumference & Associated Cardiovascular Risk in Egyptians. BMC Cardiovasc. Disord. 2011, 11, 53. [Google Scholar] [CrossRef]
- O’Brien, E.; Asmar, R.; Beilin, L.; Imai, Y.; Mallion, J.-M.; Mancia, G.; Mengden, T.; Myers, M.; Padfield, P.; Palatini, P.; et al. European Society of Hypertension Recommendations for Conventional, Ambulatory and Home Blood Pressure Measurement. J. Hypertens. 2003, 21, 821–848. [Google Scholar] [CrossRef]
- Yan, C.; Thijs, L.; Cao, Y.; Trenson, S.; Zhang, Z.-Y.; Janssens, S.; Staessen, J.A.; Feng, Y.-M. Opportunities of Antidiabetic Drugs in Cardiovascular Medicine. Hypertension 2020, 76, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Vollset, S.E.; Ababneh, H.S.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasian, M.; Abbastabar, H.; Abd Al Magied, A.H.A.; Abd ElHafeez, S.; Abdelkader, A.; et al. Burden of Disease Scenarios for 204 Countries and Territories, 2022–2050: A Forecasting Analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2204–2256. [Google Scholar] [CrossRef] [PubMed]
- Dhindsa, D.S.; Khambhati, J.; Schultz, W.M.; Tahhan, A.S.; Quyyumi, A.A. Marital Status and Outcomes in Patients with Cardiovascular Disease. Trends Cardiovasc. Med. 2020, 30, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Malakieh, R.; El Khoury, V.; Boumosleh, J.M.; Obeid, C.; Jaalouk, D. Individual Determinants of Mediterranean Diet Adherence among Urban Lebanese Adult Residents. Nutr. Food Sci. 2023, 53, 1033–1044. [Google Scholar] [CrossRef]
- De Bont, J.; Jaganathan, S.; Dahlquist, M.; Persson, Å.; Stafoggia, M.; Ljungman, P. Ambient Air Pollution and Cardiovascular Diseases: An Umbrella Review of Systematic Reviews and Meta-analyses. J. Intern. Med. 2022, 291, 779–800. [Google Scholar] [CrossRef]
- Salameh, P.; Zeidan, R.K.; Hallit, S.; Farah, R.; Chahine, M.; Asmar, R.; Hosseini, H. Cardiovascular Diseases and Long-Term Self-Reported Exposure to Pollution: Results of a National Epidemiological Study in Lebanon. J. Cardiopulm. Rehabil. Prev. 2019, 39, 43–49. [Google Scholar] [CrossRef]
- Santosa, A.; Rosengren, A.; Ramasundarahettige, C.; Rangarajan, S.; Gulec, S.; Chifamba, J.; Lear, S.A.; Poirier, P.; Yeates, K.E.; Yusuf, R.; et al. Psychosocial Risk Factors and Cardiovascular Disease and Death in a Population-Based Cohort From 21 Low-, Middle-, and High-Income Countries. JAMA Netw. Open 2021, 4, e2138920. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Hedayatnia, M.; Asadi, Z.; Zare-Feyzabadi, R.; Yaghooti-Khorasani, M.; Ghazizadeh, H.; Ghaffarian-Zirak, R.; Nosrati-Tirkani, A.; Mohammadi-Bajgiran, M.; Rohban, M.; Sadabadi, F.; et al. Dyslipidemia and Cardiovascular Disease Risk among the MASHAD Study Population. Lipids Health Dis. 2020, 19, 42. [Google Scholar] [CrossRef]
- Akinosun, A.S.; Kamya, S.; Watt, J.; Johnston, W.; Leslie, S.J.; Grindle, M. Cardiovascular Disease Behavioural Risk Factors in Rural Interventions: Cross-Sectional Study. Sci. Rep. 2023, 13, 13376. [Google Scholar] [CrossRef]
- Bischops, A.C.; De Neve, J.-W.; Awasthi, A.; Vollmer, S.; Bärnighausen, T.; Geldsetzer, P. A Cross-Sectional Study of Cardiovascular Disease Risk Clustering at Different Socio-Geographic Levels in India. Nat. Commun. 2020, 11, 5891. [Google Scholar] [CrossRef]
- Johnston, I.S.; Miles, B.; Soos, B.; Garies, S.; Perez, G.; Queenan, J.A.; Drummond, N.; Singer, A. A Cross-Sectional Study Evaluating Cardiovascular Risk and Statin Prescribing in the Canadian Primary Care Sentinel Surveillance Network Database. BMC Prim. Care 2022, 23, 128. [Google Scholar] [CrossRef]
- Duruöz, M.T.; Bodur, H.; Ataman, Ş.; Gürer, G.; Akgül, Ö.; Çay, H.F.; Çapkın, E.; Sezer, İ.; Rezvani, A.; Melikoğlu, M.A.; et al. Cross-Sectional Analysis of Cardiovascular Disease and Risk Factors in Patients with Spondyloarthritis: A Real-Life Evidence from Biostar Nationwide Registry. Rheumatol. Int. 2024, 44, 631–642. [Google Scholar] [CrossRef]
- Bagheri, N.; Gilmour, B.; McRae, I.; Konings, P.; Dawda, P.; Del Fante, P.; Van Weel, C. Community Cardiovascular Disease Risk From Cross-Sectional General Practice Clinical Data: A Spatial Analysis. Prev. Chronic. Dis. 2015, 12, 140379. [Google Scholar] [CrossRef]
- Aremu, T.O.; Oluwole, O.E.; Adeyinka, K.O.; Schommer, J.C. Medication Adherence and Compliance: Recipe for Improving Patient Outcomes. Pharmacy 2022, 10, 106. [Google Scholar] [CrossRef]
- Sigamani, A.; Gupta, R. Revisiting Secondary Prevention in Coronary Heart Disease. Indian Heart J. 2022, 74, 431–440. [Google Scholar] [CrossRef]
- Ndumele, C.E.; Rangaswami, J.; Chow, S.L.; Neeland, I.J.; Tuttle, K.R.; Khan, S.S.; Coresh, J.; Mathew, R.O.; Baker-Smith, C.M.; Carnethon, M.R.; et al. Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory From the American Heart Association. Circulation 2023, 148, 1606–1635. [Google Scholar] [CrossRef]
- Banks, E.; Joshy, G.; Korda, R.J.; Stavreski, B.; Soga, K.; Egger, S.; Day, C.; Clarke, N.E.; Lewington, S.; Lopez, A.D. Tobacco Smoking and Risk of 36 Cardiovascular Disease Subtypes: Fatal and Non-Fatal Outcomes in a Large Prospective Australian Study. BMC Med. 2019, 17, 128. [Google Scholar] [CrossRef]
- CDC. Health Effects of Cigarettes: Cardiovascular Disease. Available online: https://www.cdc.gov/tobacco/about/cigarettes-and-cardiovascular-disease.html (accessed on 23 October 2024).
- Chareonrungrueangchai, K.; Wongkawinwoot, K.; Anothaisintawee, T.; Reutrakul, S. Dietary Factors and Risks of Cardiovascular Diseases: An Umbrella Review. Nutrients 2020, 12, 1088. [Google Scholar] [CrossRef]
- Kaminsky, L.A.; German, C.; Imboden, M.; Ozemek, C.; Peterman, J.E.; Brubaker, P.H. The Importance of Healthy Lifestyle Behaviors in the Prevention of Cardiovascular Disease. Prog. Cardiovasc. Dis. 2022, 70, 8–15. [Google Scholar] [CrossRef]
- Roadmap for CVD & Diabetes. Available online: https://world-heart-federation.org/cvd-roadmaps/whf-global-roadmaps/cvd-diabetes/ (accessed on 12 November 2024).
- Yang, Y.; Peng, N.; Chen, G.; Wan, Q.; Yan, L.; Wang, G.; Qin, Y.; Luo, Z.; Tang, X.; Huo, Y.; et al. Interaction between Smoking and Diabetes in Relation to Subsequent Risk of Cardiovascular Events. Cardiovasc. Diabetol. 2022, 21, 14. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, T.; Fu, H. Prevalence of Diabetes and Hypertension and Their Interaction Effects on Cardio-Cerebrovascular Diseases: A Cross-Sectional Study. BMC Public Health 2021, 21, 1224. [Google Scholar] [CrossRef]
- Ansah, J.P.; Inn, R.L.H.; Ahmad, S. An Evaluation of the Impact of Aggressive Hypertension, Diabetes and Smoking Cessation Management on CVD Outcomes at the Population Level: A Dynamic Simulation Analysis. BMC Public Health 2019, 19, 1105. [Google Scholar] [CrossRef]
- Kifle, Z.D.; Alehegn, A.A.; Adugna, M.; Bayleyegn, B. Prevalence and Predictors of Dyslipidemia among Hypertensive Patients in Lumame Primary Hospital, Amhara, Ethiopia: A Cross-Sectional Study. Metab. Open 2021, 11, 100108. [Google Scholar] [CrossRef]
- Gardette, V.; Bongard, V.; Dallongeville, J.; Arveiler, D.; Bingham, A.; Ruidavets, J.-B.; Amouyel, P.; Haas, B.; Ducimetière, P.; Ferrières, J. Ten-Year All-Cause Mortality in Presumably Healthy Subjects on Lipid-Lowering Drugs (from the Prospective Epidemiological Study of Myocardial Infarction [PRIME] Prospective Cohort). Am. J. Cardiol. 2009, 103, 381–386. [Google Scholar] [CrossRef]
No CVD n = 1608 (78.5%) | CVD n = 440 (21.5%) | Total N 2048 (100%) | p-Value | |
---|---|---|---|---|
Family History of CVD | <0.001 | |||
Yes | 538 (71.6%) | 213 (28.4%) | 751 (36.7%) | |
No | 1070 (82.4%) | 227 (17.5%) | 1297 (63.3%) | |
Hypertension | <0.001 | |||
Yes | 400 (63.3%) | 232 (36.7%) | 632 (30.9%) | |
No | 1208 (85.3%) | 208 (14.7%) | 1416 (69.1%) | |
Diabetes Mellitus | <0.001 | |||
Yes | 236 (62.8%) | 140 (37.2%) | 376 (18.4%) | |
No | 1372 (82.1%) | 300 (17.9%) | 1672 (81.6%) | |
Dyslipidemia | <0.001 | |||
Yes | 230 (59.4%) | 157 (40.6%) | 387 (18.9%) | |
No | 1378 (83.0%) | 283 (17.0%) | 1661 (81.1%) | |
Overall Smoking | <0.001 | |||
Yes | 776 (77.1%) | 230 (22.9%) | 1006 (49.1%) | |
Previous | 105 (62.9%) | 62 (37.1%) | 167 (8.2%) | |
No | 727 (83.0%) | 148 (17.0%) | 875 (42.7%) | |
Regular Physical Activity | 0.708 | |||
Yes | 522 (78.0%) | 147 (22.0%) | 669 (32.7%) | |
No | 1086 (78.8%) | 293 (21.2%) | 1379 (67.3%) | |
Hypoglycemic medications | <0.001 | |||
Yes | 89 (56.7%) | 68 (43.3%) | 157 (7.7%) | |
No | 1519 (80.3%) | 372 (19.7%) | 1891 (92.3%) | |
Type of hypoglycemic medications | ||||
Sulfonylurea | 30 (54.5) | 25 (45.5) | 55 (2.7%) | <0.001 |
Biguanides (metformin) | 68 (56.7) | 52 (43.3) | 120 (5.9%) | <0.001 |
Thiazolidinedione | 1 (50) | 1 (50) | 2 (0.1%) | 0.385 |
Meglitinides | 2 (100) | 0 | 2 (0.1%) | 1 |
DPP4 inhibitors | 16 (72.7) | 6 (27.3) | 22 (1.1%) | 0.601 |
Insulin | 7 (46.7) | 8 (53.3) | 15 (0.7%) | 0.007 |
Lipid-lowering medications | <0.001 | |||
Yes | 97 (55.1%) | 79 (44.9%) | 176 (8.6%) | |
No | 1511 (80.7%) | 361 (19.3%) | 1872 (91.4%) | |
Type of lipid-lowering medications | ||||
Statins | 82 (53.6) | 71 (46.4) | 153 (7.5%) | <0.001 |
Fibrates | 14 (60.9) | 9 (39.1) | 23 (1.1%) | 0.046 |
Cholesterol absorption inhibitor | 1 (100) | 0 | 1 (0%) | 1 |
Omega 3 | 6 (85.7) | 1 (14.3) | 7 (0.3%) | 0.709 |
Mean ± SD | Mean ± SD | Mean ± SD | ||
BMI (kg/m2) | 26.66 ± 4.88 | 27.52 ± 5.36 | 26.85 ± 4.99 | 0.001 |
LMDS | 30.59 ± 4.48 | 32.11 ± 4.72 | 30.98 ± 4.59 | <0.001 |
BDS-22 | 31.24 ± 10.08 | 37.74 ± 13.15 | 32.60 ± 11.11 | <0.001 |
Model 1: Logistic regression taking the CVD as the dependent variable with the sociodemographic, LMDS, and smoking status variables as independent variables. | ||
CVD as the Dependent Variable | ||
ORa (95% CI) | p-Value | |
Gender (female vs. male *) | 0.84 (0.63–1.12) | 0.239 |
Marital status (married vs. single *) | 0.82 (0.61–1.10) | 0.185 |
Education level (university vs. school *) | 1.09 (0.79–1.51) | 0.581 |
Work status (employed vs. unemployed *) | 0.78 (0.58–1.07) | 0.130 |
Age | 0.99 (0.98–1.00) | 0.610 |
LMDS | 1.06 (1.03–1.09) | <0.001 |
BMI | 1.00 (0.98–1.03) | 0.505 |
Hypertension (yes vs. no *) | 1.71 (1.25–2.33) | 0.001 |
Diabetes (yes vs. no *) | 1.75 (1.26–2.42) | 0.001 |
Dyslipidemia (yes vs. no *) | 1.89 (1.37–2.59) | <0.001 |
Family history of CVD (yes vs. no *) | 1.58 (1.21–2.07) | 0.001 |
Smoking status (previous vs. no *) | 1.63 (1.21–2.20) | 0.001 |
Smoking status (yes vs. no *) | 2.15 (1.36–3.41) | 0.001 |
Monthly income (lower intermediate vs. low *) | 0.64 (0.45–0.91) | 0.013 |
Monthly income (higher intermediate vs. low *) | 0.85 (0.60–1.20) | 0.370 |
Monthly income (high vs. low *) | 0.40 (0.25–0.62) | <0.001 |
Variables entered in the model: age, BMI, diabetes, dyslipidemia, education level, family history of CVD, gender, hypertension, income, LMDS, marital status, smoking status, and work status | ||
Model 2: Logistic regression taking the CVD as the dependent variable and the sociodemographic variables, LMDS, smoking status, and hypoglycemic medications and lipid-lowering medications as independent variables | ||
CVD as the Dependent Variable | ||
ORa (95% CI) | p-Value | |
Gender (female vs. male *) | 0.85 (0.63–1.13) | 0.255 |
Marital status (married vs. single *) | 0.82 (0.61–1.10) | 0.195 |
Education level (university vs. school *) | 1.08 (0.78–1.50) | 0.611 |
Work status (employed vs. unemployed *) | 0.79 (0.58–1.08) | 0.142 |
Age | 0.99 (0.98–1.00) | 0.572 |
LMDS | 1.06 (1.03–1.09) | <0.001 |
BMI | 1.01 (0.98–1.04) | 0.491 |
Hypertension (yes vs. no *) | 1.69 (1.24–2.32) | 0.001 |
Diabetes (yes vs. no *) | 1.69 (1.14–2.50) | 0.009 |
Dyslipidemia (yes vs. no *) | 1.80 (1.24–2.62) | 0.002 |
Family history of CVD (yes vs. no *) | 1.58 (1.21–2.06) | 0.001 |
Smoking status (previous vs. no *) | 1.64 (1.22–2.21) | 0.001 |
Smoking status (yes vs. no *) | 2.15 (1.36–3.41) | 0.001 |
Monthly income (lower intermediate vs. low *) | 0.64 (0.45–0.91) | 0.013 |
Monthly income (higher intermediate vs. low *) | 0.85 (0.60–1.21) | 0.363 |
Monthly income (high vs. low *) | 0.40 (0.26–0.62) | <0.001 |
Hypoglycemic medications (yes vs. no *) | 1.11 (0.68–1.81) | 0.656 |
Lipid-lowering medications (yes vs. no *) | 1.08 (0.64–1.82) | 0.774 |
Variables entered in the model: age, BMI, diabetes, dyslipidemia, education level, family history of CVD, gender, hypertension, hypoglycemic medications, income, lipid-lowering medications, LMDS, marital status, smoking status, and work status. | ||
Model 3: Logistic regression taking the CVD as the dependent variable and the sociodemographic variables, LMDS, smoking status, and the classes of medications as independent variables | ||
CVD as the Dependent Variable | ||
ORa (95% CI) | p-Value | |
Gender (female vs. male *) | 0.85 (0.64–1.14) | 0.288 |
Marital status (married vs. single *) | 0.80 (0.60–1.08) | 0.162 |
Education level (university vs. school *) | 1.06 (0.77–1.47) | 0.709 |
Work status (employed vs. unemployed *) | 0.81 (0.59–1.10) | 0.182 |
Age | 0.99 (0.98–1.00) | 0.529 |
LMDS | 1.06 (1.03–1.09) | <0.001 |
BMI | 1.01 (0.98–1.03) | 0.464 |
Hypertension (yes vs. no *) | 1.68 (1.23–2.30) | 0.001 |
Diabetes (yes vs. no *) | 1.68 (1.15–2.46) | 0.007 |
Dyslipidemia (yes vs. no *) | 1.74 (1.19–2.53) | 0.004 |
Family history of CVD (yes vs. no *) | 1.59 (1.22–2.08) | 0.001 |
Smoking status (previous vs. no *) | 1.65 (1.22–2.22) | <0.001 |
Smoking status (yes vs. no *) | 2.20 (1.38–3.49) | 0.001 |
Monthly income (lower intermediate vs. low *) | 0.65 (0.45–0.92) | 0.001 |
Monthly income (higher intermediate vs. low *) | 0.85 (0.60–1.21) | <0.001 |
Monthly income (high vs. low *) | 0.40 (0.25–0.62) | 0.014 |
Sulfonylurea (yes vs. no *) | 0.70 (0.34–1.46) | 0.345 |
Biguanide (metformin) (yes vs. no *) | 1.38 (0.78–2.44) | 0.267 |
Insulin (yes vs. no *) | 1.06 (0.29–3.75) | 0.928 |
Statins (yes vs. no *) | 1.32 (0.80–2.18) | 0.269 |
Fibrates (yes vs. no *) | 0.61 (0.21–1.80) | 0.375 |
The model entered the following variables: age, biguanide (metformin), BMI, diabetes, dyslipidemia, education level, family history of CVD, fibrates, gender, hypertension, income, insulin, LMDS, marital status, smoking status, statins, sulfonylurea, and work status. |
Logistic Regression Taking CVD as the Dependent Variable | ||||
---|---|---|---|---|
Not Having Diabetes | Having Diabetes | |||
ORa (95% CI) | p-Value | ORa (95% CI) | p-Value | |
Gender (female vs. male *) | 1.03 (0.74–1.45) | 0.823 | 0.55 (0.29–1.03) | 0.063 |
Marital status (married vs. single *) | 0.78 (0.55–1.10) | 0.159 | 1.16 (0.56–2.39) | 0.677 |
Education level (university level vs. school level *) | 1.06 (0.73–1.54) | 0.742 | 1.08 (0.51–2.32) | 0.827 |
Work status (employed vs. unemployed *) | 0.91 (0.64–1.30) | 0.628 | 0.49 (0.24–0.97) | 0.043 |
Age | 0.99 (0.98–1.01) | 0.686 | 0.99 (0.97–1.01) | 0.477 |
LMDS | 1.05 (1.01–1.09) | 0.003 | 1.08 (1.01–1.14) | 0.010 |
BMI | 1.02 (0.98–1.05) | 0.217 | 0.97 (0.92–1.03) | 0.410 |
Hypertension (yes vs. no *) | 1.77 (1.22–2.57) | 0.002 | 1.90 (1.01–3.58) | 0.046 |
Dyslipidemia (yes vs. no *) | 2.40 (1.53–3.77) | <0.001 | 1.06 (0.52–2.17) | 0.854 |
Family history of CVD (yes vs. no *) | 1.29 (0.94–1.77) | 0.103 | 2.69 (1.54–4.70) | <0.001 |
Smoking status (previous vs. no *) | 1.81 (1.28–2.56) | 0.001 | 1.14 (0.59–2.20) | 0.682 |
Smoking status (yes vs. no *) | 2.28 (1.31–3.97) | 0.003 | 2.27 (0.91–5.64) | 0.076 |
Lipid-lowering medications (yes vs. no *) | 0.75 (0.39–1.46) | 0.409 | 1.76 (0.81–3.82) | 0.152 |
Monthly income (lower intermediate vs. low *) | 0.57 (0.38–0.85) | 0.006 | 0.89 (0.44–1.81) | 0.768 |
Monthly income (higher intermediate vs. low *) | 0.62 (0.41–0.94) | 0.027 | 1.79 (0.84–3.79) | 0.127 |
Monthly income (high vs. low *) | 0.36 (0.22–0.60) | <0.001 | 0.62 (0.23–1.70) | 0.361 |
The model entered the following variables: age, BMI, dyslipidemia, education level, family history of CVD, gender, hypertension, income, lipid-lowering medications, LMDS, marital status, smoking status, and work status. |
Logistic Regression Taking CVD as the Dependent Variable | ||||
---|---|---|---|---|
Not Having Hyperlipidemia | Having Hyperlipidemia | |||
ORa (95% CI) | p-Value | ORa (95% CI) | p-Value | |
Gender (female vs. male *) | 1.02 (0.72–1.44) | 0.880 | 0.52 (0.29–0.93) | 0.030 |
Marital status (married vs. single *) | 0.82 (0.58–1.17) | 0.286 | 0.83 (0.44–1.55) | 0.571 |
Education level (university level vs. school level *) | 1.14 (0.77–1.69) | 0.504 | 0.94 (0.50–1.75) | 0.846 |
Work status (employed vs. unemployed *) | 0.76 (0.53–1.10) | 0.152 | 0.80 (0.41–1.56) | 0.530 |
Age | 0.99 (0.98–1.00) | 0.406 | 0.99 (0.97–1.01) | 0.653 |
LMDS | 1.07 (1.04–1.11) | <0.001 | 1.02 (0.96–1.07) | 0.483 |
BMI | 1.01 (0.98–1.05) | 0.259 | 0.98 (0.93–1.04) | 0.602 |
Hypertension (yes vs. no *) | 1.79 (1.22–2.62) | 0.003 | 1.69 (0.93–3.04) | 0.081 |
Diabetes (yes vs. no *) | 2.14 (1.31–3.51) | 0.002 | 1.27 (0.65–2.47) | 0.469 |
Family history of CVD (yes vs. no *) | 1.48 (1.07–2.04) | 0.016 | 1.81 (1.08–3.02) | 0.023 |
Smoking status (previous vs. no *) | 1.95 (1.36–2.80) | <0.001 | 1.06 (0.60–1.88) | 0.821 |
Smoking status (yes vs. no *) | 1.98 (1.09–3.59) | 0.024 | 2.29 (1.03–5.07) | 0.041 |
Hypoglycemic medications (yes vs. no *) | 0.81 (0.39–1.71) | 0.596 | 1.45 (0.66–3.17) | 0.349 |
Monthly income (lower intermediate vs. low *) | 0.73 (0.48–1.12) | 0.155 | 0.40 (0.20–0.79) | 0.008 |
Monthly income (higher intermediate vs. low *) | 0.92 (0.60–1.41) | 0.730 | 0.56 (0.28–1.13) | 0.107 |
Monthly income (high vs. low *) | 0.39 (0.22–0.67) | 0.001 | 0.35 (0.15–0.81) | 0.014 |
The model entered the following variables: age, BMI, diabetes, education level, family history of CVD, gender, hypoglycemic and hypertension medications, income, LMDS, marital status, smoking status, and work status. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeenny, R.M.; Abdo, R.; Haddad, C.; Hajj, A.; Zeidan, R.K.; Salameh, P.; Ferrieres, J. Cardiovascular Diseases and Metabolic Medications in the Lebanese Population: A Post Hoc Analysis from a Nationwide Cross-Sectional Study. Pharmacy 2024, 12, 171. https://doi.org/10.3390/pharmacy12060171
Zeenny RM, Abdo R, Haddad C, Hajj A, Zeidan RK, Salameh P, Ferrieres J. Cardiovascular Diseases and Metabolic Medications in the Lebanese Population: A Post Hoc Analysis from a Nationwide Cross-Sectional Study. Pharmacy. 2024; 12(6):171. https://doi.org/10.3390/pharmacy12060171
Chicago/Turabian StyleZeenny, Rony M., Rachel Abdo, Chadia Haddad, Aline Hajj, Rouba Karen Zeidan, Pascale Salameh, and Jean Ferrieres. 2024. "Cardiovascular Diseases and Metabolic Medications in the Lebanese Population: A Post Hoc Analysis from a Nationwide Cross-Sectional Study" Pharmacy 12, no. 6: 171. https://doi.org/10.3390/pharmacy12060171
APA StyleZeenny, R. M., Abdo, R., Haddad, C., Hajj, A., Zeidan, R. K., Salameh, P., & Ferrieres, J. (2024). Cardiovascular Diseases and Metabolic Medications in the Lebanese Population: A Post Hoc Analysis from a Nationwide Cross-Sectional Study. Pharmacy, 12(6), 171. https://doi.org/10.3390/pharmacy12060171