Unveiling the Complexities of Medications, Substance Abuse, and Plants for Recreational and Narcotic Purposes: An In-Depth Analysis
Abstract
:1. Introduction
2. History of Medication, Substance Abuse, and Plants for Recreational and Narcotic Purposes
2.1. Early Use of Plants for Recreational and Narcotic Purposes
2.2. Evolution of Law and Regulations
2.3. Impact of Medication and Substance Abuse on Society
3. Most Commonly Used Plants for Recreational and Narcotic Purposes Nowadays
3.1. Cannabis sativa (Cannabis)
3.1.1. Historical Background
3.1.2. Drug Policy
3.1.3. Pharmacological Properties and Health Implications
3.1.4. Mechanism of Action
3.1.5. Future Perspectives on Public Health
3.1.6. General Conclusion
3.2. Erythroxylum coca (Coca Plant)
3.2.1. Historical Background
3.2.2. Drug Policy
3.2.3. Pharmacological Properties and Health Implications
3.2.4. Mechanism of Action
3.2.5. Future Perspectives on Public Health
3.2.6. General Conclusion
3.3. Papaver somniferum (Opium Poppy)
3.3.1. Historical Background
3.3.2. Drug Policy
3.3.3. Pharmacological Properties and Health Implications
3.3.4. Mechanism of Action
3.3.5. Future Perspectives on Public Health
3.3.6. General Conclusion
3.4. Mitragyna speciosa (Kratom)
3.4.1. Historical Background
3.4.2. Drug Policy
3.4.3. Pharmacological Properties and Health Implications
3.4.4. Mechanism of Action
3.4.5. Future Perspectives on Public Health
3.4.6. General Conclusion
3.5. Catha edulis (Khat)
3.5.1. Historical Background
3.5.2. Drug Policy
3.5.3. Pharmacological Properties and Health Implications
3.5.4. Mechanism of Action
3.5.5. Future Perspectives on Public Health
3.5.6. General Conclusion
3.6. Salvia divinorum (Holy Sage)
3.6.1. Historical Background
3.6.2. Drug Policy
3.6.3. Pharmacological Properties and Health Implications
3.6.4. Mechanism of Action
3.6.5. Future Perspectives on Public Health
3.6.6. General Conclusion
3.7. Lophophora williamsii (Peyote)
3.7.1. Historical Background
3.7.2. Drug Policy
3.7.3. Pharmacological Properties and Health Implications
3.7.4. Mechanism of Action
3.7.5. Future Perspectives on Public Health
3.7.6. General Conclusion
3.8. Banisteriopsis caapi (Soul Vine)
3.8.1. Historical Background
3.8.2. Drug Policy
3.8.3. Pharmacological Properties and Health Implications
3.8.4. Future Perspectives on Public Health
3.8.5. General Conclusion
3.9. Datura stramonium (Devil’s Trumpet)
3.9.1. Historical Background
3.9.2. Drug Policy
3.9.3. Pharmacological Properties and Health Implications
3.9.4. Mechanism of Action
3.9.5. Future Perspectives on Public Health
3.9.6. General Conclusion
3.10. Ipomoea violacea, Ipomoea tricolor (Morning Glory)
3.10.1. Historical Background
3.10.2. Drug Policy
3.10.3. Pharmacological Properties and Health Implications
3.10.4. Mechanism of Action
3.10.5. Future Perspectives on Public Health
3.10.6. General Conclusion
3.11. Nicotiana tabacum (Tobacco)
3.11.1. Historical Background
3.11.2. Drug Policy
3.11.3. Mechanism of Action
3.11.4. Pharmacological Properties and Health Implications
3.11.5. Future Perspectives on Public Health
3.11.6. General Conclusion
3.12. Mandragora officinarum (Mandrake)
3.12.1. Historical Background
3.12.2. Mechanism of Action
3.12.3. Pharmacological Properties and Health Implications
3.12.4. Future Perspectives on Public Health
3.12.5. General Conclusion
4. Popularity, Availability, Effects, and Risks of Medication and Substance Abuse
4.1. Popularity and Availability of Medication and Substance Abuse
4.2. Effects and Risks of Medication and Substance Abuse
5. Novel Insights on Substance Abuse Addiction
5.1. Neurobiological Mechanisms of Substance Abuse Addiction
5.2. Treatment Approaches and Interventions Regarding Substance Abuse Addiction
6. Advancements in Technology for Detection of Substance Abuse
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jonas, S. Is substance abuse a medical problem? Addict. Disord. Their Treat. 2003, 2, 123–133. [Google Scholar] [CrossRef]
- Volkow, N.D.; Blanco, C. Substance use disorders: A comprehensive update of classification, epidemiology, neurobiology, clinical aspects, treatment and prevention. World Psychiatry Off. J. World Psychiatr. Assoc. (WPA) 2023, 22, 203–229. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R. Chronic stress, drug use, and vulnerability to addiction. Ann. N. Y. Acad. Sci. 2008, 1141, 105–130. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute at the National Institutes of Health. Dictionary of Cancer Terms. 2024. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/substance-abuse (accessed on 14 September 2024).
- Uhl, G.R.; Koob, G.F.; Cable, J. The neurobiology of addiction. Ann. N. Y. Acad. Sci. 2019, 1451, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Olsen, Y. What Is Addiction? History, Terminology, and Core Concepts. Med. Clin. N. Am. 2022, 106, 1–12. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, H.; d’Oleire Uquillas, F.; Wang, X.; Ding, J.; Chen, H. Definition of Substance and Non-substance Addiction. In Substance and Non-Substance Addiction; Springer Nature: Singapore, 2017; pp. 21–41. [Google Scholar]
- Bowser, B.P.; Word, C.O.; Seddon, T. Understanding Drug Use and Abuse: A Global Perspective; Palgrave Macmillan: New York, NY, USA, 2014. [Google Scholar]
- Lo, T.W.; Yeung, J.W.K.; Tam, C.H.L. Substance Abuse and Public Health: A Multilevel Perspective and Multiple Responses. Int. J. Environ. Res. Public Health 2020, 17, 2610. [Google Scholar] [CrossRef]
- Corder, G.; Castro, D.C.; Bruchas, M.R.; Scherrer, G. Endogenous and Exogenous Opioids in Pain. Annu. Rev. Neurosci. 2018, 41, 453–473. [Google Scholar] [CrossRef] [PubMed]
- Sawler, J.; Stout, J.; Gardner, K.; Hudson, D.; Vidmar, J.; Butler, L.; Page, J.E.; Myles, S. The genetic structure of marijuana and hemp. PLoS ONE 2015, 10, e0133292. [Google Scholar] [CrossRef] [PubMed]
- Hurgobin, B.; Tamiru-Oli, M.; Welling, M.; Doblin, M.; Bacic, A.; Whelan, J.; Lewsey, M.G. Recent advances in Cannabis sativa genomics research. New Phytol. 2021, 230, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Kollar, A.; Hausman, J.; Guerriero, G.G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar]
- National Institute on Drug Abuse. Drug Overdose Death Rates. 2024. Available online: https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates (accessed on 14 September 2024).
- Bhugaonkar, M.; Jha, R.; Zilate, S. Review on overview of substance abuse among medical practitioners. J. Pharm. Res. Int. 2021, 33, 43–47. [Google Scholar] [CrossRef]
- Roy, R.; Roy, D.; Goit, R. Substance abuse among medical students—A survey in a medical college in Nepal. J. Nepalgunj Med. Coll. 2018, 16, 71–75. [Google Scholar] [CrossRef]
- Lojszczyk, A. Motivational characteristics of recreational drug use among emerging adults in social settings: An integrative literature review. Front. Public Health 2023, 11, 1235387. [Google Scholar] [CrossRef] [PubMed]
- McCabe, S.; West, B.; Boyd, C. Motives for medical misuse of prescription opioids among adolescents. J. Pain 2013, 14, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, A. Benzodiazepine use, misuse, and abuse: A review. Ment. Health Clin. 2016, 6, 120–126. [Google Scholar] [CrossRef]
- Tveito, K. Opioids, power and abuse. Tidsskr. Den Nor. Laegeforening 2019, 139, 1–4. [Google Scholar]
- Gangu, K.; Bobba, A.; Basida, S.D.; Avula, S.; Chela, H.; Singh, S. Trends of cocaine use and manifestations in hospitalized patients: A cross-sectional study. Cureus 2022, 14, e22090. [Google Scholar] [CrossRef] [PubMed]
- Connor, J.P.; Stjepanović, D.; Le Foll, B.; Hoch, E.; Budney, A.J.; Hall, W.D. Cannabis use and cannabis use disorder. Nat. Rev. Dis. Primers 2021, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Dewey, R.E.; Xie, J. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry 2013, 94, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Leas, E.C.; Trinidad, D.R.; Pierce, J.P.; McMenamin, S.B.; Messer, K. Trends in cigarette consumption across the United States, with projections to 2035. PLoS ONE 2023, 18, e0282893. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Youth and Tobacco Use. 2024. Available online: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/youth_data/tobacco_use/index.htm (accessed on 14 September 2024).
- Mallol, J.; Urrutia-Pereira, M.; Mallol-Simmonds, M.J.; Calderón-Rodríguez, L.; Osses-Vergara, F.; Matamala-Bezmalinovic, A. Prevalence and determinants of tobacco smoking among low-income urban adolescents. Pediatr. Allergy Immunol. Pulmonol. 2021, 34, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Rajabalipour, M.; Shafian, H.; Iranpour, A. A study of courses related to drug abuse prevention in medical sciences curriculum in Iran. Strides Dev. Med. Educ. 2019; in press. [Google Scholar] [CrossRef]
- Cornett, E.M.; Budish, R.; Latimer, D.; Hart, B.; Urman, R.D.; Kaye, A.D. Management of challenging pharmacologic issues in chronic pain and substance abuse disorders. Anesthesiol. Clin. 2018, 36, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Hatsukami, D.K.; Carroll, D.M. Tobacco harm reduction: History, current controversies and a proposed approach for the future. Prev. Med. 2020, 140, 106099. [Google Scholar] [CrossRef] [PubMed]
- Fallin, A.; Glantz, S.A. Tobacco-control policies in tobacco-growing states: Where tobacco was king. Milbank Q. 2015, 93, 319–358. [Google Scholar] [CrossRef]
- Stockings, E.; Hall, W.D.; Lynskey, M.; Morley, K.I.; Reavley, N.; Strang, J.; Patton, G.; Degenhardt, L. Prevention, early intervention, harm reduction, and treatment of substance use in young people. Lancet Psychiatry 2016, 3, 280–296. [Google Scholar] [CrossRef] [PubMed]
- Kampman, K.M. The treatment of cocaine use disorder. Sci. Adv. 2019, 5, eaax1532. [Google Scholar] [CrossRef] [PubMed]
- Pollastro, F.; Petrocellis, L.; Schiano-Moriello, A.; Chianese, G.; Heyman, H.; Appendino, G.; Taglialatela-Scafati, O. Amorfrutin-type phytocannabinoids from Helichrysum umbraculigerum. Fitoterapia 2017, 123, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Dafni, A.; Blanché, C.; Khatib, S.; Petanidou, T.; Aytaç, B.; Pacini, E.; Kozuharova, E.; Geva-Kleinberger, A.; Shahvar, S.; Dajic, Z.; et al. Search of traces of the mandrake myth—The etymological, historical, and ethnobotanical roots of its vernacular names. J. Ethnobiol. Ethnomed. 2021, 17, 68. [Google Scholar] [CrossRef] [PubMed]
- Chalise, U. The poppy plant: Phytochemistry and pharmacology. Indo Glob. J. Pharm. Sci. 2015, 5, 58–65. [Google Scholar] [CrossRef]
- Roque Bravo, R.; Faria, A.C.; Brito-da-Costa, A.M.; Carmo, H.; Mladěnka, P.; Dias da Silva, D.; Remião, F. Cocaine: An updated overview on chemistry, detection, biokinetics, and pharmacotoxicological aspects including abuse pattern. Toxins 2022, 14, 278. [Google Scholar] [CrossRef]
- Buchanan, W.W.; Rainsford, K.D.; Kean, C.A.; Kean, W.F. Narcotic analgesics. Inflammopharmacology 2024, 32, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Wicks, C.; Hudlicky, T.; Rinner, U. Morphine alkaloids: History, biology, and synthesis. Alkaloids Chem. Biol. 2021, 86, 145–342. [Google Scholar] [PubMed]
- Hosztafi, S. A heroin története [The history of heroin]. Acta Pharm. Hung. 2001, 71, 233–242. [Google Scholar] [PubMed]
- Crocq, M.A. History of cannabis and the endocannabinoid system. Dialogues Clin. Neurosci. 2020, 22, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Svrakic, D.M.; Lustman, P.J.; Mallya, A.; Lynn, T.A.; Finney, R.; Svrakic, N.M. Legalization, decriminalization and medicinal use of cannabis: A scientific and public health perspective. Mo. Med. 2012, 109, 90–98. [Google Scholar] [PubMed]
- NIDA. Cannabis (Marijuana) DrugFacts. Retrieved on 26 March 2024. Available online: https://nida.nih.gov/publications/drugfacts/cannabis-marijuana (accessed on 2 October 2024).
- Godlaski, T.M. Holy smoke: Tobacco use among Native American tribes in North America. Subst. Use Misuse 2013, 48, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rawat, A.; Mal, R.R. Phytochemical properties and pharmacological activities of Nicotiana tabacum: A review. Indian J. Pharm. Biol. Res. 2013, 1, 74–82. [Google Scholar] [CrossRef]
- Kumar, P.; Mahato, D.; Kamle, M.; Borah, R.; Sharma, B.; Pandhi, S.; Tripathi, V.; Yadav, H.S.; Devi, S.; Patil, U.; et al. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytother. Res. 2021, 35, 6010–6029. [Google Scholar] [CrossRef]
- Melchior, M.; Nakamura, A.; Bolze, C.; Hausfater, F.; El-Khoury, F.; Mary-Krause, M.; Azevedo Da Silva, M. Does liberalization of cannabis policy influence levels of use in adolescents and young adults? A systematic review and meta-analysis. BMJ Open 2019, 9, e025880. [Google Scholar] [CrossRef]
- Hourfane, S.; Mechqoq, H.; Bekkali, A.; Rocha, J.; Aouad, N. A comprehensive review of Cannabis sativa ethnobotany, phytochemistry, molecular docking, and biological activities. Plants 2023, 12, 1245. [Google Scholar] [CrossRef] [PubMed]
- Salehi, A.; Puchalski, K.; Shokoohinia, Y.; Zolfaghari, B.; Asgary, S. Differentiating cannabis products: Drugs, food, and supplements. Front. Pharmacol. 2022, 13, 906038. [Google Scholar] [CrossRef] [PubMed]
- Farrelly, K.N.; Wardell, J.D.; Marsden, E.; Scarfe, M.L.; Najdzionek, P.; Turna, J.; MacKillop, J. The impact of recreational cannabis legalization on cannabis use and associated outcomes: A systematic review. Subst. Abus. Res. Treat. 2023, 17, 11782218231172054. [Google Scholar] [CrossRef] [PubMed]
- Manthey, J.; Klinger, S.; Rosenkranz, M.; Schwarzkopf, L. Cannabis use, health problems, and criminal offenses in Germany: National and state-level trends between 2009 and 2021. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 1–11. [Google Scholar]
- U.S. Department of Health and Human Services. The Health Consequences of Smoking: 50 Years of Progress; Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health: Atlanta, GA, USA, 2014.
- Federal Trade Commission. Federal Cigarette Labeling and Advertising Act. 2024. Available online: https://www.ftc.gov/legal-library/browse/statutes/federal-cigarette-labeling-advertising-act (accessed on 20 October 2024).
- Preuss, C.V.; Kalava, A.; King, K.C. Prescription of controlled substances: Benefits and risks. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Davis, C.S.; Lieberman, A.J. Laws limiting prescribing and dispensing of opioids in the United States, 1989–2019. Addiction 2021, 116, 1817–1827. [Google Scholar] [CrossRef]
- Redman, M. Cocaine: What is the crack? A brief history of the use of cocaine as an anesthetic. Anesth. Pain Med. 2011, 1, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.K.; Callaghan, R.C.; Liu, L.M. U.S. federal cocaine essential (‘precursor’) chemical regulation impacts on U.S. cocaine availability: An intervention time-series analysis with temporal replication. Addiction 2015, 110, 805–820. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, D.; Saenz, E.; Jara-Muñoz, O.; Calixto-Botía, I.; Rodríguez-Suárez, S.; Zuleta, P.; Chavez, B.G.; Sanchez, J.A.; D’Auria, J.C. Erythroxylum in focus: An interdisciplinary review of an overlooked genus. Molecules 2019, 24, 3788. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, N. Hallucinogenic plants of abuse. Emerg. Med. Australas. 2008, 20, 167–174. [Google Scholar] [CrossRef]
- Redonnet, B.; Chollet, A.; Fombonne, É.; Bowes, L.; Melchior, M. Tobacco, alcohol, cannabis, and other illegal drug use among young adults: The socioeconomic context. Drug Alcohol Depend. 2012, 121, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Cavalloro, V. Teodorico Borgognoni’s formulary for thirteenth-century anesthetic preparations. Life 2023, 13, 1913. [Google Scholar] [CrossRef] [PubMed]
- Dirgantara, M.; Maksum, A. The dilemma of national security threats in efforts to realize the banning of kratom plants by the National Anti-Narcotics Agency in Kapuas Hulu Regency. Int. J. Multicult. Multireligious Underst. 2022, 9, 84. [Google Scholar] [CrossRef]
- Hoffman, R.S.; Goldfrank, L.R. The impact of drug abuse and addiction on society. Emerg. Med. Clin. N. Am. 1990, 8, 467–480. [Google Scholar] [CrossRef]
- Amin, U.; Malla, A.M.; Amin, I.; Jan, R. Substance abuse: A public health concern. Indian J. Psychiatr. Nurs. 2023, 20, 168–178. [Google Scholar] [CrossRef]
- Manthey, J.; Armstrong, M.J.; Hayer, T.; Myran, D.T.; Pacula, R.L.; Queirolo, R.; Rehm, J.; Wirth, M.; Zobel, F. How to interpret studies on the impact of legalizing cannabis. Addiction 2023, 118, 2242–2243. [Google Scholar] [CrossRef] [PubMed]
- Zeiger, J.S.; Silvers, W.S.; Naimi, D.R.; Skypala, I.J.; Ellis, A.K.; Connors, L.; Jeimy, S.; Nayak, A.P.; Bernstein, J.A.; Zeiger, R.S. Impact of cannabis knowledge and attitudes on real-world practice. Ann. Allergy Asthma Immunol. 2022, 129, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Chiolero, A.; Wietlisbach, V.; Ruffieux, C.; Paccaud, F.; Cornuz, J. Clustering of risk behaviors with cigarette consumption: A population-based survey. Prev. Med. 2006, 42, 348–353. [Google Scholar] [CrossRef]
- Ayo-Yusuf, O.A.; Agaku, I.T. The association between smokers’ perceived importance of the appearance of cigarettes/cigarette packs and smoking sensory experience: A structural equation model. Nicotine Tob. Res. 2014, 17, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Mercadante, S.; Arcuri, E.; Santoni, A. Opioid-induced tolerance and hyperalgesia. CNS Drugs 2019, 33, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Bruera, E.; Paice, J.A. Cancer pain management: Safe and effective use of opioids. Am. Soc. Clin. Oncol. Educ. Book 2015, 35, e593–e599. [Google Scholar] [CrossRef]
- Hagemeier, N.E. Introduction to the opioid epidemic: The economic burden on the healthcare system and impact on quality of life. Am. J. Manag. Care 2018, 24 (Suppl. S10), S200–S206. [Google Scholar] [PubMed]
- Schwartz, E.K.C.; Wolkowicz, N.R.; De Aquino, J.P.; MacLean, R.R.; Sofuoglu, M. Cocaine use disorder (CUD): Current clinical perspectives. Subst. Abus. Rehabil. 2022, 13, 25–46. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Hayhurst, K.P.; Jahr, S.; White, M.; Millar, T. Estimates of the incidence of crack cocaine use in those likely to attend treatment in the English population, 2005–2018. Eur. Addict. Res. 2021, 27, 83–86. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, A.; Poxon, A.J. Cocaine trafficking and the social impact of cocaine on UK society. Forensic Res. Criminol. Int. J. 2016, 2, 48. [Google Scholar] [CrossRef]
- Hall, W.; Lynskey, M. Assessing the public health impacts of legalizing recreational cannabis use: The US experience. World Psychiatry 2020, 19, 179–186. [Google Scholar] [CrossRef]
- Burillo-Putze, G.; Briz, E.; Díaz, B.; Mas, P.; Xarau, S.; Pinillos, M.; Hoffman, R.S. Drogas emergentes (III): Plantas y hongos alucinógenos. An. Del Sist. Sanit. De Navar. 2013, 36, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Tang, W. Opportunities in novel psychotropic drug design from natural compounds. Int. J. Neuropsychopharmacol. 2019, 22, 601–607. [Google Scholar] [CrossRef]
- Kovalchuk, I.; Pellino, M.; Rigault, P.; Velzen, R.; Ebersbach, J.; Ashnest, J.; Mau, M.; Schranz, M.E.; Alcorn, J.; Laprairie, R.B.; et al. The genomics of cannabis and its close relatives. Annu. Rev. Plant Biol. 2020, 71, 713–739. [Google Scholar] [CrossRef] [PubMed]
- Sarris, J. Herbal medicines in the treatment of psychiatric disorders: 10-year updated review. Phytother. Res. 2018, 32, 1147–1162. [Google Scholar] [CrossRef] [PubMed]
- Dorsen, C.; Palamar, J.; Shedlin, M. Ceremonial ‘plant medicine’ use and its relationship to recreational drug use: An exploratory study. Addict. Res. Theory 2018, 27, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Wadley, G. How psychoactive drugs shape human culture: A multidisciplinary perspective. Brain Res. Bull. 2016, 126, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Fearby, N.; Penman, S.; Thanos, P. Effects of δ9-tetrahydrocannabinol (THC) on obesity at different stages of life: A literature review. Int. J. Environ. Res. Public Health 2022, 19, 3174. [Google Scholar] [CrossRef] [PubMed]
- Sõukand, R.; Quave, C.; Pieroni, A.; Pardo-de-Santayana, M.; Tardío, J.; Kalle, R.; Łuczaj, Ł.; Svanberg, I.; Kolosova, V.; Aceituno-Mata, L.; et al. Plants used for making recreational tea in Europe: A review based on specific research sites. J. Ethnobiol. Ethnomedicine 2013, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Schmid, Y.; Liechti, M. Long-lasting subjective effects of LSD in normal subjects. Psychopharmacology 2017, 235, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Brito-da-Costa, A.; Silva, D.; Gomes, N.; Dinis-Oliveira, R.; Madureira-Carvalho, Á. Toxicokinetics and toxicodynamics of ayahuasca alkaloids N, N-dimethyltryptamine (DMT), harmine, harmaline, and tetrahydroharmine: Clinical and forensic impact. Pharmaceuticals 2020, 13, 334. [Google Scholar] [CrossRef]
- Warner, M.; Kaufman, N.; Grundmann, O. The pharmacology and toxicology of kratom: From traditional herb to drug of abuse. Int. J. Leg. Med. 2015, 130, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Hamill, J.; Hallak, J.; Dursun, S.; Baker, G. Ayahuasca: Psychological and physiologic effects, pharmacology and potential uses in addiction and mental illness. Curr. Neuropharmacol. 2019, 17, 108–128. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Rogers, J.; Feldman, J. Kratom’s emergence and persistence within the US polydrug epidemic. Curr. Addict. Rep. 2023, 10, 262–271. [Google Scholar] [CrossRef]
- Barbosa, P.; Mizumoto, S.; Bogenschutz, M.; Strassman, R. Health status of ayahuasca users. Drug Test. Anal. 2012, 4, 601–609. [Google Scholar] [CrossRef]
- Smith, K.; Dunn, K.; Rogers, J.; Garcia-Romeu, A.; Strickland, J.; Epstein, D. Assessment of kratom use disorder and withdrawal among an online convenience sample of US adults. J. Addict. Med. 2022, 16, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Lanaro, R.; Mello, S.; Cunha, K.; Silveira, G.; Corrêa-Neto, N.; Hyslop, S.; Cabrices, O.G.; Costa, J.L.; Linardi, A. Kinetic profile of N,N-dimethyltryptamine and β-carbolines in saliva and serum after oral administration of ayahuasca in a religious context. Drug Test. Anal. 2020, 13, 664–678. [Google Scholar] [CrossRef]
- Chambers, M.; Osborne, A.; Musah, R. Rapid detection and validated quantification of psychoactive compounds in complex plant matrices by direct analysis in accurate time–high resolution mass spectrometry: Application to “kava” psychoactive pepper products. Rapid Commun. Mass Spectrom. 2019, 33, 1915–1925. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, S.; Basiliere, S. Kratom: A systematic review of toxicological issues. Wiley Interdiscip. Rev. Forensic Sci. 2021, 4, e1420. [Google Scholar] [CrossRef]
- Graziano, S.; Orsolini, L.; Rotolo, M.; Tittarelli, R.; Schifano, F.; Pichini, S. Herbal highs: Review on psychoactive effects and neuropharmacology. Curr. Neuropharmacol. 2017, 15, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Malavika, J.; Thenmozhi, K. A comprehensive review of the ethnopharmacological and therapeutic perspectives of psychoactive plants. Kongunadu Res. J. 2023, 10, 48–52. [Google Scholar]
- Orsolini, L.; John-Smith, P.; McQueen, D.; Papanti, D.; Corkery, J.; Schifano, F. Evolutionary considerations on the emerging subculture of the e-psychonauts and the novel psychoactive substances: A comeback to the shamanism? Curr. Neuropharmacol. 2017, 15, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Pisanti, S.; Bifulco, M. Medical cannabis: A premillennial history of an evergreen. J. Cell Physiol. 2018, 234, 8342–8351. [Google Scholar] [CrossRef] [PubMed]
- Cannabis: From cultivar to chemovar II—A metabolomics approach to cannabis classification. Cannabis Cannabinoid Res. 2016, 1, 202–215. [CrossRef]
- Clarke, K.; Porter, R.; Facey, P.; Thoms-Rodriguez, C. Chemical composition and biological activities of Jamaican Cannabis sativa essential oils as the plant matures. Flavor Fragr. J. 2023, 38, 144–151. [Google Scholar] [CrossRef]
- Mano-Sousa, B.; Maia, G.; Lima, P.; Campos, V.; Negri, G.; Chequer, F.; Duarte-Almeida, J.M. Color determination method and evaluation of methods for detecting cannabinoids by thin-layer chromatography (TLC). J. Forensic Sci. 2020, 66, 854–865. [Google Scholar] [CrossRef] [PubMed]
- Malabadi, R. Quantification of THC levels in different varieties of Cannabis sativa. Int. J. Sci. Res. Arch. 2023, 10, 860–873. [Google Scholar] [CrossRef]
- Hazekamp, A.; Fischedick, J. Cannabis—From cultivar to chemovar. Drug Test. Anal. 2012, 4, 660–667. [Google Scholar] [CrossRef]
- Arsenault, T. Compliance testing of hemp (Cannabis sativa L.) cultivars for total delta-9 THC and total CBD using gas chromatography with flame ionization detection. Plants 2024, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- Durydivka, O. Hexahydrocannabinol (HHC) and Δ9-tetrahydrocannabinol (Δ9-THC) driven activation of cannabinoid receptor one results in biased intracellular signaling. Sci. Rep. 2024, 14, 9181. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.; Fong, Y. Perioperative cannabis as a potential solution for reducing opioid and benzodiazepine dependence. JAMA Surg. 2021, 156, 181. [Google Scholar] [CrossRef]
- Smith, C.; Vergara, D.; Keegan, B.; Jikomes, N. The phytochemical diversity of commercial cannabis in the United States. PLoS ONE 2022, 17, e0267498. [Google Scholar] [CrossRef] [PubMed]
- Johns, A. Psychiatric effects of cannabis. Br. J. Psychiatry 2001, 178, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, A.; Dierker, L.; Zhu, J.; Levin, J.; Goodwin, R. Cigarette dependence is more prevalent and increasing among US adolescents and adults who use cannabis, 2002–2019. Tob. Control 2021, 32, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Gennaro, G.; Colizzi, M. Can we interrogate public databases to fill critical gaps in mental health epidemiology? Testing the association between cannabis and psychosis in the UK as an example. Epidemiol. Psychiatr. Sci. 2023, 32, e40. [Google Scholar] [CrossRef] [PubMed]
- Ciucă Anghel, D.M.; Nițescu, G.V.; Tiron, A.T.; Guțu, C.M.; Baconi, D.L. Understanding the Mechanisms of Action and Effects of Drugs of Abuse. Molecules 2023, 28, 4969. [Google Scholar] [CrossRef] [PubMed]
- Acquavia, M.; Tesoro, C.; Pascale, R.; Ostuni, A.; Matera, I.; Bianco, G.; Scrano, L.; Bufo, S.A.; Ciriello, R.; Di Capua, A.; et al. Legal Cannabis sativa L. dried inflorescences: Cannabinoid content and cytotoxic activity against human HepG2 cell line. Appl. Sci. 2023, 13, 4960. [Google Scholar] [CrossRef]
- Campbell, B.; Berrada, A.; Hudalla, C.; Amaducci, S.; McKay, J. Genotype × environment interactions of industrial hemp cultivars highlight diverse responses to environmental factors. Agrosystems Geosci. Environ. 2019, 2, 1–11. [Google Scholar] [CrossRef]
- Ellis, C.; Grace, M.; Smith, R.; Zhang, J. Medical cannabis and automobile accidents: Evidence from auto insurance. Health Econ. 2022, 31, 1878–1897. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, M.; Milenova, V.; Yosifov, D.; Vlahov, Y.; Tenev, V. Renal changes in cocaine abuse and addiction. Acta Medica Bulg. 2019, 46, 57–61. [Google Scholar] [CrossRef]
- Kim, N.; Chavez, B.; Stewart, C., Jr.; D’Auria, J. Structure and function of enzymes involved in the biosynthesis of tropane alkaloids. In Tropane Alkaloids; Srivastava, V., Mehrotra, S., Mishra, S., Eds.; Springer: Berlin, Germany, 2021; pp. 21–50. [Google Scholar]
- Jenkins, A.; Llosa, T.; Montoya, I.; Cone, E. Identification and quantitation of alkaloids in coca tea. Forensic Sci. Int. 1996, 77, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Estrada, O.; Chavez, B.; Stewart, C.; D’Auria, J. Tropane and granatane alkaloid biosynthesis: A systematic analysis. Molecules 2016, 21, 1510. [Google Scholar] [CrossRef]
- Biondich, A.; Joslin, J. Coca: High altitude remedy of the ancient Incas. Wilderness Environ. Med. 2015, 26, 567–571. [Google Scholar] [CrossRef]
- Tsuchiya, H. Anesthetic agents of plant origin: A review of phytochemicals with anesthetic activity. Molecules 2017, 22, 1369. [Google Scholar] [CrossRef] [PubMed]
- Nathanson, J.; Hunnicutt, E.; Kantham, L.; Scavone, C. Cocaine as a naturally occurring insecticide. Proc. Natl. Acad. Sci. USA 1993, 90, 9645–9648. [Google Scholar] [CrossRef] [PubMed]
- White, D.; Islam, M.; Mason-Gamer, R. Phylogenetic inference in section Archerythroxylum informs taxonomy, biogeography, and the domestication of coca (Erythroxylum species). Am. J. Bot. 2019, 106, 154–165. [Google Scholar] [CrossRef] [PubMed]
- White, D.; Meinhardt, L.; Bailey, B.; Pirro, S. The complete genome sequences of Erythroxylum coca and Erythroxylum novogranatense. Biodivers Genomes 2022. [Google Scholar] [CrossRef]
- Chavez, B.; Srinivasan, P.; Glockzin, K.; Kim, N.; Estrada, O.; Jirschitzka, J.; Rowden, G.; Shao, J.; Meinhardt, L.; Smolke, C.D.; et al. Elucidation of tropane alkaloid biosynthesis in Erythroxylum causing a microbial pathway discovery platform. Proc. Natl. Acad. Sci. USA 2022, 119, e2215372119. [Google Scholar] [CrossRef] [PubMed]
- Bieri, S.; Brachet, A.; Veuthey, J.; Christen, P. Cocaine distribution in wild Erythroxylum species. J. Ethnopharmacol. 2006, 103, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Jirschitzka, J.; Schmidt, G.; Reichelt, M.; Schneider, B.; Gershenzon, J.; D’Auria, J. Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proc. Natl. Acad. Sci. USA 2012, 109, 10304–10309. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.; Almeida, C.; Tenreiro, S.; Quintas, A. Neuroprotection or neurotoxicity of illicit drugs on Parkinson’s disease. Life 2020, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.; Zanetti, G.; Souza, A.; Souza, L.; Silva, J.; Escuissato, D.; Irion, K.L.; Mançano, A.D.; Nobre, L.F.; Hochhegger, B.; et al. Cocaine-induced pulmonary changes: HRCT findings. J. Bras. Pneumol. 2015, 41, 323–330. [Google Scholar] [CrossRef]
- Biondich, A.; Joslin, J. Coca: The history and medical significance of an ancient Indian tradition. Emerg. Med. Int. 2016, 2016, 4048764. [Google Scholar] [CrossRef] [PubMed]
- Barlow, P.; Serodio, P.; Ruskin, G.; McKee, M.; Stuckler, D. Science organizations and Coca-Cola’s ‘war’ with the public health community: Insights from an internal industry document. J. Epidemiol. Community Health 2018, 72, 761–763. [Google Scholar] [CrossRef]
- Beaudoin, G.; Facchini, P. Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta 2014, 240, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Hamiksha. The mind-based and most controversial plant: Papaver somniferum—The opium poppy: A plant with many faces and roles in human history and culture. Neuropsychiatry 2024, 14, 1–17. [Google Scholar]
- Weid, M.; Ziegler, J.; Kutchan, T. The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc. Natl. Acad. Sci. USA 2004, 101, 13957–13962. [Google Scholar] [CrossRef] [PubMed]
- Facchini, P. Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 29–66. [Google Scholar] [CrossRef] [PubMed]
- Casado-Hidalgo, G.; Pérez-Quintanilla, D.; Morante-Zarcero, S.; Sierra, I. Mesostructured silica-coated magnetic nanoparticles to extract six opium alkaloids in poppy seeds before ultra-high-performance liquid chromatography-tandem mass spectrometry analysis. Foods 2021, 10, 1587. [Google Scholar] [CrossRef] [PubMed]
- Shafi, A.; Berry, A.; Sumnall, H.; Wood, D.; Tracy, D. Synthetic opioids: A review and clinical update. Ther. Adv. Psychopharmacol. 2022, 12, 204512532211396. [Google Scholar] [CrossRef] [PubMed]
- DeBono, A.; Capuano, B.; Scammells, P. Progress toward the development of noscapine and derivatives as anticancer agents. J. Med. Chem. 2015, 58, 5699–5727. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, S.; Alam, S.; Sultana, A.; Raj, A.; Emon, N.U.; Richi, F.T.; Sharmin, T.; Moon, M.; Park, M.N.; Kim, B.; et al. Papaverine: A Miraculous Alkaloid from Opium and Its Multimedicinal Application. Molecules 2023, 28, 3149. [Google Scholar] [CrossRef] [PubMed]
- Takayama, H.; Ishikawa, H.; Kurihara, M.; Kitajima, M.; Aimi, N.; Ponglux, D.; Koyama, F.; Matsumoto, K.; Moriyama, T.; Yamamoto, L.T.; et al. Studies on the synthesis and opioid agonistic activities of mitragynine-related indole alkaloids: Discovery of opioid agonists structurally different from other opioid ligands. J. Med. Chem. 2002, 45, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Cinosi, E.; Martinotti, G.; Simonato, P.; Singh, D.; Demetrovics, Z.; Román-Urrestarazu, A.; Bersani, F.S.; Vicknasingam, B.; Piazzon, G.; Li, J.-H.; et al. Following “the roots” of kratom (Mitragyna speciosa): The evolution of an enhancer from traditional use to increase work and productivity in Southeast Asia to a recreational psychoactive drug in Western countries. BioMed Res. Int. 2015, 2015, 968786. [Google Scholar] [CrossRef] [PubMed]
- Meireles, V.; Rosado, T.; Barroso, M.; Soares, S.; Gonçalves, J.; Luís, Â.; Caramelo, D.; Simão, A.Y.; Fernández, N.; Duarte, A.P.; et al. Mitragyna speciosa: Clinical, toxicological aspects and analysis in biological and non-biological samples. Medicines 2019, 6, 35. [Google Scholar] [CrossRef]
- Apryani, E.; Hidayat, M.; Moklas, M.; Fakurazi, S.; Idayu, N. Effects of mitragynine from Mitragyna speciosa Korth leaves on working memory. J. Ethnopharmacol. 2010, 129, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Adkins, J.; Boyer, E.; McCurdy, C. Mitragyna speciosa, a psychoactive tree from Southeast Asia with opioid activity. Current Top. Med. Chem. 2011, 11, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; Avery, B.A.; Boyer, E.W.; Grundmann, O.; Henningfield, J.E.; Kruegel, A.C.; McMahon, L.R.; McCurdy, C.R.; Swogger, M.T.; Veltri, C.A.; et al. Kratom policy: The challenge of balancing therapeutic potential with public safety. Int. J. Drug Policy 2019, 70, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kamble, S.; León, F.; Chear, N.; King, T.; Berthold, E.; Ramanathan, S.; McCurdy, C.R.; Avery, B.A. Simultaneous quantification of ten key kratom alkaloids in Mitragyna speciosa leaf extracts and commercial products by ultra-performance liquid chromatography-tandem mass spectrometry. Drug Test. Anal. 2019, 11, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- Prosser, J.; Nelson, L.S. The toxicology of bath salts: A review of synthetic cathinones. J. Med. Toxicol. 2011, 8, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Eastlack, S.C.; Cornett, E.M.; Kaye, A.D. Kratom-Pharmacology, Clinical Implications, and Outlook: A Comprehensive Review. Pain Ther. 2020, 9, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Annuar, N.A.K.; Azlan, U.K.; Mediani, A.; Tong, X.; Han, R.; Al-Olayan, E.; Baharum, S.N.; Bunawan, H.; Sarian, M.N.; Hamezah, H.S.; et al. An insight review on the neuropharmacological effects, mechanisms of action, pharmacokinetics and toxicity of mitragynine. Biomed. Pharmacother. 2024, 171, 116134. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.; Jayabalan, N.; Mansor, S.; Müller, C.; Mustapha, M. Chronic mitragynine (kratom) enhances punishment resistance in natural reward-seeking and impairs place learning in mice. Addict. Biol. 2016, 22, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Papadi, G.; Bakhiya, N.; Hirsch-Ernst, K. Assessment of the possible health risks associated with the consumption of botanical preparations of Mitragyna speciosa (kratom). EFSA J. 2022, 20, e200415. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Sharma, A.; Grundmann, O.; McCurdy, C. Kratom alkaloids: A blueprint? ACS Chem. Neurosci. 2023, 14, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Salim, H.; Awwalia, E.; Alam, I. Anti-inflammatory effects and potential mechanisms of Mitragyna speciosa methanol extract on λ-carrageenan-induced inflammation model. Bali Med. J. 2022, 11, 1172–1175. [Google Scholar] [CrossRef]
- Saidin, N.; Holmes, E.; Takayama, H.; Gooderham, N. The cellular toxicology of mitragynine, the dominant alkaloid of the narcotic-like herb, Mitragyna speciosa Korth. Toxicol. Res. 2015, 4, 1173–1183. [Google Scholar] [CrossRef]
- Gonçalves, J.; Luís, Â.; Gallardo, E.; Duarte, A. Psychoactive substances of natural origin: Toxicological aspects, therapeutic properties and analysis in biological samples. Molecules 2021, 26, 1397. [Google Scholar] [CrossRef] [PubMed]
- Pootakham, W.; Yoocha, T.; Jomchai, N.; Kongkachana, W.; Naktang, C.; Sonthirod, C.; Chowpongpang, S.; Aumpuchin, P.; Tangphatsornruang, S. A chromosome-scale genome assembly of Mitragyna speciosa (kratom) and the assessment of its genetic diversity in Thailand. Biology 2022, 11, 1492. [Google Scholar] [CrossRef]
- Schotte, C.; Jiang, Y.; Grzech, D.; Dang, T.; Laforest, L.; León, F.; Mottinelli, M.; Nadakuduti, S.S.; McCurdy, C.R.; O’Connor, S.E.; et al. Directed biosynthesis of mitragynine stereoisomers. J. Am. Chem. Soc. 2023, 145, 4957–4963. [Google Scholar] [CrossRef] [PubMed]
- Al-Hebshi, N.; Skaug, N. Khat (Catha edulis)—An updated review. Addict. Biol. 2005, 10, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, B.; Ali, N.; Setzer, W. A survey of chemical compositions and biological activities of Yemeni aromatic medicinal plants. Medicines 2015, 2, 67–92. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Carrie, N.C. Khat: Social harms and legislation—A literature review. Addict Behav. 2011, 1–50. [Google Scholar]
- Pantano, F.; Tittarelli, R.; Mannocchi, G.; Zaami, S.; Ricci, S.; Giorgetti, R.; Terranova, D.; Busardò, F.P.; Marinelli, E. Hepatotoxicity induced by “the 3ks”: Kava, kratom, and khat. Int. J. Mol. Sci. 2016, 17, 580. [Google Scholar] [CrossRef] [PubMed]
- Al-Motarreb, A.; Al-Habori, M.; Broadley, K. Khat chewing, cardiovascular diseases, and other internal medical problems: The current situation and directions for future research. J. Ethnopharmacol. 2010, 132, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamary, M.; Al-Habori, M.; Al-Aghbari, A.; Baker, M. Investigation into the toxicological effects of Catha edulis leaves: A short-term study in animals. Phytother. Res. 2002, 16, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Al-Motarreb, A.; Baker, K.; Broadley, K. Khat: Pharmacological and medical aspects and its social use in Yemen. Phytother. Res. 2002, 16, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.B. Khat (Catha edulis Forsk)—And now there are three. Brain Res. Bull. 2019, 145, 92–96. [Google Scholar] [CrossRef]
- German, C.; Fleckenstein, A.; Hanson, G. Bath salts and synthetic cathinones: An emerging designer drug phenomenon. Life Sci. 2014, 97, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, C.; Carreiro, S.; Babu, K. Here today, gone tomorrow…and back again? A review of herbal marijuana alternatives (K2, Spice), synthetic cathinone (bath salts), kratom, salvia divinorum, methoxetamine, and piperazines. J. Med. Toxicol. 2012, 8, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Capasso, R.; Borrelli, F.; Zjawiony, J.; Kutrzeba, L.; Aviello, G.; Sarnelli, G.; Capasso, F.; Izzo, A.A. The hallucinogenic herb Salvia divinorum and its active ingredient, salvinorin A, reduce inflammation-induced hypermotility in mice. Neurogastroenterol. Motil. 2007, 20, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Babu, K.; McCurdy, C.; Boyer, E. Opioid receptors and legal highs: Salvia divinorum and kratom. Clin. Toxicol. 2008, 46, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Hoover, V.; Marlowe, D.B.; Patapis, N.S.; Festinger, D.S.; Forman, R.F. Internet access to Salvia divinorum: Implications for policy, prevention, and treatment. J Subst Abuse Treat. 2008, 35, 22–27. [Google Scholar] [CrossRef]
- Munro, T.; Rizzacasa, M.; Roth, B.; Toth, B.; Yan, F. Studies toward the pharmacophore of salvinorin A, a potent κ-opioid receptor agonist. J. Med. Chem. 2004, 48, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Fichna, J.; Schicho, R.; Andrews, C.; Bashashati, M.; Klompus, M.; McKay, D.; Sharkey, K.A.; Zjawiony, J.K.; Janecka, A.; Storr, M.A.; et al. Salvinorin inhibits mice’s colonic transit and neurogenic ion transport by activating κ-opioid and cannabinoid receptors. Neurogastroenterol. Motil. 2009, 21, 1326. [Google Scholar] [CrossRef] [PubMed]
- Addy, P. Acute and post-acute behavioral and psychological impact of salvinorin A in humans. Psychopharmacology 2011, 220, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Butelman, E.; Caspers, M.; Lovell, K.; Kreek, M.; Prisinzano, T. Behavioral effects and central nervous system levels of the broadly available κ-agonist hallucinogen salvinorin A are affected by p-glycoprotein modulation in vivo. J. Pharmacol. Exp. Ther. 2012, 341, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Biggs, J.; Morgan, J.; Lardieri, A.; Kishk, O. Abuse and misuse of selected dietary supplements among adolescents: A look at poison center data. J. Pediatr. Pharmacol. Ther. 2017, 22, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Waters, K. Pharmacologic similarities and differences among hallucinogens. J. Clin. Pharmacol. 2021, 61, S100–S113. [Google Scholar] [CrossRef] [PubMed]
- Brito-da-Costa, A.; Silva, D.; Gomes, N.; Dinis-Oliveira, R.; Madureira-Carvalho, Á. Clinical and forensic aspects include pharmacokinetics and pharmacodynamics of salvinorin A and Salvia divinorum. Pharmaceuticals 2021, 14, 116. [Google Scholar] [CrossRef]
- Maqueda, A.; Valle, M.; Addy, P.; Antonijoan, R.; Puntes, M.; Coimbra, J.; Ballester, M.R.; Garrido, M.; González, M.; Claramunt, J.; et al. Salvinorin A induces intense dissociative effects, blocking external sensory perception and modulating interoception and sense of body ownership in humans. Int. J. Neuropsychopharmacol. 2015, 18, pyv065. [Google Scholar] [CrossRef] [PubMed]
- Braida, D.; Capurro, V.; Zani, A.; Rubino, T.; Viganò, D.; Parolaro, D.; Sala, M. In rodents, potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum. Br. J. Pharmacol. 2009, 157, 844–853. [Google Scholar] [CrossRef]
- Franco-Molina, M.; Gómez-Flores, R.; Tamez-Guerra, P.; Taméz-Guerra, R.; Castillo-León, L.; Rodríguez-Padilla, C. In vitro immunopotentiating properties and tumor cell toxicity induced by Lophophora williamsii (peyote) cactus methanolic extract. Phytother. Res. 2003, 17, 1076–1081. [Google Scholar] [CrossRef]
- Kleffens, M. An overview of the hallucinogenic peyote and its alkaloid mescaline: The importance of context, ceremony, and culture. Molecules 2023, 28, 7942. [Google Scholar] [CrossRef] [PubMed]
- Duan, W. Serotonin 2A receptor (5-HT2AR) agonists: Psychedelics and non-hallucinogenic analogs as emerging antidepressants. Chem. Rev. 2023, 124, 124–163. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.; Pereira, C.; Silva, D. Pharmacokinetic and pharmacodynamic aspects of peyote and mescaline: Clinical and forensic repercussions. Curr. Mol. Pharmacol. 2019, 12, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Tupper, K.; Wood, E.; Yensen, R.; Johnson, M. Psychedelic medicine: A re-emerging therapeutic paradigm. Can. Med. Assoc. J. 2015, 187, 1054–1059. [Google Scholar] [CrossRef] [PubMed]
- Terry, M.; Trout, K. Regulation of peyote (Lophophora williamsii: Cactaceae) in the U.S.A: A historical victory of religion and politics over science and medicine. J. Bot. Res. Inst. Tex. 2017, 11, 147–156. [Google Scholar] [CrossRef]
- Nichols, D. Chemistry and structure-activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, A.L., Vollenweider, F.X., Nichols, D.E., Eds.; Current Topics in Behavioral Neurosciences; Springer: Berlin/Heidelberg, Germany, 2017; Volume 36, pp. 1–43. [Google Scholar]
- Cassels, B.; Sáez-Briones, P. Dark classics in chemical neuroscience: Mescaline. ACS Chem. Neurosci. 2018, 9, 2448–2458. [Google Scholar] [CrossRef]
- Aragane, M.; Sasaki, Y.; Nakajima, J.; Fukumori, N.; Yoshizawa, M.; Suzuki, Y.; Kitagawa, S.; Mori, K.; Ogino, S.; Yasuda, I.; et al. Peyote identification based on differences in morphology, mescaline content, and TRNL/TRNF sequence between Lophophora williamsii and L. diffuse. J. Nat. Med. 2010, 65, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Watkins, J. Elucidation of the mescaline biosynthetic pathway in peyote (Lophophora williamsii). Plant J. 2023, 116, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Kirschner, G. Breaking bad buttons: Mescaline biosynthesis in peyote. Plant J. 2023, 116, 633–634. [Google Scholar] [CrossRef] [PubMed]
- Gambelunghe, C.; Marsili, R.; Aroni, K.; Bacci, M.; Rossi, R. GC-MS and GC-MS/MS in PCI mode determination of mescaline in peyote tea and in biological matrices. J. Forensic Sci. 2012, 58, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Ermakova, A.; Whiting, C.; Trout, K.; Clubbe, C.; Terry, M. Densities, plant sizes, and spatial distributions of six wild populations of Lophophora williamsii (Cactaceae) in Texas, U.S.A. J. Bot. Res. Inst. Tex. 2021, 15, 149–160. [Google Scholar] [CrossRef]
- Varlet, V. Drug vaping: From the dangers of misuse to new therapeutic devices. Toxics 2016, 4, 29. [Google Scholar] [CrossRef]
- Oliveira, R.; Sonsin-Oliveira, J.; Santos, T.; Silva, M.; Fagg, C.; Sebastiani, R. Lectotypification of Banisteriopsis caapi and B. quitensis (Malpighiaceae), names associated with an important ingredient of ayahuasca. Taxon 2020, 70, 185–188. [Google Scholar] [CrossRef]
- Santos, B.; Oliveira, R.; Sonsin-Oliveira, J.; Fagg, C.; Barbosa, J.; Caldas, E. Biodiversity of β-carboline profile of Banisteriopsis caapi and ayahuasca, a plant and a brew with neuropharmacological potential. Plants 2020, 9, 870. [Google Scholar] [CrossRef] [PubMed]
- Araújo, D.; Ribeiro, S.; Cecchi, G.; Carvalho, F.; Sanchez, T.; Pinto, J.; de Martinis, B.S.; Crippa, J.A.; Hallak, J.E.; Santos, A.C.; et al. Seeing with the eyes shut: Neural basis of enhanced imagery following ayahuasca ingestion. Hum. Brain Mapp. 2011, 33, 2550–2560. [Google Scholar] [CrossRef] [PubMed]
- Tupper, K.W. The globalization of ayahuasca: Harm reduction or benefit maximization? Int. J. Drug Policy 2008, 19, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Göckler, N.; Jofré, G.; Papadopoulos, C.; Soppa, U.; Tejedor, F.; Becker, W. Harmine inhibits explicitly protein kinase DYRK1A and interferes with neurite formation. FEBS J. 2009, 276, 6324–6337. [Google Scholar] [CrossRef] [PubMed]
- Morales-García, J.; Revenga, M.; Alonso-Gil, S.; Rodríguez-Franco, M.; Feilding, A.; Pérez-Castillo, A.; Riba, J. The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen ayahuasca, stimulate adult neurogenesis in vitro. Sci. Rep. 2017, 7, 5309. [Google Scholar] [CrossRef] [PubMed]
- Estrella-Parra, E.; Almanza-Perez, J.; Alarcón-Aguilar, F. Ayahuasca: Uses, phytochemical, and biological activities. Nat. Prod. Bioprospecting 2019, 9, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Samoylenko, V.; Tekwani, B.; Khan, I.; Miller, L.; Chaurasiya, N.; Rahman, M.M.; Tripathi, L.M.; Khan, S.I.; Joshi, V.C.; et al. Composition, standardization, and chemical profiling of Banisteriopsis caapi, a plant for treating neurodegenerative disorders relevant to Parkinson’s disease. J. Ethnopharmacol. 2010, 128, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Carbonaro, T.; Gatch, M. Neuropharmacology of N, N-dimethyltryptamine. Brain Res. Bull. 2016, 126, 74–88. [Google Scholar] [CrossRef]
- Uthaug, M.; Oorsouw, K.; Kuypers, K.; Boxtel, M.; Broers, N.; Mason, N.; Toennes, S.W.; Riba, J.; Ramaekers, J.G. Sub-acute and long-term effects of ayahuasca on affect and cognitive thinking style and their association with ego dissolution. Psychopharmacology 2018, 235, 2979–2989. [Google Scholar] [CrossRef] [PubMed]
- Correa-Netto, N.; Coelho, L.; Galfano, G.; Nishide, F.; Tamura, F.; Shimizu, M.; Santos, J.G., Jr.; Linardi, A. Chronic intermittent exposure to ayahuasca during aging does not affect memory in mice. Braz. J. Med. Biol. Res. 2017, 50, e6037. [Google Scholar]
- Kummrow, F.; Maselli, B.; Lanaro, R.; Costa, J.; Umbuzeiro, G.; Linardi, A. Mutagenicity of ayahuasca and their constituents to the salmonella/microsome assay. Environ. Mol. Mutagen. 2018, 60, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Santos, B.; Moreira, D.; Borges, T.; Caldas, E. Components of Banisteriopsis caapi, a plant used in the preparation of the psychoactive ayahuasca, induce anti-inflammatory effects in microglial cells. Molecules 2022, 27, 2500. [Google Scholar] [CrossRef] [PubMed]
- Gaire, B.; Subedi, L. A review on the pharmacological and toxicological aspects of Datura stramonium L. J. Integr. Med. 2013, 11, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Al-Snafi, A. Medical importance of Datura fastuosa (syn: Datura metal) and Datura stramonium—A review. IOSR J. Pharm. (IOSRPHR) 2017, 7, 43–58. [Google Scholar] [CrossRef]
- Pk, D.; Op, S. Acute renal failure: A complication of Datura poisoning. J. Kidney 2017, 3, 1000147. [Google Scholar] [CrossRef]
- U.S. Department of Justice, National Drug Intelligence Center. Jimsonweed (Datura Stramonium); U.S. Department of Justice: Washington, DC, USA, 1998.
- Ademikanra, K. Evaluation of in-vivo antioxidant and toxicological potential of Datura stramonium methanolic seed extracts in male Wistar rats. SFJ 2021, 26, 67–83. [Google Scholar]
- Didou, L.; Azzaoui, F.; Ahami, A.; Ed-Day, S.; Kacimi, F.; Boulbaroud, S. Rosmarinus officinalis L. leaf extract improves anxiety impairment induced by tropane alkaloids extracted from Datura stramonium. E3S Web Conf. 2021, 319, 01059. [Google Scholar] [CrossRef]
- Vearrier, D.; Greenberg, M. Anticholinergic delirium following Datura stramonium ingestion: Implications for the internet age. J. Emergencies Trauma Shock 2010, 3, 303. [Google Scholar] [CrossRef]
- Diker, D.; Markovitz, D.; Rothman, M.; Sendovski, U. Coma as a presenting sign of Datura stramonium seed tea poisoning. Eur. J. Intern. Med. 2007, 18, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Beynon, S.; Chaturvedi, S. Datura intoxication in an adolescent male: A challenge in the Internet era. J. Paediatr. Child Health 2017, 54, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Arefi, M.; Barzegari, N.; Asgari, M.; Soltani, S.; Farhidnia, N.; Fallah, F. Datura poisoning, clinical and laboratory findings. Report of five cases. Rom. J. Leg. Med. 2016, 24, 308–311. [Google Scholar] [CrossRef]
- Ogunmoyole, T.; Adeyeye, R.; Olatilu, B.; Akande, O.; Agunbiade, O. Multiple organ toxicity of Datura stramonium seed extracts. Toxicol. Rep. 2019, 6, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Brown, K.; McMenemy, M.; Dennany, L.; Baker, M.; Allan, P.; Cartwright, C.; Bernard, J.; Sturt, F.; Kotoula, E.; et al. Datura quids at Pinwheel Cave, California, provide unambiguous confirmation of the ingestion of hallucinogens at a rock art site. Proc. Natl. Acad. Sci. USA 2020, 117, 31026–31037. [Google Scholar] [CrossRef] [PubMed]
- Krenzelok, E. Aspects of Datura poisoning and treatment. Clin. Toxicol. 2010, 48, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.; Perttula, T.; Gaikwad, N. Production matters. Adv. Archaeol. Pract. 2021, 10, 149–159. [Google Scholar] [CrossRef]
- Shebani, A.; Hnish, M.; Elmelliti, H.; Abdeen, M.; Ganaw, A. Acute poisoning with Datura stramonium plant seeds in Qatar. Cureus 2021, 13, e20152. [Google Scholar] [CrossRef] [PubMed]
- Rakotomavo, F.; Andriamasy, C.; Ndrantoniaina, R.; Raveloson, N. Datura stramonium intoxication in two children. Pediatr. Int. 2014, 56, e14–e16. [Google Scholar] [CrossRef] [PubMed]
- Pereda-Miranda, R.; Mata, R.; Anaya, A.; Wickramaratne, D.; Pezzuto, J.; Kinghorn, A. Tricolorin A, major phytogrowth inhibitor from Ipomoea tricolor. J. Nat. Prod. 1993, 56, 571–582. [Google Scholar] [CrossRef]
- Sharma, M.; Dhaliwal, I.; Rana, K.; Delta, A.K.; Kaushik, P. Phytochemistry, Pharmacology, and Toxicology of Datura Species-A Review. Antioxidants 2021, 10, 1291. [Google Scholar] [CrossRef] [PubMed]
- Fasakin, O.W.; Oboh, G.; Ademosun, A.O. The prevalence, mechanism of action, and toxicity of Nigerian psychoactive plants. Comp. Clin. Pathol. 2022, 31, 853–873. [Google Scholar] [CrossRef] [PubMed]
- Meira, M.; Silva, E.; David, J.; David, J. Review of the genus Ipomoea: Traditional uses, chemistry, and biological activities. Rev. Bras. De Farmacogn. 2012, 22, 682–713. [Google Scholar] [CrossRef]
- Selim, N.; Hawary, S.; Aly, H.; Matlob, A.; Elhenawy, M.; Deabes, D.; Ebrahim, H. Comparative phytochemical and biological studies of lipoidal matter of Ipomoea tricolor (Cav.) and Ipomoea fistulosa (Mart. ex Choisy) growing in Egypt. Egypt. J. Chem. 2021, 64, 1845–1857. [Google Scholar] [CrossRef]
- Ameamsri, U.; Tanee, T.; Chaveerach, A.; Peigneur, S.; Tytgat, J.; Sudmoon, R. Anti-inflammatory and detoxification activities of some Ipomoea species determined by ion channel inhibition and their phytochemical constituents. ScienceAsia 2021, 47, 321. [Google Scholar] [CrossRef]
- León-Rivera, I.; Mirón-López, G.; Molina-Salinas, G.; Herrera-Ruiz, M.; Estrada-Soto, S.; Gutiérrez, M.; Alonso-Cortes, D.; Navarrete-Vázquez, G.; Ríos, M.Y.; Said-Fernández, S.; et al. Tyrianthinic acids from Ipomoea tyrianthina and their antimycobacterial activity, cytotoxicity, and effects on the central nervous system. J. Nat. Prod. 2008, 71, 1686–1691. [Google Scholar] [CrossRef]
- Parnmen, S.; Nooron, N.; Sikaphan, S.; Pringsulaka, O.; Rangsiruji, A. Potential toxicity of wild Ipomoea ingested by schoolchildren in remote northeastern Thailand. J. Assoc. Med. Sci. 2023, 56, 54–62. [Google Scholar] [CrossRef]
- Ryan, A.; O’Hern, P.; Elkins, K.M. Evaluation of two new methods for DNA extraction of “legal high” plant species. J. Forensic Sci. 2020, 65, 1704–1708. [Google Scholar] [CrossRef] [PubMed]
- González-Maeso, J.; Weisstaub, N.; Zhou, M.; Chan, P.; Ivic, L.; Ang, R.; Lira, A.; Bradley-Moore, M.; Ge, Y.; Zhou, Q.; et al. Hallucinogens recruit specific cortical 5-HT₂A receptor-mediated signaling pathways to affect behavior. Neuron 2007, 53, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Arunotayanun, W.; Gibbons, S. Natural product ‘legal highs’. Nat. Prod. Rep. 2012, 29, 1304. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.; Bohn, L. Serotonin, but not dimethyltryptamine, activates the serotonin 2A receptor via a β-arrestin2/src/Akt signaling complex in vivo. J. Neurosci. 2010, 30, 13513–13524. [Google Scholar] [CrossRef] [PubMed]
- Halberstadt, A.; Geyer, M. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 2011, 61, 364–381. [Google Scholar] [CrossRef] [PubMed]
- Passie, T.; Halpern, J.H.; Stichtenoth, D.O.; Emrich, H.M.; Hintzen, A. The pharmacology of lysergic acid diethylamide: A review. CNS Neurosci. Ther. 2008, 14, 295–314. [Google Scholar] [CrossRef] [PubMed]
- Halberstadt, A. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res. 2015, 277, 99–120. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.; Woźniakiewicz, M.; Klepacki, P.; Sowa, A.; Kościelniak, P. Identification and determination of ergot alkaloids in morning glory cultivars. Anal. Bioanal. Chem. 2016, 408, 3093–3102. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, J.; Mercx, S.; Boutry, M.; Chaumont, F. Evolutionary and predictive functional insights into the aquaporin gene family in the allotetraploid plant Nicotiana tabacum. Int. J. Mol. Sci. 2020, 21, 4743. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, B.; Arowosegbe, S.; Adeleke, O.; Obawumi, D.; Asowata-Ayodele, A. Nicotine content and dietary composition of some cultivated species of Solanaceae family. Ann. Sci. Technol. 2022, 7, 41–50. [Google Scholar] [CrossRef]
- Vardavas, C.I. European Tobacco Products Directive (TPD): Current impact and future steps. Tob. Control 2022, 31, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Green, B.; Lee, S.; Panter, K.; Brown, D. Piperidine alkaloids: Human and food animal teratogens. Food Chem. Toxicol. 2012, 50, 2049–2055. [Google Scholar] [CrossRef] [PubMed]
- Sierro, N.; Battey, J.; Ouadi, S.; Bovet, L.; Goepfert, S.; Bakaher, N.; Peitsch, M.C.; Ivanov, N.V. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol. 2013, 14, R60. [Google Scholar] [CrossRef] [PubMed]
- Nwaji, A.; Inwang, U.; Nwoke, F.; Ante, I. Changes in serum electrolytes, urea, and creatinine in Nicotiana tabacum-treated rats. Niger. J. Physiol. Sci. 2022, 37, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Cai, B.; Xiang, Z.; Zhao, H.; Rao, X.; Pan, W.; Lei, B. Low-temperature derivatization followed by vortex-assisted liquid-liquid microextraction for the analysis of polyamines in Nicotiana tabacum. J. Sep. Sci. 2016, 39, 2573–2583. [Google Scholar] [CrossRef] [PubMed]
- Adler, L.; Wink, M.; Distl, M.; Lentz, A. Leaf herbivory and nutrients increase nectar alkaloids. Ecol. Lett. 2006, 9, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Sierro, N.; Battey, J.; Bovet, L.; Liedschulte, V.; Ouadi, S.; Thomas, J.; Broye, H.; Laparra, H.; Vuarnoz, A.; Lang, G.; et al. The impact of genome evolution on the allotetraploid Nicotiana rustica—An intriguing story of enhanced alkaloid production. BMC Genom. 2018, 19, 855. [Google Scholar] [CrossRef] [PubMed]
- Finch, P.; Drummond, P. Topical treatment in pain medicine: From ancient remedies to modern usage. Pain Manag. 2015, 5, 359–371. [Google Scholar] [CrossRef]
- Llanes, L.; Biazotto, N.; Cenci, A.; Teixeira, K.; França, I.; Meier, L.; de Oliveira, A.S. Witches, potions, and metabolites: An overview from a medicinal perspective. RSC Med. Chem. 2022, 13, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Chidiac, E.; Kaddoum, R.; Fuleihan, S. Mandragora. Anesth. Analg. 2012, 115, 1437–1441. [Google Scholar] [CrossRef] [PubMed]
- Gründemann, C.; Diegel, C.; Sauer, B.; Garcia-Käufer, M.; Huber, R. Immunomodulatory effects of preparations from anthroposophical medicine for parenteral use. BMC Complement. Altern. Med. 2015, 15, 303. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Cao, S.; Chen, L.; Qiu, F. Natural withanolides, an update. Nat. Prod. Rep. 2022, 39, 784–813. [Google Scholar] [CrossRef] [PubMed]
- Monadi, T.; Azadbakht, M.; Ahmadi, A.; Chabra, A. A comprehensive review on the ethnopharmacology, phytochemistry, pharmacology, and toxicology of the Mandragora genus; from folk medicine to modern medicine. Curr. Pharm. Des. 2021, 27, 3609–3637. [Google Scholar] [CrossRef] [PubMed]
- Don-Lawson, C.; Oforibika, G.; Okah, R. Hepatic impact of Mandragora officinarum leaf extract on Wistar albino rats. Am. J. Anal. Chem. 2022, 13, 531–537. [Google Scholar] [CrossRef]
- Frasca, T. Mandrake toxicity: A case of mistaken identity. Arch. Intern. Med. 1997, 157, 2007–2009. [Google Scholar] [CrossRef] [PubMed]
- Manthey, J.; Jacobsen, B.; Hayer, T.; Kalke, J.; López-Pelayo, H.; Pons-Cabrera, M.T.; Verthein, U.; Rosenkranz, M. The impact of legal cannabis availability on cannabis use and health outcomes: A systematic review. Int. J. Drug Policy 2023, 116, 104039. [Google Scholar] [CrossRef] [PubMed]
- Mahamad, S.; Hammond, D. Retail price and availability of illicit cannabis in Canada. Addict. Behav. 2019, 90, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Mahamad, S.; Wadsworth, E.; Rynard, V.; Goodman, S.; Hammond, D. Availability, retail price and potency of legal and illegal cannabis in Canada after recreational cannabis legalization. Drug Alcohol Rev. 2020, 39, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Levy, N.S.; Mauro, P.M.; Mauro, C.M.; Segura, L.E.; Martins, S.S. Joint perceptions of the risk and availability of cannabis in the United States, 2002–2018. Drug Alcohol Depend. 2021, 226, 108873. [Google Scholar] [CrossRef] [PubMed]
- Decorte, T.; Pardal, M.; Queirolo, R.; Boidi, M.F.; Sánchez Avilés, C.; Parés Franquero, Ò. Regulating Cannabis Social Clubs: A comparative analysis of legal and self-regulatory practices in Spain, Belgium, and Uruguay. Int. J. Drug Policy 2017, 43, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, T.; Jacques, S. Drug control policy, normalization, and symbolic boundaries in Amsterdam’s coffee shops. Br. J. Criminol. 2021, 61, 22–40. [Google Scholar] [CrossRef]
- Kong, A.Y.; Gottfredson, N.C.; Ribisl, K.M.; Baggett, C.D.; Delamater, P.L.; Golden, S.D. Associations of County Tobacco Retailer Availability With U.S. Adult Smoking Behaviors, 2014–2015. Am. J. Prev. Med. 2021, 61, e139–e147. [Google Scholar] [CrossRef] [PubMed]
- Valiente, R.; Sureda, X.; Bilal, U.; Navas-Acien, A.; Pearce, J.; Franco, M.; Escobar, F. Regulating the local availability of tobacco retailing in Madrid, Spain: A GIS study to evaluate compliance. Tob. Control 2019, 28, 325–333. [Google Scholar] [CrossRef]
- Kingsley, M.; Song, G.; Robertson, J.; Henley, P.; Ursprung, W.W.S. Impact of flavored tobacco restriction policies on flavored product availability in Massachusetts. Tob. Control 2020, 29, 175–182. [Google Scholar] [PubMed]
- Skolnick, P. The opioid epidemic: Crisis and solutions. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Esquibel, A.Y.; Borkan, J. Doctors and patients in pain: Conflict and collaboration in opioid prescription in primary care. Pain 2014, 155, 2575–2582. [Google Scholar] [CrossRef] [PubMed]
- Manchikanti, L.; Kaye, A.M.; Knezevic, N.N.; McAnally, H.; Slavin, K.; Trescot, A.M.; Blank, S.; Pampati, V.; Abdi, S.; Grider, J.S.; et al. Responsible, Safe, and Effective Prescription of Opioids for Chronic Non-Cancer Pain: American Society of Interventional Pain Physicians (ASIPP) Guidelines. Pain Physician 2017, 20, S3–S92. [Google Scholar] [CrossRef] [PubMed]
- Zaprutko, T.; Koligat, D.; Michalak, M.; Wieczorek, M.; Józiak, M.; Ratajczak, M.; Szydłowska, K.; Miazek, J.; Kus, K.; Nowakowska, E. Misuse of OTC drugs in Poland. Health Policy 2016, 120, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Hockenhull, J.; Wood, D.M.; Fonseca, F.; Guareschi, M.; Scherbaum, N.; Iwanicki, J.L.; Dart, R.C.; Dargan, P.I. The association between the availability of over-the-counter codeine and the prevalence of non-medical use. Eur. J. Clin. Pharmacol. 2022, 78, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Cameron, J.; Pahoki, S. Opportunities and challenges: Over-the-counter codeine supply from the codeine consumer’s perspective. Int. J. Pharm. Pract. 2013, 21, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Kudlacek, O.; Hofmaier, T.; Luf, A.; Mayer, F.P.; Stockner, T.; Nagy, C.; Holy, M.; Freissmuth, M.; Schmid, R.; Sitte, H.H.; et al. Cocaine adulteration. J. Chem. Neuroanat. 2017, 83–84, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Mejia, D.; Restrepo, P. The economics of the war on illegal drug production and trafficking. J. Econ. Behav. Organ. 2016, 126, 255–275. [Google Scholar] [CrossRef]
- Boivin, R. Risks, prices, and positions: A social network analysis of illegal drug trafficking in the world-economy. Int. J. Drug Policy 2014, 25, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Nakano, Y.; Adachi, S.; Murohara, T. Effects of Tobacco Smoking on Cardiovascular Disease. Circ. J. 2019, 83, 2289–2298. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, A.; D’Isidoro, O.; Piattelli, A.; Hui, W.L.; Perrotti, V. Illegal drugs and periodontal conditions. Periodontology 2000 2022, 90, 62–87. [Google Scholar] [CrossRef] [PubMed]
- Jett, J.; Stone, E.; Warren, G.; Cummings, K.M. Cannabis Use, Lung Cancer, and Related Issues. J. Thorac. Oncol. 2018, 13, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Vearrier, D.; Grundmann, O. Clinical Pharmacology, Toxicity, and Abuse Potential of Opioids. J. Clin. Pharmacol. 2021, 61 (Suppl. S2), S70–S88. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Park, T. Acute and Chronic Effects of Cocaine on Cardiovascular Health. Int. J. Mol. Sci. 2019, 20, 584. [Google Scholar] [CrossRef] [PubMed]
- Ukah, U.V.; Potter, B.J.; Paradis, G.; Low, N.; Ayoub, A.; Auger, N. Cocaine and the Long-Term Risk of Cardiovascular Disease in Women. Am. J. Med. 2022, 135, 993–1000.e1. [Google Scholar] [CrossRef] [PubMed]
- Hecht, S.S.; Hatsukami, D.K. Smokeless tobacco and cigarette smoking: Chemical mechanisms and cancer prevention. Nat. Rev. Cancer 2022, 22, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Drummer, O.H.; Gerostamoulos, D.; Woodford, N.W. Cannabis as a cause of death: A review. Forensic Sci. Int. 2019, 298, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Urits, I.; Charipova, K.; Gress, K.; Li, N.; Berger, A.A.; Cornett, E.M.; Kassem, H.; Ngo, A.L.; Kaye, A.D.; Viswanath, O. Adverse Effects of Recreational and Medical Cannabis. Psychopharmacol. Bull. 2021, 51, 94–109. [Google Scholar] [PubMed]
- Kesner, A.J.; Lovinger, D.M. Cannabis use, abuse, and withdrawal: Cannabinergic mechanisms, clinical, and preclinical findings. J. Neurochem. 2021, 157, 1674–1696. [Google Scholar] [CrossRef]
- Zehra, A.; Burns, J.; Liu, C.K.; Manza, P.; Wiers, C.E.; Volkow, N.D.; Wang, G.J. Cannabis Addiction and the Brain: A Review. J. Neuroimmune Pharmacol. 2018, 13, 438–452. [Google Scholar] [CrossRef]
- Assi, S.; Keenan, A.; Al Hamid, A. Exploring e-psychonauts’ perspectives towards cocaine effects and toxicity. Subst. Abus. Treat. Prev. Policy 2022, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Pérez, A.; García-Gómez, L.; Robles-Hernández, R.; Thirión-Romero, I.; Osio-Echánove, J.; Rodríguez-Llamazares, S.; Baler, R.; Pérez-Padilla, R. Addiction to Tobacco Smoking and Vaping. Rev. De Investig. Clínica 2023, 75, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, M.; Sałaga, M.; Storr, M.A.; Fichna, J. Physiology, signaling, and pharmacology of opioid receptors and their ligands in the gastrointestinal tract: Current concepts and future perspectives. J. Gastroenterol. 2014, 49, 24–45. [Google Scholar] [CrossRef]
- Strzelak, A.; Ratajczak, A.; Adamiec, A.; Feleszko, W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. Int. J. Environ. Res. Public Health 2018, 15, 1033. [Google Scholar] [CrossRef] [PubMed]
- Bortoletto, P.; Prabhu, M. Impact of Tobacco and Marijuana on Infertility and Early Reproductive Wastage. Clin. Obstet. Gynecol. 2022, 65, 360–375. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.; Norman, R.; Freedman, G.; Baxter, A.; Pirkis, J.; Harris, M.; Page, A.; Carnahan, E.; Degenhardt, L.; Vos, T.; et al. The burden attributable to mental and substance use disorders as risk factors for suicide: Findings from the global burden of disease study 2010. PLoS ONE 2014, 9, e91936. [Google Scholar] [CrossRef] [PubMed]
- Raïch, I.; Lillo, J.; Rivas-Santisteban, R.; Rebassa, J.B.; Capó, T.; Santandreu, M.; Cubeles-Juberias, E.; Reyes-Resina, I.; Navarro, G. Potential of CBD Acting on Cannabinoid Receptors CB1 and CB2 in Ischemic Stroke. Int. J. Mol. Sci. 2024, 25, 6708. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Yang, B.; Xue-fen, Z.; Wang, T.; Lu, Q. Statistical methods and software for substance use and dependence genetic research. Curr. Genom. 2019, 20, 172–183. [Google Scholar] [CrossRef]
- Rutherford, H.; Mayes, L. Parenting stress: A novel mechanism of addiction vulnerability. Neurobiol. Stress 2019, 11, 100172. [Google Scholar] [CrossRef]
- Oliere, S.; Jolette-Riopel, A.; Potvin, S.; Jutras-Aswad, D. Modulation of the endocannabinoid system: Vulnerability factor and new treatment target for stimulant addiction. Front. Psychiatry 2013, 4, 109. [Google Scholar] [CrossRef] [PubMed]
- Feingold, D.; Bitan, D.D. Addiction psychotherapy: Going beyond self-medication. Front. Psychiatry 2022, 13, 820660. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.; Tandon, R. Should overeating and obesity be classified as an addictive disorder in DSM-5? Curr. Pharm. Des. 2011, 17, 1128–1131. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hodgins, D. Component model of addiction treatment: A pragmatic transdiagnostic treatment model of behavioral and substance addictions. Front. Psychiatry 2018, 9, 406. [Google Scholar] [CrossRef]
- Badiani, A.; Belin, D.; Epstein, D.; Calu, D.; Shaham, Y. Opiate versus psychostimulant addiction: The differences do matter. Nat. Rev. Neurosci. 2011, 12, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, H.; Tian, M. Molecular and functional imaging of internet addiction. BioMed Res. Int. 2015, 2015, 378675. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R. The clinical neurobiology of drug craving. Curr. Opin. Neurobiol. 2013, 23, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Scarna, H. Genesis of the heroin-induced addictive process: Articulation between psychodynamic and neurobiological theories. Front. Psychiatry 2020, 11, 524764. [Google Scholar] [CrossRef] [PubMed]
- Eme, R. The overlapping neurobiology of addiction and ADHD. Ment. Health Addict. Res. 2017, 2, 1–3. [Google Scholar] [CrossRef]
- Dakwar, E.; Kleber, H. Minding the brain: The role of pharmacotherapy in substance-use disorder treatment. Dialogues Clin. Neurosci. 2017, 19, 289–297. [Google Scholar]
- Hyman, S.; Malenka, R. Addiction and the brain: The neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2001, 2, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Conway, M.; O’Connor, D. Social media, big data, and mental health: Current advances and ethical implications. Curr. Opin. Psychol. 2016, 9, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Bühler, K.M.; Giné, E.; Echeverry-Alzate, V.; Calleja-Conde, J.; de Fonseca, F.R.; López-Moreno, J.A. Common single nucleotide variants underlying drug addiction: More than a decade of research. Addict. Biol. 2015, 20, 845–871. [Google Scholar] [CrossRef] [PubMed]
- Bierut, L.J. Genetic vulnerability and susceptibility to substance dependence. Neuron 2011, 69, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Urbanoski, K.A.; Kelly, J.F. Understanding genetic risk for substance use and addiction: A guide for non-geneticists. Clin. Psychol. Rev. 2012, 32, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, D.A.; Utrankar, A.; Reyes, J.A.; Simons, D.D.; Kosten, T.R. Epigenetics of drug abuse: Predisposition or response. Pharmacogenomics 2012, 13, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Cecil, C.A.; Walton, E.; Smith, R.G.; Viding, E.; McCrory, E.J.; Relton, C.L.; Suderman, M.; Pingault, J.B.; McArdle, W.; Gaunt, T.R.; et al. DNA methylation and substance-use risk: A prospective, genome-wide study spanning gestation to adolescence. Transl. Psychiatry 2016, 6, e976. [Google Scholar] [CrossRef] [PubMed]
- Renthal, W.; Nestler, E.J. Epigenetic mechanisms in drug addiction. Trends Mol. Med. 2008, 14, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Nestler, E.J. The neural rejuvenation hypothesis of cocaine addiction. Trends Pharmacol. Sci. 2014, 35, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Quizon, P.; Zhu, J. Molecular mechanism: ERK signaling, drug addiction, and behavioral effects. Prog. Mol. Biol. Transl. Sci. 2016, 137, 1–40. [Google Scholar] [PubMed]
- Wang, T.; Moosa, S.; Dallapiazza, R.; Elias, W.; Lynch, W. Deep brain stimulation for the treatment of drug addiction. Neurosurg. Focus 2018, 45, E11. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, K. Neuroplasticity in cholinergic neurons of the laterodorsal tegmental nucleus contributes to the development of cocaine addiction. Eur. J. Neurosci. 2018, 50, 2239–2246. [Google Scholar] [CrossRef]
- Torregrossa, M.; Kalivas, P. Microdialysis and the neurochemistry of addiction. Pharmacol. Biochem. Behav. 2008, 90, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.; Peselow, E. The neurobiology of addictive disorders. Clin. Neuropharmacol. 2009, 32, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R. Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depend. 2013, 130, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Muskiewicz, D.; Uhl, G.; Hall, F. The role of cell adhesion molecule genes regulating neuroplasticity in addiction. Neural Plast. 2018, 2018, 9803764. [Google Scholar] [CrossRef] [PubMed]
- Im, H.; Hollander, J.; Bali, P.; Kenny, P. MECP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat. Neurosci. 2010, 13, 1120–1127. [Google Scholar] [CrossRef]
- Daughters, S.; Lejuez, C.; Bornovalova, M.; Kahler, C.; Strong, D.; Brown, R. Distress tolerance as a predictor of early treatment dropout in a residential substance abuse treatment facility. J. Abnorm. Psychol. 2005, 114, 729–734. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Turel, O.; Bechara, A. Brain anatomy alterations associated with social networking site (SNS) addiction. Sci. Rep. 2017, 7, srep45064. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.; Dilkes-Frayne, E.; Savic, M.; Carter, A. When the brain leaves the scanner and enters the clinic. Contemp. Drug Probl. 2018, 45, 227–243. [Google Scholar] [CrossRef]
- Calder, A.; Hasler, G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology 2022, 48, 104–112. [Google Scholar] [CrossRef]
- Edemann-Callesen, H.; Barak, S.; Hadar, R.; Winter, C. Choosing the optimal brain target for neuromodulation therapies as alcohol addiction progresses—Insights from pre-clinical studies. Curr. Addict. Rep. 2020, 7, 237–244. [Google Scholar] [CrossRef]
- Morgan, C.; Sáez-Briones, P.; Barra, R.; Reyes, A.; Zepeda-Morales, K.; Constandil, L.; Ríos, M.; Ramírez, P.; Burgos, H.; Hernández, A.; et al. Prefrontal cortical control of activity in nucleus accumbens core is weakened by high-fat diet and prevented by co-treatment with n-acetylcysteine: Implications for the development of obesity. Int. J. Mol. Sci. 2022, 23, 10089. [Google Scholar] [CrossRef] [PubMed]
- Miguel, E.; Vekovischeva, O.; Kuokkanen, K.; Vesajoki, M.; Paasikoski, N.; Kaskinoro, J.; Myllymäki, M.; Lainiola, M.; Janhunen, S.K.; Hyytiä, P.; et al. GABAB receptor-positive allosteric modulators with different efficacies affect neuroadaptation to and self-administration of alcohol and cocaine. Addict. Biol. 2018, 24, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Kenny, P. Epigenetics, microRNA, and addiction. Dialogues Clin. Neurosci. 2014, 16, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Ornstein, P. Cognitive deficits in chronic alcoholics. Psychol. Rep. 1977, 40, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Weiss, N.; Tull, M.; Viana, A.; Anestis, M.; Gratz, K. Impulsive behaviors as an emotion regulation strategy: Examining associations between PTSD, emotion dysregulation, and impulsive behaviors among substance dependent inpatients. J. Anxiety Disord. 2012, 26, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Weiss, N.; Sullivan, T.; Tull, M. Explicating the role of emotion dysregulation in risky behaviors: A review and synthesis of the literature with directions for future research and clinical practice. Curr. Opin. Psychol. 2015, 3, 22–29. [Google Scholar] [CrossRef]
- Weiss, N.; Tull, M.; Anestis, M.; Gratz, K. The relative and unique contributions of emotion dysregulation and impulsivity to posttraumatic stress disorder among substance dependent inpatients. Drug Alcohol Depend. 2013, 128, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Dinn, W.; Gansler, D.; Moczynski, N.; Fulwiler, C. Brain dysfunction and community violence in patients with major mental illness. Crim. Justice Behav. 2008, 36, 117–136. [Google Scholar] [CrossRef]
- Crow, T.; Cross, D.; Powers, A.; Bradley, B. Emotion dysregulation as a mediator between childhood emotional abuse and current depression in a low-income African-American sample. Child Abus. Negl. 2014, 38, 1590–1598. [Google Scholar] [CrossRef] [PubMed]
- Vocci, F. Cognitive remediation in the treatment of stimulant abuse disorders: A research agenda. Exp. Clin. Psychopharmacol. 2008, 16, 484–497. [Google Scholar] [CrossRef] [PubMed]
- Magill, M.; Ray, L.; Kiluk, B.; Hoadley, A.; Bernstein, M.; Tonigan, J.; Carroll, K. A meta-analysis of cognitive-behavioral therapy for alcohol or other drug use disorders: Treatment efficacy by contrast condition. J. Consult. Clin. Psychol. 2019, 87, 1093–1105. [Google Scholar] [CrossRef] [PubMed]
- Csillik, A.; Devulder, L.; Fenouillet, F.; Louville, P. A pilot study on the effectiveness of motivational interviewing groups in alcohol use disorders. J. Clin. Psychol. 2021, 77, 2746–2764. [Google Scholar] [CrossRef] [PubMed]
- Najavits, L.; Hien, D. Helping vulnerable populations: A comprehensive review of the treatment outcome literature on substance use disorder and PTSD. J. Clin. Psychol. 2013, 69, 433–479. [Google Scholar] [CrossRef] [PubMed]
- Wiers, R.; Gladwin, T.; Hofmann, W.; Ridderinkhof, K. Cognitive bias modification and cognitive control training in addiction and related psychopathology. Clin. Psychol. Sci. 2013, 1, 192–212. [Google Scholar] [CrossRef]
- Miller, W. Motivation for treatment: A review with particular emphasis on alcoholism. Psychol. Bull. 1985, 98, 84–107. [Google Scholar] [CrossRef]
- Luquiens, A.; Aubin, H. Patient preferences and perspectives regarding reducing alcohol consumption: Role of nalmefene. Patient Prefer. Adherence 2014, 8, 1347–1352. [Google Scholar]
- Stoffel, V.; Moyers, P. An evidence-based and occupational perspective of interventions for persons with substance-use disorders. Am. J. Occup. Ther. 2004, 58, 570–586. [Google Scholar] [CrossRef]
- Sugarman, D.; Nich, C.; Carroll, K. Coping strategy use following computerized cognitive-behavioral therapy for substance use disorders. Psychol. Addict. Behav. 2010, 24, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Tariah, H.; Hamed, R.; Al-Omari, H. Jordanian client perspectives of substance abuse: Implications for occupational therapists. Int. J. Ther. Rehabil. 2015, 22, 566–572. [Google Scholar] [CrossRef]
- Penberthy, K. Stage of change and coping skills acquisition: Ideas for individualized treatment approaches. J. Addict. Res. Ther. 2016, 7, e135. [Google Scholar] [CrossRef]
- Hogue, A.; Henderson, C.E.; Ozechowski, T.J.; Robbins, M.S. Systemic interventions in substance-abuse treatment: Past, present, and future. J. Fam. Psychother. 2011, 22, 177–192. [Google Scholar]
- Ozechowski, T.J.; Hogue, A. Systemic treatments for substance use disorders. In The Wiley-Blackwell Handbook of Family Psychology; Bray, J.H., Stanton, M., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 637–649. [Google Scholar]
- Klostermann, K.; O’Farrell, T.J. Treating substance abuse: Partner and family approaches. Soc. Work Public Health 2013, 28, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Kimball, T.; Shumway, S.; Bradshaw, S.; Soloski, K.L.; Wampler, K.; Rastogi, M.; Singh, R. A systemic understanding of addiction formation and the recovery process. In Multicultural Couple Therapy: Theory and Practice; Rastogi, M., Singh, R., Eds.; Routledge: London, UK, 2020; pp. 325–355. [Google Scholar]
- Horigian, V.E.; Anderson, A.R.; Szapocznik, J. Family-Based Treatments for Adolescent Substance Use. Child Adolesc. Psychiatr. Clin. N. Am. 2016, 25, 603–628. [Google Scholar] [CrossRef] [PubMed]
- Patton, R.; Goerke, J.E.; Katafiasz, H. Systemic approaches to adolescent substance abuse. In The Handbook of Systemic Family Therapy: Systemic Family Therapy with Children and Adolescents; Wampler, K.S., McWey, L.M., Eds.; Wiley: Hoboken, NJ, USA, 2020; Chapter 12. [Google Scholar]
- Bant, D. A cross-sectional study to assess the prevalence, pattern, trend, and impact of substance abuse among medical students. Indian J. Public Health Res. Dev. 2022, 13, 73–77. [Google Scholar] [CrossRef]
- Momtazi, S.; Rawson, R. Substance abuse among Iranian high school students. Curr. Opin. Psychiatry 2010, 23, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Lin, S. Pharmacological means of reducing human drug dependence: A selective and narrative clinical literature review. Br. J. Clin. Pharmacol. 2014, 77, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Baca, C.; Yahne, C. Smoking cessation during substance abuse treatment: What you need to know. J. Subst. Abus. Treat. 2009, 36, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Weisner, C.; Mertens, J.; Parthasarathy, S.; Moore, C.; Lu, Y. Integrating primary medical care with addiction treatment. JAMA 2001, 286, 1715. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.; Schulz, K.; Palmero, R.; Newcorn, J. Neurorobiology and evidence-based biological treatments for substance abuse disorders. CNS Spectr. 2006, 11, 864–877. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J. Faith-based intervention, change of religiosity, and abstinence of substance addicts. Braz. J. Psychiatry 2022, 44, 46–56. [Google Scholar] [CrossRef]
- Weaver, M.; Jarvis, M.; Schnoll, S. Role of the primary care physician in problems of substance abuse. Arch. Intern. Med. 1999, 159, 913. [Google Scholar] [CrossRef]
- Smith, D.; Lee, D.; Davidson, L. Health care equality and parity for treatment of addictive disease. J. Psychoact. Drugs 2010, 42, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Moulahoum, H.; Zihnioglu, F.; Timur, S. Novel technologies in the detection, treatment, and prevention of substance use disorders. J. Food Drug Anal. 2019, 27, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Caponnetto, P.; Auditore, R.; Russo, C.; Alamo, A.; Campagna, D.; Demma, S.; Polosa, R. “Dangerous relationships”: Asthma and substance abuse. J. Addict. Dis. 2013, 32, 158–167. [Google Scholar] [CrossRef] [PubMed]
- McHugh, C.; Park, R.; Sönksen, P.; Holt, R. Challenges in detecting the abuse of growth hormone in sport. Clin. Chem. 2005, 51, 1587–1593. [Google Scholar] [CrossRef]
- Fingerhood, M. Substance abuse in older people. J. Am. Geriatr. Soc. 2000, 48, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Ragab, A.; Al-Mazroua, M.; El-Harouny, M.; Afify, M.; Omran, M.; Katbai, C.; Al Qurnay, M.A.; Al Saeed, I.; Al Zweide, F. Validity of substances of abuse detection in hair by biochips array technology. J. Alcohol. Drug Depend. 2018, 6, 1. [Google Scholar] [CrossRef]
- Razlansari, M.; Ulucan-Karnak, F.; Kahrizi, M.; Mirinejad, S.; Sargazi, S.; Mishra, S.; Rahdar, A.; Díez-Pascual, A.M. Nanobiosensors for detection of opioids: A review of latest advancements. Eur. J. Pharm. Biopharm. 2022, 179, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Bremer, P.T.; Janda, K.D.; Barker, E.L. Conjugate Vaccine Immunotherapy for Substance Use Disorder. Pharmacol. Rev. 2017, 69, 298–315. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Bernert, J.T.; Foulds, J.; Hecht, S.S.; Jacob, P.; Jarvis, M.J.; Joseph, A.; Oncken, C.; Piper, M.E. Biochemical Verification of Tobacco Use and Abstinence: 2019 Update. Nicotine Tob. Res. 2020, 22, 1086–1097. [Google Scholar] [CrossRef] [PubMed]
- Soomro, R.A. Development of Biosensors for Drug Detection Applications. Nanobiosensors 2020, 203–222. [Google Scholar]
- Verovšek, T.; Krizman-Matasic, I.; Heath, D.; Heath, E. Investigation of drugs of abuse in educational institutions using wastewater analysis. Sci. Total Environ. 2021, 799, 150013. [Google Scholar] [CrossRef] [PubMed]
- Solin, K.; Vuoriluoto, M.; Khakalo, A.; Tammelin, T. Cannabis detection with solid sensors and paper-based immunoassays by conjugating antibodies to nanocellulose. Carbohydr. Polym. 2023, 304, 120517. [Google Scholar] [CrossRef] [PubMed]
- Nissim, R.; Compton, R.G. Absorptive stripping voltammetry for cannabis detection. Chem. Cent. J. 2015, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Dobri, S.C.D.; Moslehi, A.H.; Davies, T.C. Are oral fluid testing devices effective for the roadside detection of recent cannabis use? A systematic review. Public Health 2019, 171, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Bempah, A. Cannabis Impaired Driving: An Evaluation of Current Modes of Detection. Can. J. Criminol. Crim. Justice 2014, 56, 219–240. [Google Scholar] [CrossRef]
Latin Name | Common Name | Family | Used Part(s) of the Plant | Phytocompound(s) | References |
---|---|---|---|---|---|
Cannabis sativa | Cannabis | Cannabaceae | Flowering tops, leaves | Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) | [100] |
Erythroxylum coca | Coca plant | Erythroxylaceae | Leaves | Cocaine | [137] |
Papaver somniferum | Opium poppy | Papaveraceae | Dried latex from seed pods | Morphine, codeine, thebaine | [128] |
Mitragyna speciosa | Kratom | Rubiaceae | Leaves | Mitragynine, 7-hydroxy mitragynine | [93] |
Catha edulis | Khat | Celastraceae | Leaves stems | Cathinone, cathine | [150] |
Salvia divinorum | Holy sage | Lamiaceae | Leaves | Salvinorin A | [167] |
Lophophora williamsii | Peyote | Cactaceae | Dried top of the cactus | Mescaline | [179] |
Banisteriopsis caapi | Soul vine | Malpighiaceae | Stems, bark, leaves | Harmine, harmaline | [192] |
Datura stramonium | Devil’s trumpet | Solanaceae | Leaves, seeds | Scopolamine, atropine | [207] |
Ipomoea sp. | Morning glory | Convolvulaceae | Seeds | Ergine (lysergic acid amide) | [229] |
Nicotiana tabacum | Tobacco | Solanaceae | Leaves | Nicotine | [242] |
Mandragora officinarum | Mandrake | Solanaceae | Roots | Atropine, scopolamine | [247] |
Substance Abuse | Adverse Effects | Receptors | References |
---|---|---|---|
Opioids | Constipation | [69,275] | |
Respiratory depression | [69,275] | ||
Sedation | μ, δ, κ | [69,275] | |
Addiction | [69] | ||
Hyperalgesia | [69] | ||
Hallucinations | [69] | ||
Cocaine | Mydriasis | [273] | |
Heart diseases | D2, D3 | [273,279] | |
Tremors | α1-adrenergic | [273,279] | |
Hostile conduct | β2-adrenergic | [273] | |
Insomnia | 5-HT | [273] | |
Disorientation | [273] | ||
Tobacco | Coronary artery disease | [257] | |
Atrial fibrillation | [257] | ||
Hypertension | [257,270] | ||
Dyslipidemia | nACH | [270] | |
Chronic obstructive pulmonary disease | [280] | ||
Cancer | [280] | ||
Infertility | [281] | ||
Cannabis | Cardiovascular events | [263] | |
Cough | [273] | ||
Wheezing breath | CB1, CB2 | [259,273] | |
Emphysema | [2] | ||
Infertility | [272] | ||
Psychoactive effects | [274] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Predescu, I.-A.; Jîjie, A.-R.; Pătraşcu, D.; Pasc, A.-L.-V.; Piroş, E.-L.; Trandafirescu, C.; Oancea, C.; Dehelean, C.A.; Moacă, E.-A. Unveiling the Complexities of Medications, Substance Abuse, and Plants for Recreational and Narcotic Purposes: An In-Depth Analysis. Pharmacy 2025, 13, 7. https://doi.org/10.3390/pharmacy13010007
Predescu I-A, Jîjie A-R, Pătraşcu D, Pasc A-L-V, Piroş E-L, Trandafirescu C, Oancea C, Dehelean CA, Moacă E-A. Unveiling the Complexities of Medications, Substance Abuse, and Plants for Recreational and Narcotic Purposes: An In-Depth Analysis. Pharmacy. 2025; 13(1):7. https://doi.org/10.3390/pharmacy13010007
Chicago/Turabian StylePredescu, Iasmina-Alexandra, Alex-Robert Jîjie, Dalia Pătraşcu, Aida-Luisa-Vanessa Pasc, Elisaveta-Ligia Piroş, Cristina Trandafirescu, Cristian Oancea, Cristina Adriana Dehelean, and Elena-Alina Moacă. 2025. "Unveiling the Complexities of Medications, Substance Abuse, and Plants for Recreational and Narcotic Purposes: An In-Depth Analysis" Pharmacy 13, no. 1: 7. https://doi.org/10.3390/pharmacy13010007
APA StylePredescu, I.-A., Jîjie, A.-R., Pătraşcu, D., Pasc, A.-L.-V., Piroş, E.-L., Trandafirescu, C., Oancea, C., Dehelean, C. A., & Moacă, E.-A. (2025). Unveiling the Complexities of Medications, Substance Abuse, and Plants for Recreational and Narcotic Purposes: An In-Depth Analysis. Pharmacy, 13(1), 7. https://doi.org/10.3390/pharmacy13010007