Systematic Review of Efficacy and Safety of Newer Antidiabetic Drugs Approved from 2013 to 2017 in Controlling HbA1c in Diabetes Patients
Abstract
:1. Introduction
2. Method
2.1. Outcome Assessment
2.2. Data Extraction
3. Results and Discussion
3.1. Mechanism
3.1.1. Canagliflozin
3.1.2. Alogliptin
3.1.3. Dapagliflozin
3.1.4. Empagliflozin
3.1.5. Albiglutide
3.1.6. Dulaglutide
3.1.7. Lixisenatide
3.1.8. Semaglutide
3.2. Efficacy
3.2.1. Canagliflozin
3.2.2. Alogliptin
3.2.3. Dapagliflozin
3.2.4. Empagliflozin
3.2.5. Albiglutide
3.2.6. Dulaglutide
3.2.7. Lixisenatide
3.2.8. Semaglutide
3.3. Safety
3.3.1. Canagliflozin
3.3.2. Alogliptin
3.3.3. Dapagliflozin
3.3.4. Empagliflozin
3.3.5. Albiglutide
3.3.6. Dulaglutide
3.3.7. Lixisenatide
3.3.8. Semaglutide
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fala, L. Tanzeum (Albiglutide): A once-weekly GLP-1 receptor agonist subcutaneous injection approved for the treatment of patients with type 2 diabetes. Am. Health Drug Benefits 2015, 8, 126–130. [Google Scholar] [PubMed]
- Centers for Disease Control and Prevention. National Diabetes Fact Sheet: National Estimates and General Information on Diabetes and Prediabetes in the United States; US Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2011. Available online: https://www.cdc.gov/diabetes/pubs/pdf/ndfs_2011.pdf (accessed on 10 April 2018).
- Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J. 2012, 27, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Nyenwe, E.A.; Jerkins, T.W.; Umpierrez, G.E.; Kitabchi, A.E. Management of type 2 diabetes: Evolving strategies for the treatment of patients with type 2 diabetes. Metabolism 2011, 60, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Cade, W.T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys. Ther. 2008, 88, 1322–1335. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A.; Chawla, R.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016, 20, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Murea, M.; Ma, L.; Freedman, B.I. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev. Diabet. Stud. 2012, 9, 6–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meigs, J.B.; Cupples, L.A.; Wilson, P.W. Parental transmission of type 2 diabetes: The Framingham Offspring Study. Diabetes 2000, 49, 2201–2207. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Clinical Excellence. Type 2 Diabetes in Adults: Management. December 2015. Updated May 2017; Cited 2018 January 20. Available online: https://www.nice.org.uk/guidance/ng28 (accessed on 10 April 2018).
- Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R; et al. Management of hyperglycemia in type 2 diabetes: A patient-centered approach: Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012, 35, 1364–1379. [Google Scholar] [CrossRef] [PubMed]
- Garber, A.J.; Abrahamson, M.J.; Barzilay, J.I.; Blonde, L.; Bloomgarden, Z.T.; Bush, M.A.; Dagogo-Jack, S.; Davidson, M.B.; Einhorn, D.; Garvey, W.T.; et al. American Association of Clinical Endocrinologists’ comprehensive diabetes management algorithm 2013 consensus statement. Endocr. Pract. 2013, 19, 536–557. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, N.; Harashima, S.; Maruyama, N.; Kawaguchi, Y.; Goda, M.; Iijima, H. Efficacy and safety of canagliflozin in combination with insulin: A double-blind, randomized, placebo-controlled study in Japanese patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2016, 15, 89. [Google Scholar] [CrossRef] [PubMed]
- Stenlof, K.; Cefalu, W.T.; Kim, K.A.; Alba, M.; Usiskin, K.; Tong, C.; Canovatchel, W.; Meininger, G. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes. Metab. 2013, 15, 372–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodbard, H.W.; Seufert, J.; Aggarwal, N.; Cao, A.; Fung, A.; Pfeifer, M.; Alba, M. Efficacy and safety of titrated canagliflozin in patients with type 2 diabetes mellitus inadequately controlled on metformin and sitagliptin. Diabetes Obes. Metab. 2016, 18, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Merton, K.; Vijapurkar, U.; Yee, J.; Qiu, R. Efficacy and safety of canagliflozin in patients with type 2 diabetes based on history of cardiovascular disease or cardiovascular risk factors: A post hoc analysis of pooled data. Cardiovasc. Diabetol. 2017, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Sha, S.; Devineni, D.; Ghosh, A.; Polidori, D.; Hompesch, M.; Arnolds, S.; Morrow, L.; Spitzer, H.; Demarest, K.; Rothenberg, P. Pharmacodynamic effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, from a randomized study in patients with type 2 diabetes. PLoS ONE 2014, 9, e105638. [Google Scholar] [CrossRef] [PubMed]
- Kaku, K.; Sumino, S.; Katou, M.; Nishiyama, Y.; Kinugawa, Y. Randomized, double-blind, phase III study to evaluate the efficacy and safety of once-daily treatment with alogliptin and metformin hydrochloride in Japanese patients with type 2 diabetes. Diabetes Obes. Metab. 2017, 19, 463–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudkowski, C.; Tsai, M.; Liu, J.; Zhao, Z.; Schmidt, E.; Xie, J. The pharmacokinetics and pharmacodynamics of alogliptin in children, adolescents, and adults with type 2 diabetes mellitus. Eur. J. Clin. Pharmacol. 2017, 73, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Katakami, N.; Mita, T.; Yoshii, H.; Onuma, T.; Kaneto, H.; Osonoi, T.; Shiraiwa, T.; Kosugi, K.; Umayahara, Y.; Yamamoto, T.; et al. Rationale, design, and baseline characteristics of a trial for the prevention of diabetic atherosclerosis using a DPP-4 inhibitor: The study of preventive effects of alogliptin on diabetic atherosclerosis (SPEAD-A). J. Atheroscler. Thromb. 2013, 20, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.; Kampfrath, T.; Deiuliis, J.A.; Zhong, J.; Pineda, C.; Ying, Z.; Xu, X.; Lu, B.; Moffatt-Bruce, S.; Durairaj, R.; et al. Long-term dipepti- dyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 2011, 124, 2338–2349. [Google Scholar] [CrossRef] [PubMed]
- Ta, N.N.; Schuyler, C.A.; Li, Y.; Lopes-Virella, M.F.; Huang, Y. DPP-4 (CD26) inhibitor alogliptin inhibits atherosclerosis in diabetic apolipoprotein e-deficient mice. J. Cardiovasc. Pharmacol. 2011, 58, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Li, F.F.; Gao, G.; Li, Q.; Zhu, H.H.; Su, X.F.; Wu, J.D.; Lei, Y.; Ma, J. Influence of dapagliflozin on glycemic variations in patients with newly diagnosed type 2 diabetes mellitus. J. Diabetes Res. 2016, 5347262. [Google Scholar] [CrossRef] [PubMed]
- Kohan, D.E.; Fioretto, P.; Tang, W.; List, J.F. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014, 85, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Cefalu, W.T.; Leiter, L.A.; de Bruin, T.W.; Gause-Nilsson, I.; Sugg, J.; Parikh, S.J. Dapagliflozin’s effects on glycemia and cardiovascular risk factors in high-risk patients with type 2 diabetes: A 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. Diabetes Care 2015, 38, 1218–1227. [Google Scholar] [CrossRef] [PubMed]
- Araki, E.; Onishi, Y.; Asano, M.; Kim, H.; Ekholm, E.; Johnsson, E.; Yajima, T. Efficacy and safety of dapagliflozin in addition to insulin therapy in Japanese patients with type 2 diabetes: Results of the interim analysis of 16-week double-blind treatment period. J. Diabetes Investig. 2016, 7, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Merovci, A.; Solis-Herrera, C.; Daniele, G.; Eldor, R.; Fiorentino, T.V.; Tripathy, D.; Xiong, J.; Perez, Z.; Norton, L.; Abdul-Ghani, M.A; et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J. Clin. Investig. 2014, 124, 509–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, L.; Ma, J.; Li, H.; Mansfield, T.A.; Tjoen, C.L.; Iqbal, N.; Ptaszynska, A.; List, J.F. Dapagliflozin as monotherapy in drug-naive Asian patients with type 2 diabetes mellitus: A randomized, blinded, prospective phase III study. Clin. Ther. 2014, 36, 84–100. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Jelaska, A.; Zeller, C.; Kim, G.; Broedl, U.C.; Woerle, H.J. Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: A 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 2015, 17, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; McGuire, D.K.; Chilton, R.; Crowe, S.; Lund, S.S.; Woerle, H.J.; Broedl, U.C.; Johansen, O.E. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diabetes Vasc. Dis. Res. 2016, 13, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Pieber, T.R.; Famulla, S.; Eilbracht, J.; Cescutti, J.; Soleymanlou, N.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Kaspers, S. Empagliflozin as adjunct to insulin in patients with type 1 diabetes: A 4-week, randomized, placebo-controlled trial (EASE-1). Diabetes Obes. Metab. 2015, 17, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Roden, M.; Merker, L.; Christiansen, A.V.; Roux, F.; Salsali, A.; Kim, G.; Stella, P.; Woerle, H.J.; Broedl, U.C. Safety, tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-naïve patients with type 2 diabetes: A double-blind extension of a Phase III randomized controlled trial. Cardiovasc. Diabetol. 2015, 14, 154. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, R.; Tanaka, Y.; Koiwai, K.; Inoue, K.; Hach, T.; Salsali, A.; Lund, S.S.; Broedl, U.C. Effect of empagliflozin monotherapy on postprandial glucose and 24-hour glucose variability in Japanese patients with type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled, 4-week study. Cardiovasc. Diabetol. 2015, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Ridderstrale, M.; Svaerd, R.; Zeller, C.; Kim, G.; Woerle, H.J.; Broedl, U.C. Rationale, design and baseline characteristics of a 4-year (208-week) phase III trial of empagliflozin, an SGLT2 inhibitor, versus glimepiride as add-on to metformin in patients with type 2 diabetes mellitus with insufficient glycemic control. Cardiovasc. Diabetol. 2013, 12, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodward, H.N.; Anderson, S.L. Once-weekly albiglutide in the management of type 2 diabetes: Patient considerations. Patient Prefer. Adherence 2014, 8, 789–803. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Reusch, J.; Bush, M.; Yang, F.; Stewart, M. Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: A randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care 2009, 32, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Oura, T.; Takeuchi, M.; Boye, K.S. Evaluation of the impact of once weekly dulaglutide on patient-reported outcomes in Japanese patients with type 2 diabetes: Comparisons with liraglutide, insulin glargine, and placebo in two randomized studies. Health Qual. Life Outcomes 2017, 15, 123. [Google Scholar] [CrossRef] [PubMed]
- Hamano, K.; Nishiyama, H.; Matsui, A.; Sato, M.; Takeuchi, M. Efficacy and safety analyses across 4 subgroups combining low and high age and body mass index groups in Japanese phase 3 studies of dulaglutide 0.75 mg after 26 weeks of treatment. Endocr. J. 2017, 64, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umpierrez, G.E.; Pantalone, K.M.; Kwan, A.Y.; Zimmermann, A.G.; Zhang, N.; Fernandez Lando, L. Relationship between weight change and glycaemic control in patients with type 2 diabetes receiving once-weekly dulaglutide treatment. Diabetes Obes. Metab. 2016, 18, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Dungan, K.M.; Weitgasser, R.; Perez Manghi, F.; Pintilei, E.; Fahrbach, J.L.; Jiang, H.H.; Shell, J.; Robertson, K.E. A 24-week study to evaluate the efficacy and safety of once-weekly dulaglutide added on to glimepiride in type 2 diabetes (AWARD-8). Diabetes Obes. Metab. 2016, 18, 475–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onishi, Y.; Oura, T.; Nishiyama, H.; Ohyama, S.; Takeuchi, M.; Iwamoto, N. Subgroup analysis of phase 3 studies of dulaglutide in Japanese patients with type 2 diabetes. Endocr. J. 2016, 63, 263–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odawara, M.; Miyagawa, J.; Iwamoto, N.; Takita, Y.; Imaoka, T.; Takamura, T. Once-weekly glucagon-like peptide-1 receptor agonist dulaglutide significantly decreases glycated haemoglobin compared with once-daily liraglutide in Japanese patients with type 2 diabetes: 52 weeks of treatment in a randomized phase III study. Diabetes Obes. Metab. 2016, 18, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Araki, E.; Inagaki, N.; Tanizawa, Y.; Oura, T.; Takeuchi, M.; Imaoka, T. Efficacy and safety of once-weekly dulaglutide in combination with sulphonylurea and/or biguanide compared with once-daily insulin glargine in Japanese patients with type 2 diabetes: A randomized, open-label, phase III, non-inferiority study. Diabetes Obes. Metab. 2015, 17, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, J.; Odawara, M.; Takamura, T.; Iwamoto, N.; Takita, Y.; Imaoka, T. Once-weekly glucagon-like peptide-1 receptor agonist dulaglutide is non-inferior to once-daily liraglutide and superior to placebo in Japanese patients with type 2 diabetes: A 26-week randomized phase III study. Diabetes Obes. Metab. 2015, 17, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, R.S.; Guerci, B.; Umpierrez, G.; Nauck, M.A.; Skrivanek, Z.; Milicevic, Z. Safety and efficacy of once-weekly dulaglutide versus sitagliptin after 2 years in metformin-treated patients with type 2 diabetes (AWARD-5): A randomized, phase III study. Diabetes Obes. Metab. 2015, 17, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Terauchi, Y.; Satoi, Y.; Takeuchi, M.; Imaoka, T. Monotherapy with the once weekly GLP-1 receptor agonist dulaglutide for 12 weeks in Japanese patients with type 2 diabetes: Dose-dependent effects on glycaemic control in a randomised, double-blind, placebo-controlled study. Endocr. J. 2014, 61, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.; Weinstock, R.S.; Umpierrez, G.E.; Guerci, B.; Skrivanek, Z.; Milicevic, Z. Efficacy and safety of dulaglutide versus sitagliptin after 52 weeks in type 2 diabetes in a randomized controlled trial (AWARD-5). Diabetes Care 2014, 37, 2149–2158. [Google Scholar] [CrossRef] [PubMed]
- Ratner, R.E.; Rosenstock, J.; Boka, G. Dose-dependent effects of the once-daily GLP-1 receptor agonist lixisenatide in patients with Type 2 diabetes inadequately controlled with metformin: A randomized, double-blind, placebo-controlled trial. Diabet. Med. 2010, 27, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.H.; Stechl, J.; Msihid, J.; Kapitza, C. Lixisenatide resensitizes the insulin-secretory response to intravenous glucose challenge in people with type 2 diabetes—A study in both people with type 2 diabetes and healthy subjects. Diabetes Obes. Metab. 2014, 16, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Ahren, B.; Vorokhobina, N.; Souhami, E.; Demil, N.; Ye, J.; Aronson, R. Equal improvement in glycaemia with lixisenatide given before breakfast or the main meal of the day. J. Diabetes Complicat. 2014, 28, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.; Pfeiffer, C.; Steinstrasser, A.; Becker, R.H.; Rutten, H.; Ruus, P.; Horowitz, M. Effects of lixisenatide once daily on gastric emptying in type 2 diabetes- relationship to postprandial glycemia. Regul. Pept. 2013, 185, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.H.; Stechl, J.; Steinstraesser, A.; Golor, G.; Pellissier, F. Lixisenatide reduces postprandial hyperglycaemia via gastrostatic and insulinotropic effects. Diabetes Metab. Res. Rev. 2015, 31, 610–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guja, C.; Danciulescu Miulescu, R. Semaglutide- the ‘new kid on the block’ in the field of glucagon-like peptide-1 receptor agonists? Ann. Transl. Med. 2017, 5, 475. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J.; Madsbad, S. Semaglutide seems to be more effective the other GLP-1Ras. Ann. Transl. Med. 2017, 5, 505. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jodar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Sorli, C.; Harashima, S.I.; Tsoukas, G.M.; Unger, J.; Karsbol, J.D.; Hansen, T.; Bain, S.C. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): A double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol. 2017, 5, 251–260. [Google Scholar] [CrossRef]
- Wilding, J.P.; Charpentier, G.; Hollander, P.; Gonzalez-Galvez, G.; Mathieu, C.; Vercruysse, F.; Usiskin, K.; Law, G.; Black, S.; Canovatchel, W.; et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: A randomised trial. Int. J. Clin. Pract. 2013, 67, 1267–1282. [Google Scholar] [CrossRef] [PubMed]
- Lavalle-Gonzalez, F.J.; Januszewicz, A.; Davidson, J.; Tong, C.; Qiu, R.; Canovatchel, W.; Meininger, G. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: A randomised trial. Diabetologia 2013, 56, 2582–2592. [Google Scholar] [CrossRef] [PubMed]
- Wilding, J.P.; Blonde, L.; Leiter, L.A.; Cerdas, S.; Tong, C.; Yee, J.; Meininger, G. Efficacy and safety of canagliflozin by baseline HbA1c and known duration of type 2 diabetes mellitus. J. Diabetes Complicat. 2015, 29, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, A.J.; Bode, B.; Harris, S.; Vijapurkar, U.; Shaw, W.; Desai, M.; Meininger, G. Efficacy and safety of canagliflozin in individuals aged 75 and older with type 2 diabetes mellitus: A pooled analysis. J. Am. Geriatr. Soc. 2016, 64, 543–552. [Google Scholar] [CrossRef] [PubMed]
- John, M.; Cerdas, S.; Violante, R.; Deerochanawong, C.; Hassanein, M.; Slee, A.; Canovatchel, W.; Hamilton, G. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus living in hot climates. Int. J. Clin. Pract. 2016, 70, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Iijima, H.; Kifuji, T.; Maruyama, N.; Inagaki, N. Pharmacokinetics, pharmacodynamics, and safety of canagliflozin in Japanese patients with type 2 diabetes mellitus. Adv. Ther. 2015, 32, 768–782. [Google Scholar] [CrossRef] [PubMed]
- Polidori, D.; Capuano, G.; Qiu, R. Apparent subadditivity of the efficacy of initial combination treatments for type 2 diabetes is largely explained by the impact of baseline HbA1c on efficacy. Diabetes Obes. Metab. 2016, 18, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forst, T.; Guthrie, R.; Goldenberg, R.; Yee, J.; Vijapurkar, U.; Meininger, G.; Stein, P. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes. Metab. 2014, 16, 467–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, P.; Berg, J.K.; Morrow, L.; Polidori, D.; Artis, E.; Rusch, S.; Vaccaro, N.; Devineni, D. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, reduces post-meal glucose excursion in patients with type 2 diabetes by a non-renal mechanism: Results of a randomized trial. Metabolism 2014, 63, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Devineni, D.; Curtin, C.R.; Polidori, D.; Gutierrez, M.J.; Murphy, J.; Rusch, S.; Rothenberg, P.L. Pharmacokinetics and pharmacodynamics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in subjects with type 2 diabetes mellitus. J. Clin. Pharmacol. 2013, 53, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Okada, Y.; Mori, H.; Miyazaki, M.; Kuno, F.; Sonoda, S.; Sugai, K.; Hajime, M.; Kurozumi, A.; Narisawa, M.; et al. Comparative analysis of the effects of alogliptin and vildagliptin on glucose metabolism in type 2 diabetes mellitus. Endocr. J. 2017, 64, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Ayaori, M.; Iwakami, N.; Uto-Kondo, H.; Sato, H.; Sasaki, M.; Komatsu, T.; Iizuka, M.; Takiguchi, S.; Yakushiji, E.; Nakaya, K.; et al. Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J. Am. Heart Assoc. 2013, 2, e003277. [Google Scholar] [CrossRef] [PubMed]
- Lundkvist, P.; Sjostrom, C.D.; Amini, S.; Pereira, M.J.; Johnsson, E.; Eriksson, J.W. Dapagliflozin once-daily and exenatide once-weekly dual therapy: A 24-week randomized, placebo-controlled, phase II study examining effects on body weight and prediabetes in obese adults without diabetes. Diabetes Obes. Metab. 2017, 19, 49–60. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Hompesch, M.; Kasichayanula, S.; Liu, X.; Hong, Y.; Pfister, M.; Morrow, L.A.; Leslie, B.R.; Boulton, D.W.; Ching, A.; et al. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care 2013, 36, 3169–3176. [Google Scholar] [CrossRef] [PubMed]
- Lambers Heerspink, H.J.; De Zeeuw, D.; Wie, L.; Leslie, B.; List, J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes. Metab. 2013, 15, 853–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, A.; Inoue, T.; Kitakaze, M.; Oyama, J.I.; Sata, M.; Taguchi, I.; Shimizu, W.; Watada, H.; Tomiyama, H.; Ako, J.; et al. Rationale and design of a randomized trial to test the safety and non-inferiority of canagliflozin in patients with diabetes with chronic heart failure: The CANDLE trial. Cardiovasc. Diabetol. 2016, 15, 57. [Google Scholar] [CrossRef] [PubMed]
- Reusch, J.; Stewart, M.W.; Perkins, C.M.; Cirkel, D.T.; Ye, J.; Perry, C.R.; Reinhardt, R.R.; Bode, B.W. Efficacy and safety of once-weekly glucagon-like peptide 1 receptor agonist albiglutide (HARMONY 1 trial): 52-week primary endpoint results from a randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes mellitus not controlled on pioglitazone, with or without metformin. Diabetes Obes. Metab. 2014, 16, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Stewart, M.W.; Perkins, C.; Jones-Leone, A.; Yang, F.; Perry, C.; Reinhardt, R.R.; Rendell, M. Efficacy and safety of once-weekly GLP-1 receptor agonist albiglutide (HARMONY 2): 52 week primary endpoint results from a randomised, placebo-controlled trial in patients with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetologia 2016, 59, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Bolli, G.B.; Munteanu, M.; Dotsenko, S.; Niemoeller, E.; Boka, G.; Wu, Y.; Hanefeld, M. Efficacy and safety of lixisenatide once daily vs. placebo in people with Type 2 diabetes insufficiently controlled on metformin (GetGoal-F1). Diabet. Med. 2014, 31, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V.A.; Alvarado-Ruiz, R.; Raccah, D.; Boka, G.; Miossec, P.; Gerich, J.E. Efficacy and safety of the once-daily GLP-1 receptor agonist lixisenatide in monotherapy: A randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes (GetGoal-Mono). Diabetes Care 2012, 35, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Hanefeld, M.; Shamanna, P.; Min, K.W.; Boka, G.; Miossec, P.; Zhou, T.; Muehlen-Bartmer, I.; Ratneri, R.E. Beneficial effects of once-daily lixisenatide on overall and postprandial glycemic levels without significant excess of hypoglycemia in type 2 diabetes inadequately controlled on a sulfonylurea with or without metformin (GetGoal-S). J. Diabetes Complicat. 2014, 28, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Seino, Y.; Takami, A.; Boka, G.; Niemoeller, E.; Raccah, D. Pharmacodynamics of the glucagon-like peptide-1 receptor agonist lixisenatide in Japanese and Caucasian patients with type 2 diabetes mellitus poorly controlled on sulphonylureas with/without metformin. Diabetes Obes. Metab. 2014, 16, 739–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenstock, J.; Diamant, M.; Aroda, V.R.; Silvestre, L.; Souhami, E.; Zhou, T.; Perfetti, R.; Fonseca, V.; LixiLan PoC Study Group. Efficacy and safety of Lixi Lan, a Titratable Fixed-Ratio Combination of Lixisenatide and Insulin Glargine, Versus Insulin Glargine in type 2 diabetes inadequately controlled on Metformin Monotherapy: The LixiLan proof-of-concept randomized trial. Diabetes Care 2016, 39, 1579–1586. [Google Scholar] [PubMed]
- Riddle, M.C.; Aronson, R.; Home, P.; Marre, M.; Niemoeller, E.; Miosses, P.; Ping, L.; Ye, J.; Rosenstock, J. Adding Once-Daily Lixisenatide for Type 2 Diabetes Inadequately Controlled by established basal insulin: A 24-week, randomized, placebo-controlled comparison (GetGoal-L). Diabetes Care 2013, 36, 2489–2496. [Google Scholar] [CrossRef] [PubMed]
- Riddle, M.C.; Frost, T.; Aronson, R.; Sauque-Reyna, L.; Souhami, E.; Silvestre, L.; Ping, L.; Rosenstock, J. Adding once-daily lixisenatide for type2 diabetes inadequately controlled with newly initiated and continuously titrated basal insulin glargine: A 24-week, randomized, placebo-controlled study (GetGoal-Duo 1). Diabetes Care 2013, 36, 2497–2503. [Google Scholar] [CrossRef] [PubMed]
- Ahren, B.; Dimas, A.; Miossec, P.; Saubadu, S.; Aronson, R. Efficacy and safety of lixisenatide once-daily morning or evening injections in type 2 diabetes inadequately controlled on metformin (GetGoal-M). Diabetes Care 2013, 36, 2543–2550. [Google Scholar] [CrossRef] [PubMed]
- Kapitza, C.; Forst, T.; Coester, H.V.; Poitiers, F.; Ruus, P.; Hincelin-Mery, A. Pharmacodynamic characteristics of lixisenatide once daily versus liraglutide once daily in patients with type 2 diabetes insufficiently controlled on metformin. Diabetes Obes. Metab. 2013, 15, 642–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmann, A.J.; Capehorn, M.; Charpentier, G.; Dotta, F.; Henkel, E.; Lingvay, I.; Holst, A.G.; Annett, M.P.; Aroda, V.R. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 3): A 56-week, open-label, randomized clinical trial. Diabetes Care 2018, 41, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Ahren, B.; Masmiquel, L.; Kumar, H.; Sargin, M.; Karsbol, J.D.; Jacobsen, S.H.; Chow, F. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): A 56-week, double-blind, phase 3a, randomised trial. Lancet Diabetes Endocrinol. 2017, 5, 341–354. [Google Scholar] [CrossRef]
- Polidori, D.; Sha, S.; Mudaliar, S.; Ciaraldi, T.P.; Ghosh, A.; Vaccaro, N.; Farrell, K.; Rothenberg, P.; Henry, R.R. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: Results of a randomized, placebo-controlled study. Diabetes Care 2013, 36, 2154–2161. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; Berk, A.; Hantel, S.; Pinnetti, S.; Hach, T.; Woerle, H.J.; Broedl, U.C. Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: An active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes. Diabetes Care 2013, 36, 4015–4021. [Google Scholar] [CrossRef] [PubMed]
- Skrivanek, Z.; Gaydos, B.L.; Chien, J.Y.; Geiger, M.J.; Heathman, M.A.; Berry, S.; Anderson, J.H.; Forst, T.; Milicevic, Z.; Berry, D. Dose-finding results in an adaptive, seamless, randomized trial of once-weekly dulaglutide combined with metformin in type 2 diabetes patients (AWARD-5). Diabetes Obes. Metab. 2014, 16, 748–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seino, Y.; Yabe, D.; Takami, A.; Niemoeller, E.; Takagi, H. Long-term safety of once-daily lixisenatide in Japanese patients with type 2 diabetes mellitus: GetGoal-Mono-Japan. J. Diabetes Complicat. 2015, 29, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
Drug Name | Author, Year, [Reference Number] | Study Design | Population Characteristic | Interventions | Primary End Points | Results | |
---|---|---|---|---|---|---|---|
Results in HbA1c Reduction | Safety | ||||||
Canagliflozin | Inagaki, N., et al., 2016. [12] | Randomized, parallel-group, double-blind study. | Patients who had inadequate glycemic control despite insulin, diet and exercise therapies | Canagliflozin 100 mg, placebo. | The change in glycated hemoglobin (HbA1c) levels from the baseline to week 16. | Week 16: −0.97% (100 mg) | AEs: 64.8% Major AEs: Decreased blood glucose, hypoglycemia, pollakiuria, and polyuria Hypoglycemia: 40% |
Rodbard, H. W., et al., 2016. [14] | Randomized, double-blind, parallel-group, multicenter study was conducted at 47 study centres in five countries. | Patients with T2DM on metformin ≥1500 mg/day and sitagliptin 100 mg | Canagliflozin 100 mg (increased to 300 mg after 6 weeks), placebo | Change from baseline in HbA1c at week 26. | Week 26: −0.91% (pooled 100 mg and 300 mg) | AEs: 39.8% Major AEs: Genital mycotic infections. Hypoglycemia: 3.7% | |
Forst, T., et al., 2014. [63] | This randomized, double-blind, placebo- and active-controlled, phase 3 study was conducted at 74 centres in 11 countries. | Patients with type 2 diabetes mellitus (T2DM) inadequately controlled with metformin and pioglitazone. | Canagliflozin 100 mg, Canagliflozin 300 mg, placebo. | Hemoglobin A1c (HbA1c), body weight fasting plasma glucose and systolic blood pressure. | Week 26: −0.89% (100 mg); −1.03% (300 mg) | AEs: 69.9% (100 mg); 76.5% (300 mg) Major AEs: Genital mycotic infections, AEs related to osmotic diuresis and volume depletion. Hypoglycemia: 4.4% (100 mg); 6.1% (30.0 mg) | |
Wilding, J. P. H., et al., 2013. [56] | Randomized, double-blind, placebo-controlled, Phase 3 study conducted at 85 study centres in 11 countries. | Eligible patients were men and women aged 18–80 years with T2DM who had inadequate glycemic control (HbA1c ≥ 7.0% to ≤10.5%) on metformin plus sulphonylurea, with both agents at maximally or near-maximally effective doses. | Canagliflozin 100 mg, Canagliflozin 300 mg, placebo. | Change in HbA1c at 26 weeks. | Week 26: −0.85% (100 mg); −1.06% (300 mg) Week 52: −0.74% (100 mg); −0.96% (300 mg) | AEs: <4% Major AEs: Genital mycotic infections, osmotic diuresis-related AEs. Hypoglycemia: 33.8% (100 mg); 36.5% (300 mg) | |
Lavalle-González, F. J., et al., 2013. [57] | Randomized, double-blind, placebo- and active-controlled, Phase 3 study conducted at 169 centres in 22 countries. | Men and women with type 2 diabetes, aged ≥18 and ≤80 years, who had inadequate glycemic control and who were on stable metformin therapy | Canagliflozin 100 mg, Canagliflozin 300 mg, Sitagliptin 100 mg, placebo. | Change from baseline in HbA1c at week 26; | Week 26: −0.79% (100 mg); −0.94% (300 mg) Week 52: −0.73% (100 mg); −0.88% (300 mg) | AEs: 72.3% (100 mg); 62.7% (300 mg) Major AEs: Genital mycotic infection, osmotic diuresis-related AEs. Hypoglycemia: 6.8% | |
Alogliptin | Kohei Kaku, et al., 2017. [17] | Phase III, randomized, double-blind, parallel-group, multicenter study | Mean age 57.2, mean diabetes duration 7.16 years, mean HbA1c 7.84% | Alogliptin (25 mg once daily), alone or with metformin hydrochloride (500 mg once daily or 250 mg twice daily | Change in glycated hemoglobin (HbA1c) from baseline to the end of treatment (week 24) | Week 24: Alogliptin alone: 0.16 (0.072) % Alogliptin/metformin once daily: −0.49 (0.049)% Alogliptin/metformin twice daily: −0.60 (0.049)% | AEs: 57.7% (Alogliptin alone); 50.7% (Alogliptin/metformin once daily); 52.3% (Alogliptin/metformin twice daily) Major AEs: Nasopharyngitis, pharyngitis, hypoesthesia Hypoglycemia: No patients developed serious hypoglycemia |
Tanaka, K., et al., 2017. [66] | Prospective randomized open-label study | Study 1: DPP-4 inhibitor-naive Alogliptin: mean age 63.6 years, mean duration of diabetes 9.8 years, mean HbA1c 7.2% Vildagliptin: Mean age 65.8 years, mean duration of diabetes 8.0 years, mean HbA1c 7.5% | Study 1: Alogliptin 25 mg once daily, Vildagliptin 50 mg twice daily | The change in HbA1c levels at 24 weeks. | Week 24: In Study 1, Alogliptin group: 0.5 ± 0.7% (p = 0.002) Vildagliptin group: -0.7 ± 0.9% (p = 0.001) | AEs: In Study 1: 4.0% (Alogliptin): 0% (Vildagliptin) | |
Study 2: T2DM on treatment with 50 mg/day sitagliptin Alogliptin: Mean age 66.7 years, mean duration of diabetes 10.8 years, mean HbA1c 6.8%Vildagliptin: Mean age 66.2 years, mean duration of diabetes 11.7 years, mean HbA1c 7.0% | Study 2: Sitagliptin 50 mg once daily switch to alogliptin 25 mg once daily, Sitagliptin 50 mg once daily switch to vildagliptin 50 mg twice daily | In Study 2, switch-to-alogliptin group: 0.2 ± 0.7% (p = 0.007), switch-to-vildagliptin group: 0.0 ± 0.6 (p = 0.188), | In Study 2: Switch-to-alogliptin group: 1.6%Switch-to-vildagliptin group: 2.9% Major AEs: - Hypoglycemia: All patients developed hypoglycemia | ||||
Dapagliflozin | Eiichi Araki, et al., 2016. [25] | Multicenter, randomized, double-blind, parallel-group, placebo-controlled study | Mean age: 58.0, mean duration of diabetes: 14.97 years, mean HbA1c 8.34% | Dapagliflozin 5 mg plus metformin therapy, placebo plus metformin therapy | The primary efficacy end-point was the change in hemoglobin A1c (HbA1c) from baseline at week 16 | Week 16: −0.55% | AEs: 48.8% Major AEs: Nasopharyngitis, pollakiuria, thirst Hypoglycemia: 19.5% |
William, T. Cefalu, et al., 2015. [24] | Multicenter, randomized, double-blind, placebo-controlled, international, phase 3 study | Dapagliflozin group: mean age 62.8 years, mean duration of diabetes 12.6 years, mean HbA1c 8.18%. Placebo group: Mean age 63.0, mean duration of diabetes 12.3 years, mean HbA1c 8.08% | Dapagliflozin 10 mg, placebo | Co-primary end points were a change from baseline in hemoglobin A1c (HbA1c) and the proportion of patients achieving a combined reduction in HbA1c of ≥0.5% (5.5 mmol/mole), body weight (BW) of ≥3%, and systolic blood pressure (SBP) of ≥3 mmHg. | Week 24: −0.38% | AEs: 73.9% Major AEs: Cardiac disorder, dizziness, nasopharyngitis Hypoglycemia: 25.2% | |
Linong, Ji, et al., 2014. [27] | Phase III, multicenter, parallel-group, double-blind study | Dapagliflozin 5 mg group: Mean age (years) 53, mean duration of diabetes (years) 1.15, mean HbA1c (%) 8.14. Dapagliflozin 10 mg group: Mean age (years) 51.2, mean duration of diabetes (year) 1.67, mean HbA1c (%) 8.28. Placebo group: mean age (years) 49.9, mean duration of diabetes (years) 1.30, mean HbA1c (%) 8.35. | Placebo, dapagliflozin 5 mg, dapagliflozin 10 mg | Change in glycosylated hemoglobin (HbA1c) at week 24 | Week 24: −1.04% (5 mg); −1.11% (10 mg) | AEs: 61.7% (5 mg); 60.9% (10 mg) Major AEs: Nasopharyngitis, urinary tract infection Hypoglycemia: 0.8% (5 mg); 0.8% (10 mg) | |
Empagliflozin | J. Rosenstock, et al., 2015. [28] | Randomized, placebo-controlled, double-blind phase IIb study | HbA1c > 7 to ≤10% (>53 to ≤86 mmol/mole)] on basal insulin (glargine, detemir, NPH) | Empagliflozin 10 mg, empagliflozin 25 mg, placebo | Change from baseline in HbA1c at week 18. | Week 18: −0.6 % (10 mg); −0.7 % (25 mg) Week 78: −0.5% (10 mg); −0.6% (25 mg) | AEs (at week 78): 85% (10 mg); 87% (25 mg)Major AEs: Hypoglycemia, nasopharyngitis, urinary tract infection Hypoglycemia: Week 18: 20% (10 mg); 28% (25 mg)Week 78: 36% (10 mg); 36% (25 mg) |
Michael Roden, et al., 2015. [31] | Phase III, parallel-group, randomized, double-blind trial | Mean age 55 years, mean HbA1c: 7.88% | Empagliflozin 10 mg, Empagliflozin 25 mg, placebo, sitagliptin 100 mg | Exploratory endpoints included changes from baseline in HbA1c, weight and blood pressure at week 76 | Week 76: −0.65% (10 mg); −0.76% (25 mg) | AEs: 76.8% (10 mg); 78% (25 mg) Major AEs: Hyperglycemia, nasopharyngitis, urinary tract infection Hypoglycemia: 0.9% (10 mg); 0.9% (25 mg) | |
Albiglutide | Rosenstock, J., et al., 2009. [35] | Phase II trial, randomized double-blind placebo-controlled parallel-group study conducted at 118 sites in the U.S. | Mean age 54 years, diabetes duration 4.9 years, HbA1c 8.0% | Subcutaneous placebo or albiglutide (weekly [4, 15, or 30 mg], biweekly [15, 30, or 50 mg], or monthly [50 or 100 mg]) or exenatide twice daily. | Change from baseline HbA1c of albiglutide groups versus placebo at week 16. | Week 16: −0.87% (30 mg weekly); −0.79% (50 mg biweekly); −0.87% (100 mg monthly) | AEs: 67–85% Major AEs: Nausea, vomiting, headache Hypoglycemia: 0–3.1% |
Michael, A. Nauck, et al., 2016. [73] | 3-year study with four study periods: screening (2 weeks); run-in (4 weeks); treatment (156 weeks, comprising 52 weeks for primary endpoint) and post-treatment follow-up (8 weeks)., randomized, placebo-controlled study. | Age ≥ 18 years, with type 2 diabetes uncontrolled by diet and exercise, not using a glucose-lowering agent, HbA1c 7.0–10.0%. | Albiglutide 30 mg, Albiglutide 50 mg, placebo. | Change in HbA1c from baseline to week 52. | Week 52: −0.84% (30 mg); −1.04% (50 mg) | AEs: 78.2% (30 mg); 81.8% (50 mg) Major AEs: nausea, diarrhea, vomiting, injection-site reaction Hypoglycemia: 5.9% (30 mg); 6.1% (50 mg) | |
Dulaglutide | Dungan, K. M. et al., 2016. [39] | 24-week, multicenter, randomized, double-blind, placebo-controlled | T2DM patients inadequately controlled on sulphonylurea. Mean age 58; mean diabetes duration 7.6 years; mean HbA1c 8.4%. | Dulaglutide 1.5 mg, placebo | HbA1c change from baseline at 24 weeks | Week 24: −1.4% | AEs: 46.4% Major AEs: Nausea, diarrhea, eructation Hypoglycemia: 20.9% |
Nauck, M. et al., 2014. [46] | 52-week, randomized, multicenter, double-blind trial | T2DM patients inadequately controlled on metformin. Mean age 54; mean diabetes duration 7 years; mean HbA1c 8.1% | Dulaglutide 1.5 mg, dulaglutide 0.75 mg, sitagliptin 100 mg | Change in HbA1c concentration ay 52 weeks from baseline. | Week 52: −1.10 ± 0.06% (1.5 mg); −0.87 ± 0.06% (0.75 mg) | AEs: 77% (1.5 mg); 77% (0.75 mg) Major AEs: Gastrointestinal disorders, decreased appetite Hypoglycemia: 10.2% (1.5 mg); 5.3% (0.75 mg) | |
Miyagawa, J. et al., 2015. [43] | Phase III, 52-week (26-week primary endpoint), randomized, double-blind, placebo-controlled, open-label comparator (liraglutide) trial | T2DM Japanese patients. Mean age 57.4; mean diabetes duration 6.6 years; mean HbA1c 8.14% | Dulaglutide 0.75 mg, liraglutide 0.9 mg, placebo | Superiority of dulaglutide versus placebo on change from baseline in HbA1c at 26 weeks | Week 26: −1.43% | AEs: 56.1% Major AEs: Nasopharyngitis, decreased appetite, gastrointestinal disorders Hypoglycemia: 2.1% | |
Lixisenatide | Rosenstock et al., 2014. [76] | 24-week, randomized, double-blind, placebo-controlled, parallel-group, multicenter | T2DM treated with sulphonylurea ± metformin. Mean age 57; mean diabetes duration 9.4 years; mean HbA1c 8.25% | Lixisenatide 20 μg once-daily in a stepwise dose increase, placebo | Change in HbA1c from baseline to week 24 | Week 26: −0.85% | AEs: 68.3% Major AEs: Gastrointestinal disorders, mostly nausea Hypoglycemia: 15.3% |
Bolli, G. B. et al., 2014. [74] | 24-week and ≥52-week variable extension period, randomized, double-blind, placebo-controlled, parallel-group, multi-center | T2DM treated with metformin. Mean age 56; mean diabetes duration 6 years; mean HbA1c 8% | Lixisenatide one-step dose increase, lixisenatide two-step dose increase, placebo | HbA1c reduction at week 24 | Week 24: −0.90 ± 0.1% (one-step); −0.80 ± 0.10% (two-step) | AEs: 67.7% (one-step); 70.8% (two-step) Major AEs: Gastrointestinal disorders, mostly nausea, vomiting Hypoglycemia: 1.9% (one-step); 2.5% (two-step) | |
Riddle, M. C. et al., 2013. [79] | 24-week, randomized, double-blind, placebo-controlled | T2DM with established basal insulin therapy but inadequate glycemic control. Mean age 57; mean diabetes duration 12.5 years; mean HbA1c 8.4%; mean duration of basal insulin uses 3.1 years | Lixisenatide 20 μg once-daily, placebo | HbA1c reduction from baseline | Week 24: −0.7± 0.1% | AEs: 68.3% Major AEs: Gastrointestinal disorders, mostly nausea, vomiting Hypoglycemia: 26.5% | |
Semaglutide | Ahmann, A. J., et al. 2018. [83] | Phase 3a, open-label, parallel-group, randomized controlled trial. | Subjects with type 2 diabetes taking oral antidiabetic drugs. | Semaglutide 1.0 mg, Exenatide ER 2.0 mg. | Change from baseline in HbA1c at week 56. | Week 56: −1.5% | AEs: 41.8% Major AEs: Gastrointestinal AEs, injection site reactions. Hypoglycemia: Nil |
Sorli C, Harashima S-I, et al., 2017. [55] | Double-blind, randomized, parallel-group, international, placebo-controlled phase 3a trial (SUSTAIN 1) at 72 sites in Canada, Italy, Japan, Mexico, Russia, South Africa, UK, and USA. | Eligible participants were treatment-naive individuals aged 18 years or older with type 2 diabetes treated with only diet and exercise alone for at least 30 days before screening, with a baseline HbA1c of 7.0–10.0% (53–86 mmol/mole). | Once-weekly subcutaneously injected semaglutide (0.5 mg or 1.0 mg), or volume-matched placebo (0.5 mg or 1.0 mg) | The change in mean HbA1c from baseline to week 30 | Week 30: −1.45% (0.5 mg); −1.55% (1.0 mg) | AEs: 20% (0.5 mg); 24% (1.0 mg) Major AEs: Gastrointestinal AEs-nausea, diarrhea. Hypoglycemia: Nil | |
Ahren B, et al., 2017. [84] | 56-week, phase 3a, randomized, double-blind, double-dummy, active-controlled, parallel-group, multinational, multicenter trial (SUSTAIN 2) at 128 sites in 18 countries. | Eligible patients were aged at least 18 years (or at least 20 years in Japan) and diagnosed with type 2 diabetes, with insufficient glycemic control (HbA1c 7.0–10.5% [53.0–91.0 mmol/mole]) despite stable treatment with metformin, thiazolidinediones, or both. | Change in HbA1c from baseline to week 56, assessed in the modified intention-to-treat population (all randomly assigned participants who received at least one dose of study drug); | SC semaglutide 0.5 mg once weekly plus PO sitagliptin placebo OD; SC semaglutide 1.0 mg once weekly plus PO sitagliptin placebo OD, PO sitagliptin 100 mg OD plus SC semaglutide placebo 0.5 mg once weekly, or PO sitagliptin 100 mg OD plus SC semaglutide placebo 1.0 mg once weekly. | Week 56: −1.3% (0.5 mg); −1.6% (1.0 mg) | AEs: 18% (0.5 mg); 18% (1.0 mg) Major AEs: Gastrointestinal AEs-nausea, diarrhea. Hypoglycemia: 2% (0.5 mg); <1% (1.0 mg) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palanisamy, S.; Yien, E.L.H.; Shi, L.W.; Si, L.Y.; Qi, S.H.; Ling, L.S.C.; Lun, T.W.; Chen, Y.N. Systematic Review of Efficacy and Safety of Newer Antidiabetic Drugs Approved from 2013 to 2017 in Controlling HbA1c in Diabetes Patients. Pharmacy 2018, 6, 57. https://doi.org/10.3390/pharmacy6030057
Palanisamy S, Yien ELH, Shi LW, Si LY, Qi SH, Ling LSC, Lun TW, Chen YN. Systematic Review of Efficacy and Safety of Newer Antidiabetic Drugs Approved from 2013 to 2017 in Controlling HbA1c in Diabetes Patients. Pharmacy. 2018; 6(3):57. https://doi.org/10.3390/pharmacy6030057
Chicago/Turabian StylePalanisamy, Sivanandy, Emily Lau Hie Yien, Ling Wen Shi, Low Yi Si, See Hui Qi, Laura Soon Cheau Ling, Teng Wai Lun, and Yap Nee Chen. 2018. "Systematic Review of Efficacy and Safety of Newer Antidiabetic Drugs Approved from 2013 to 2017 in Controlling HbA1c in Diabetes Patients" Pharmacy 6, no. 3: 57. https://doi.org/10.3390/pharmacy6030057
APA StylePalanisamy, S., Yien, E. L. H., Shi, L. W., Si, L. Y., Qi, S. H., Ling, L. S. C., Lun, T. W., & Chen, Y. N. (2018). Systematic Review of Efficacy and Safety of Newer Antidiabetic Drugs Approved from 2013 to 2017 in Controlling HbA1c in Diabetes Patients. Pharmacy, 6(3), 57. https://doi.org/10.3390/pharmacy6030057