Linezolid for the Treatment of Urinary Tract Infections Caused by Vancomycin-Resistant Enterococci
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiner, L.M.; Webb, A.K.; Limbago, B.; Dudeck, M.A.; Patel, J.; Kallen, A.J.; Edwards, J.R.; Sievert, D.M. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 2016, 37, 1288–1301. [Google Scholar] [CrossRef] [Green Version]
- Hidron, A.I.; Edwards, J.R.; Patel, J.; Horan, T.C.; Sievert, D.M.; Pollock, D.A.; Fridkin, S.K.; National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities. NHSN annual update: Antimicrobial-resistant pathogens associated with healthcare-associated infections: Annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol. 2008, 29, 996–1011. [Google Scholar]
- Sievert, D.M.; Ricks, P.; Edwards, J.R.; Schneider, A.; Patel, J.; Srinivasan, A.; Kallen, A.; Limbago, B.; Fridkin, S.; National Healthcare Safety Network Team; et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect. Control Hosp. Epidemiol. 2013, 34, 1–14. [Google Scholar]
- Gajdács, M.; Ábrók, M.; Lázár, A.; Burián, K. Increasing relevance of Gram-positive cocci in urinary tract infections: A 10-year analysis of their prevalence and resistance trends. Sci. Rep. 2020, 10, 17658. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, F.; Bai, B.; Lin, Z.; Xu, G.; Chen, Z.; Sun, X.; Zheng, J.; Deng, Q.; Yu, Z. Linezolid resistance in Enterococcus faecalis associated with urinary tract infections of patients in a tertiary hospitals in China: Resistance mechanisms, virulence, and risk factors. Front. Public Health 2021, 9, 570650. [Google Scholar] [CrossRef]
- Isac, R.; Basaca, D.-G.; Olariu, I.-C.; Stroescu, R.; Ardelean, A.-M.; Steflea, R.; Gafencu, M.; Chirita-Emandi, A.; Bagiu, I.; Horhat, F.; et al. Antibiotic resistance patterns of uropathogens causing urinary tract infections in children with congenital anomalies of kidney and urinary tract. Children 2021, 8, 585. [Google Scholar] [CrossRef]
- Kuwa, Y.; Dadi, B.R.; Seid, M.; Biresaw, G.; Manilal, A. Catheter-associated urinary tract infection: Incidence, associated factors and drug resistance patterns of bacterial isolates in southern Ethiopia. Infect. Drug Resist. 2021, 14, 2883–2894. [Google Scholar] [CrossRef]
- Jafarzadeh Samani, R.; Tajbakhsh, E.; Momtaz, H.; Kabiri Samani, M. Prevalence of virulence genes and antibiotic resistance pattern in Enterococcus faecalis isolated from urinary tract infection in Shahrekord, Iran. Rep. Biochem. Mol. Biol. 2021, 10, 50–59. [Google Scholar]
- Parra-Ruiz, J.; Vidaillac, C.; Rose, W.E.; Rybak, M.J. Activities of high-dose daptomycin, vancomycin, and moxifloxacin alone or in combination with clarithromycin or rifampin in a novel in vitro model of Staphylococcus aureus biofilm. Antimicrob. Agents Chemother. 2010, 54, 4329–4334. [Google Scholar] [CrossRef] [Green Version]
- O’Driscoll, T.; Crank, C.W. Vancomycin-resistant enterococcal infections: Epidemiology, clinical manifestations, and optimal management. Infect. Drug Resist. 2015, 8, 217–230. [Google Scholar]
- Zirakzadeh, A.; Patel, R. Vancomycin-resistant enterococci: Colonization, infection, detection, and treatment. Mayo Clin. Proc. 2006, 81, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Heintz, B.H.; Halilovic, J.; Christensen, C.L. Vancomycin-resistant enterococcal urinary tract infections. Pharmacotherapy 2010, 30, 1136–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toner, L.; Papa, N.; Aliyu, S.H.; Dev, H.; Lawrentschuk, N.; Al-Hayek, S. Vancomycin resistant enterococci in urine cultures: Antibiotic susceptibility trends over a decade at a tertiary hospital in the United Kingdom. Investig. Clin. Urol. 2016, 57, 129–134. [Google Scholar] [CrossRef]
- Stevens, D.L.; Dotter, B.; Madaras-Kelly, K. A review of linezolid: The first oxazolidinone antibiotic. Expert Rev. Anti-Infect. Ther. 2004, 2, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.M.E.; Wydra, S.; Onda, H.; Kinzig-Schippers, M.; Sörgel, F.; Naber, K.G. Concentrations in plasma, urinary excretion, and bactericidal activity of linezolid (600 milligrams) versus those of ciprofloxacin (500 milligrams) in healthy volunteers receiving a single oral dose. Antimicrob. Agents Chemother. 2003, 47, 3789–3794. [Google Scholar]
- Moenster, R.P.; Linneman, T.W.; Carpenter, B.; Tackett, S. Linezolid compared to daptomycin for the treatment of vancomycin-resistant enterococcal urinary tract infections. Open Form Infect. Dis. 2014, 1, S306. [Google Scholar]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Pontefract, B.A.; Rovelsky, S.A.; Madaras-Kelly, K.J. Linezolid to treat urinary tract infections caused by vancomycin-resistant Enterococcus. SAGE Open Med. 2020, 8, 2050312120970743. [Google Scholar] [CrossRef]
- Ramsey, T.D.; Lau, T.T.Y.; Ensom, M.H.H. Serotonergic and adrenergic drug interactions associated with linezolid: A critical review and practical management approach. Ann. Pharmacother. 2013, 47, 543–560. [Google Scholar] [CrossRef]
- Rabon, A.D.; Fisher, J.P.; MacVane, S.H. Incidence and risk factors for development of thrombocytopenia in patients treated with linezolid for 7 days or greater. Ann. Pharmacother. 2018, 52, 1162–1164. [Google Scholar] [CrossRef]
- Deshpande, L.M.; Fritsche, T.R.; Moet, G.J.; Biedenbach, D.J.; Jones, R.N. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: A report from the SENTRY antimicrobial surveillance program. Diagn. Microbiol. Infect. Dis. 2007, 58, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Taimur, S.; Miller, N.S.; Whitney, D.P.D.; Barlam, T. Empiric and targeted treatment of enterococcal infections: Opportunities for antimicrobial stewardship. Infect. Dis. Clin. Pract. 2015, 23, 72–75. [Google Scholar] [CrossRef]
- Shah, K.J.; Cherabuddi, K.; Shultz, J.; Borgert, S.; Ramphal, R.; Klinker, K.P. Ampicillin for the treatment of complicated urinary tract infections caused by vancomycin-resistant Enterococcus spp (VRE): A single-center university hospital experience. Int. J. Antimicrob. Agents 2018, 51, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Cole, K.A.; Kenney, R.M.; Perri, M.B.; Dumkow, L.E.; Samuel, L.P.; Zervos, M.J.; Davis, S.L. Outcomes of aminopenicillin therapy for vancomycin-resistant enterococcal urinary tract infections. Antimicrob. Agents Chemother. 2015, 59, 7362–7366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agency for Healthcare Research and Quality. Preventing CAUTI: Focus on Culturing Stewardship. Available online: http://www.ahrq.gov/professionals/quality-patient-safety/hais/cauti-tools/phys-championsgd/section7.html (accessed on 16 October 2018).
- Campbell, E.; Neelakanta, A.; Moore, J.; Spangler, L.; Passaretti, C. Urine culture stewardship as a component of urinary catheter infection prevention in five intensive care units. Open Forum Infect. Dis. 2016, 1, 395. [Google Scholar] [CrossRef] [Green Version]
Variable | Total (n = 45) | Linezolid (n = 33) | Other Antibiotics (n = 12) | p-Value |
---|---|---|---|---|
Age in years, median (IQR) | 50 (36.5–65.5) | 49 (36.5–62.5) | 55 (37.75–67.5) | 0.502 |
Race, n (%) | 0.366 | |||
White | 20 (44.4) | 16 (48.5) | 4 (33.3) | 0.28 |
Black | 24 (53.3) | 16 (48.5) | 8 (66.7) | 1.000 |
Hispanic | 1 (2.2) | 1 (3) | 0 (0) | |
Gender, n (%) | 0.699 | |||
Female | 34 (75.6) | 24 (72.7) | 10 (83.3) | |
Penicillin allergy, n (%) | 4 (8.9) | 3 (9.1) | 1 (8.3) | 1.000 |
Charlson comorbidity index, median (IQR) | 4 (3–5.5) | 4 (2.5–5) | 5 (3–6) | 0.409 |
SCr, median (IQR) | 1.5 (0.75–2.8) | 1.7 (0.75–2.8) | 0.80 (0.61–3.09) | 0.328 |
Urologic | ||||
abnormalities, n (%) | ||||
None | 13 (28.9) | 8 (24.2) | 5 (41.7) | 0.285 |
Permanent indwell- | 3 (6.7) | 2 (6.1) | 1 (8.3) | 1.000 |
ing urinary catheter | ||||
Temporary indwelling urinary catheter | 29 (64.4) | 23 (69.7) | 6 (50) | 0.296 |
Variable | Total (n = 45) | Linezolid (n = 33) | Other Antibiotics (n = 12) | p-Value |
---|---|---|---|---|
Pyuria, n (%) | 23 (51.1) | 18 (54.5) | 5 (41.7) | 0.514 |
Hematuria, n (%) | 27 (60) | 21 (63.6) | 6 (50) | 0.499 |
WBC, in cells/mm3 median (IQR) | 5500 (325–16,300) | 3750 (225–12,775) | 10,250 (1975–17,775) | 0.302 |
Temperature in F, median (IQR) | 98.5 (97.9–99.4) | 98.5 (97.7–99.7) | 98.25 (98.10–98.775) | 0.752 |
Documented indication, n (%) | 0.346 | |||
Cystitis | 12 (26.7) | 7 (21.2) | 5 (41.7) | |
Pyelonephritis | 1 (2.2) | 1 (3) | 0 | |
CAUTI | 32 (71.1) | 25 (75.8) | 7 (58.3) | |
Quantitative culture in CFU/mL, median (IQR) | 50,000 (32,500–70,000) | 60,000 (25,000–75,000) | 50,000 (30,500–52,500) | 0.178 |
Enterococcus spp., n (%) | ||||
E. faecalis | 2 (4.4) | 0 | 2 (16.7) | 0.067 |
E. faecium | 41 (91.1) | 33 (100) | 8 (66.7) | 0.003 |
Other enterococcal species | 2 (4.4) | 0 | 2 (16.7) | 0.067 |
Resistance, n (%) | ||||
Linezolid | 1 (2.2) | 0 | 1 (8.3) | 0.267 |
Daptomycin | 0 | 0 | 0 | -- |
Aminopenicillin | 39 (86.7) | 33 (100) | 6 (50) | <0.001 |
Nitrofurantoin | 29 (64.4) | 25 (75.8) | 4 (33.3) | 0.014 |
Aminoglycoside | 12 (26.7) | 7 (21.2) | 5 (41.7) | 0.254 |
Tetracycline | 43 (95.6) | 32 (97) | 11 (91.7) | 0.467 |
Variable | Total (n = 45) | Linezolid (n = 33) | Other Antibiotics (n = 12) | p-Value |
---|---|---|---|---|
VRE Treatment, n (%) | ||||
Linezolid | 33 (73.3) | 33 (100) | -- | |
Daptomycin | 4 (8.9) | -- | 4 (33.3) | |
Aminopenicillin | 5 (11.1) | -- | 5 (41.7) | |
Nitrofurantoin | 1 (2.2) | -- | 1 (8.3) | |
Piperacillin-tazobactam | 1 (2.2) | -- | 1 (8.3) | |
Tigecycline | 1 (2.2) | -- | 1 (8.3) | |
Daptomycin dose in mg/kg, median (IQR) | 5 (4–6) | -- | 5 (4–6) | |
Duration of therapy in days, median (IQR) | 8 (5–11) | 9 (6–11.5) | 5 (4–7.5) | 0.002 |
Time to appropriate therapy in hours, median (IQR) | 62 (46.5–71) | 61 (46.5–71) | 66 (35.5–69.75) | 0.909 |
Variable | Total (n = 45) | Linezolid (n = 33) | Other Antibiotics (n = 12) | p-Value |
---|---|---|---|---|
Composite clinical cure, n (%) * | 27/40 (67.5) | 20/28 (71.4) | 7/12 (58.3) | 0.476 |
Microbiological outcomes, n (%) | ||||
Eradication | 45 (100) | 33 (100) | 12 (100) | 1.000 |
Relapse | 0 | 0 | 0 | |
Recurrence | 0 | 0 | 0 | |
Defervescence, n (%) * | 1/1 (100%) | -- | 1/1 (100%) | -- |
Resolution of hematuria, n (%) * | 20/25 (80%) | 16/19 (84%) | 4/6 (67%) | 0.562 |
Resolution of pyuria, n (%) * | 17/20 (85%) | 14/15 (93%) | 3/5 (60%) | 0.14 |
Hospital length of stay in days, median (IQR) | 30 (15.5–37) | 31 (19–37) | 23 (11.25–40.5) | 0.367 |
Infection-related length of stay in days, median (IQR) | 11 (8–24) | 13 (10–24) | 9 (6.25–23.5) | 0.395 |
Discharge disposition, n (%) | 0.223 | |||
Home | 21 (47.7) | 14 (42.4) | 7 (63.6) | 0.195 |
SNF/LTCF | 9 (20.5) | 5 (15.2) | 4 (36.4) | 0.558 |
Rehabilitation | 4 (9.1) | 4 (12.1) | 0 | 0.309 |
Hospice | 5 (11.4) | 5 (15.2) | 0 | 0.309 |
Death | 5 (11.4) | 5 (15.2) | 0 | |
30-day disposition, n (%) | ||||
Alive + not readmitted | 28 (62.2) | 20 (60.6) | 8 (66.7) | 1 |
Alive + non-infection readmission | 11 (24.4) | 8 (24.2) | 3 (25) | 1 |
Dead | 6 (13.3) | 5 (15.2) | 1 (8.3) | 1 |
30-day retreatment, n (%) | 0 | 0 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wingler, M.J.; Patel, N.R.; King, S.T.; Wagner, J.L.; Barber, K.E.; Stover, K.R. Linezolid for the Treatment of Urinary Tract Infections Caused by Vancomycin-Resistant Enterococci. Pharmacy 2021, 9, 175. https://doi.org/10.3390/pharmacy9040175
Wingler MJ, Patel NR, King ST, Wagner JL, Barber KE, Stover KR. Linezolid for the Treatment of Urinary Tract Infections Caused by Vancomycin-Resistant Enterococci. Pharmacy. 2021; 9(4):175. https://doi.org/10.3390/pharmacy9040175
Chicago/Turabian StyleWingler, Mary Joyce, Neel R. Patel, S. Travis King, Jamie L. Wagner, Katie E. Barber, and Kayla R. Stover. 2021. "Linezolid for the Treatment of Urinary Tract Infections Caused by Vancomycin-Resistant Enterococci" Pharmacy 9, no. 4: 175. https://doi.org/10.3390/pharmacy9040175