Potentially Inappropriate Medication Prescribing Detected by Computer Algorithm among Older Patients: Results from the MAPT Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Algorithm
- The European List of Potentially Inappropriate Medications in Older People (EU(7)-PIM list) [3].
- The STOPP and START version 2 criteria (Screening Tool of Older People’s Prescriptions and Screening Tool to Alert to Right Treatment) [4].
- Clinical practice indicators of Alert and Mastering of medication Iatrogenicity (AMI) proposed by the French National Authority for Health (HAS) related to medication prescriptions in older patients [18].
- Market withdrawals by the French National Agency for Medicines and Health Products Safety (ANSM) or the European Medicines Agency (EMA) for safety reasons.
- Contraindications listed in the medications’ Summary of Product Characteristics (SmPC).
2.3. Statistical Analysis
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. MAPT/DSA Group
Appendix A.1. MAPT Study Group
Appendix A.2. DSA Group
References
- Mekonnen, A.B.; Redley, B.; de Courten, B.; Manias, E. Potentially Inappropriate Prescribing and Its Associations with Health-Related and System-Related Outcomes in Hospitalised Older Adults: A Systematic Review and Meta-Analysis. Br. J. Clin. Pharmacol. 2021, 87, 4150–4172. [Google Scholar] [CrossRef]
- Hanlon, J.T.; Schmader, K.E.; Samsa, G.P.; Weinberger, M.; Uttech, K.M.; Lewis, I.K.; Cohen, H.J.; Feussner, J.R. A Method for Assessing Drug Therapy Appropriateness. J. Clin. Epidemiol. 1992, 45, 1045–1051. [Google Scholar] [CrossRef]
- Renom-Guiteras, A.; Meyer, G.; Thürmann, P.A. The EU(7)-PIM List: A List of Potentially Inappropriate Medications for Older People Consented by Experts from Seven European Countries. Eur. J. Clin. Pharmacol. 2015, 71, 861–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Mahony, D.; O’Sullivan, D.; Byrne, S.; O’Connor, M.N.; Ryan, C.; Gallagher, P. STOPP/START Criteria for Potentially Inappropriate Prescribing in Older People: Version 2. Age Ageing 2015, 44, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motter, F.R.; Fritzen, J.S.; Hilmer, S.N.; Paniz, É.V.; Paniz, V.M.V. Potentially Inappropriate Medication in the Elderly: A Systematic Review of Validated Explicit Criteria. Eur. J. Clin. Pharmacol. 2018, 74, 679–700. [Google Scholar] [CrossRef] [PubMed]
- Beers, M.H.; Ouslander, J.G.; Rollingher, I.; Reuben, D.B.; Brooks, J.; Beck, J.C. Explicit Criteria for Determining Inappropriate Medication Use in Nursing Home Residents. UCLA Division of Geriatric Medicine. Arch. Intern. Med. 1991, 151, 1825–1832. [Google Scholar] [CrossRef]
- Grina, D.; Briedis, V. The Use of Potentially Inappropriate Medications among the Lithuanian Elderly According to Beers and EU(7)-PIM List—A Nationwide Cross-Sectional Study on Reimbursement Claims Data. J. Clin. Pharm. Ther. 2017, 42, 195–200. [Google Scholar] [CrossRef]
- Anrys, P.; Boland, B.; Degryse, J.-M.; De Lepeleire, J.; Petrovic, M.; Marien, S.; Dalleur, O.; Strauven, G.; Foulon, V.; Spinewine, A. STOPP/START Version 2—Development of Software Applications: Easier Said than Done? Age Ageing 2016, 45, 590–593. [Google Scholar] [CrossRef] [Green Version]
- Fralick, M.; Bartsch, E.; Ritchie, C.S.; Sacks, C.A. Estimating the Use of Potentially Inappropriate Medications Among Older Adults in the United States. J. Am. Geriatr. Soc. 2020, 68, 2927–2930. [Google Scholar] [CrossRef]
- Selke Krulichová, I.; Selke, G.W.; Thürmann, P.A. Trends and Patterns in EU(7)-PIM Prescribing to Elderly Patients in Germany. Eur. J. Clin. Pharmacol. 2021, 77, 1553–1561. [Google Scholar] [CrossRef]
- Nauta, K.J.; Groenhof, F.; Schuling, J.; Hugtenburg, J.G.; van Hout, H.P.J.; Haaijer-Ruskamp, F.M.; Denig, P. Application of the STOPP/START Criteria to a Medical Record Database. Pharmacoepidemiol. Drug Saf. 2017, 26, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- Anrys, P.; Strauven, G.; Boland, B.; Dalleur, O.; Declercq, A.; Degryse, J.-M.; De Lepeleire, J.; Henrard, S.; Lacour, V.; Simoens, S.; et al. Collaborative Approach to Optimise MEdication Use for Older People in Nursing Homes (COME-ON): Study Protocol of a Cluster Controlled Trial. Implement. Sci. 2016, 11, 35. [Google Scholar] [CrossRef] [Green Version]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of Illness in the Aged: The Index of ADL: A Standardized Measure of Biological and Psychosocial Function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef]
- Andrieu, S.; Guyonnet, S.; Coley, N.; Cantet, C.; Bonnefoy, M.; Bordes, S.; Bories, L.; Cufi, M.-N.; Dantoine, T.; Dartigues, J.-F.; et al. Effect of Long-Term Omega 3 Polyunsaturated Fatty Acid Supplementation with or without Multidomain Intervention on Cognitive Function in Elderly Adults with Memory Complaints (MAPT): A Randomised, Placebo-Controlled Trial. Lancet Neurol. 2017, 16, 377–389. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A New Method of Classifying Prognostic Comorbidity in Longitudinal Studies: Development and Validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, J.I.; Yesavage, J.A. Geriatric Depression Scale (GDS): Recent Evidence and Development of a Shorter Version. Clin. Gerontol. J. Aging Ment. Health 1986, 5, 165–173. [Google Scholar] [CrossRef]
- French High Authority for Health/Haute Autorité de Santé (HAS). Alert and Mastering of Drug Latrogenicity Indicators/Alerte Maîtrise Latrogénie (AMI); HAS: Paris, France, 2019. [Google Scholar]
- Lang, P.O.; Dramé, M.; Guignard, B.; Mahmoudi, R.; Payot, I.; Latour, J.; Schmitt, E.; Pepersack, T.; Vogt-Ferrier, N.; Hasso, Y.; et al. Les Critères STOPP/START.v2 : Adaptation En Langue Française / STOPP/START.v2 Criteria: Adaptation into French Language. NPG Neurol.-Psychiatr.-Gériatrie 2015, 15, 323–336. [Google Scholar] [CrossRef]
- Schafer, J.L. Multiple Imputation: A Primer. Stat. Methods Med. Res. 1999, 8, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Tommelein, E.; Mehuys, E.; Petrovic, M.; Somers, A.; Colin, P.; Boussery, K. Potentially Inappropriate Prescribing in Community-Dwelling Older People across Europe: A Systematic Literature Review. Eur. J. Clin. Pharmacol. 2015, 71, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Muhlack, D.C.; Hoppe, L.K.; Saum, K.-U.; Haefeli, W.E.; Brenner, H.; Schöttker, B. Investigation of a Possible Association of Potentially Inappropriate Medication for Older Adults and Frailty in a Prospective Cohort Study from Germany. Age Ageing 2020, 49, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnjidic, D.; Hilmer, S.N.; Blyth, F.M.; Naganathan, V.; Waite, L.; Seibel, M.J.; McLachlan, A.J.; Cumming, R.G.; Handelsman, D.J.; Le Couteur, D.G. Polypharmacy Cutoff and Outcomes: Five or More Medicines Were Used to Identify Community-Dwelling Older Men at Risk of Different Adverse Outcomes. J. Clin. Epidemiol. 2012, 65, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Allison, P.D. Logistic Regression Using SAS: Theory and Application, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Galvin, R.; Moriarty, F.; Cousins, G.; Cahir, C.; Motterlini, N.; Bradley, M.; Hughes, C.M.; Bennett, K.; Smith, S.M.; Fahey, T.; et al. Prevalence of Potentially Inappropriate Prescribing and Prescribing Omissions in Older Irish Adults: Findings from The Irish LongituDinal Study on Ageing Study (TILDA). Eur. J. Clin. Pharmacol. 2014, 70, 599–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, T.; Moriarty, F.; Wallace, E.; McDowell, R.; Redmond, P.; Fahey, T. Prevalence of Potentially Inappropriate Prescribing in Older People in Primary Care and Its Association with Hospital Admission: Longitudinal Study. BMJ 2018, 363, k4524. [Google Scholar] [CrossRef] [Green Version]
- Wauters, M.; Elseviers, M.; Vaes, B.; Degryse, J.; Vander Stichele, R.; Christiaens, T.; Azermai, M. Mortality, Hospitalisation, Institutionalisation in Community-Dwelling Oldest Old: The Impact of Medication. Arch. Gerontol. Geriatr. 2016, 65, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, P.F.; O’Connor, M.N.; O’Mahony, D. Prevention of Potentially Inappropriate Prescribing for Elderly Patients: A Randomized Controlled Trial Using STOPP/START Criteria. Clin. Pharmacol. Ther. 2011, 89, 845–854. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Appropriateness Medication Prescribing | Total (n = 1525) | p-Value | |
---|---|---|---|---|
without PIP (n = 287) | with PIP (n = 1238) | |||
Gender, n (%) | ||||
Female | 187 (65%) | 791 (64%) | 978 (64%) | 0.688 |
Male | 100 (35%) | 447 (36%) | 547 (36%) | |
Age (Years), n (%) | ||||
Age ≤ 74 years | 182 (63%) | 581 (47%) | 763 (50%) | <0.001 |
75 years ≤ Age ≤ 79 years | 74 (26%) | 415 (33%) | 489 (32%) | |
Age ≥ 80 years | 31 (11%) | 242 (20%) | 273 (18%) | |
Education, n (%) * | ||||
No diploma or primary school certificate | 59 (21%) | 275 (23%) | 334 (22%) | 0.291 |
Secondary education | 95 (34%) | 416 (34%) | 511 (34%) | |
High school diploma | 51 (18%) | 167 (14%) | 218 (15%) | |
University level | 77 (27%) | 361 (29%) | 438 (29%) | |
Intervention Group, n (%) | ||||
Multidomain plus polyunsaturated fatty acids | 68 (24%) | 306 (25%) | 374 (24%) | 0.226 |
Polyunsaturated fatty acids | 60 (21%) | 321 (26%) | 381 (25%) | |
Multidomain plus placebo | 83 (29%) | 307 (25%) | 390 (26%) | |
Placebo | 76 (26%) | 304 (24%) | 380 (25%) | |
Number of Medications Prescribed | ||||
Number of medications prescribed ≤ 4 | 255 (89%) | 557 (45%) | 812 (53%) | <0.001 |
5 ≤ Number of medications prescribed ≤ 9 (polypharmacy) | 32 (11%) | 557 (45%) | 589 (39%) | |
Number of medications prescribed ≥ 10 (hyperpolypharmacy) | 0 (0%) | 124 (10%) | 124 (8%) | |
Charlson Comorbidity Index, n (%) | ||||
0 point | 269 (94%) | 915 (74%) | 1184 (78%) | <0.001 |
1 point | 16 (5%) | 232 (19%) | 248 (16%) | |
≥2 points | 2 (1%) | 91 (7%) | 93 (6%) | |
Frailty, n (%) ** | ||||
Robust patients | 187 (69%) | 612 (52%) | 799 (55%) | <0.001 |
Prefrail patients | 79 (29%) | 524 (45%) | 603 (42%) | |
Frail patients | 5 (2%) | 38 (3%) | 43 (3%) | |
Instrumental Activities of Daily Living, n (%) ^ | ||||
IADL = 8 (no deficit on instrumental activities) | 277 (97%) | 1181 (95%) | 1458 (96%) | 0.192 |
IADL > 8 (deficit on instrumental activities) | 8 (3%) | 56 (5%) | 64 (4%) | |
Medical Conditions, n (%) | ||||
Hypertension | 157 (55%) | 857 (69%) | 1014 (66%) | <0.001 |
Myocardial infarction | 0 (0%) | 88 (7%) | 88 (6%) | <0.001 |
Heart failure | 2 (1%) | 65 (5%) | 67 (4%) | <0.001 |
Peripheral vascular disease | 3 (1%) | 43 (3%) | 46 (3%) | 0.030 |
Cerebrovascular accident or transient ischemic attack | 1 (0%) | 41 (3%) | 42 (3%) | 0.006 |
Chronic obstructive pulmonary disease | 1 (0%) | 41 (3%) | 42 (3%) | 0.006 |
Peptic ulcer disease | 7 (2%) | 58 (5%) | 65 (4%) | 0.090 |
Diabetes mellitus # | 0 (0%) | 13 (1%) | 13 (1%) | 0.145 |
Severe chronic kidney disease # | 1 (0%) | 7 (1%) | 8 (1%) | 0.999 |
Cancer # | 0 (0%) | 9 (1%) | 9 (1%) | 0.223 |
PIP Criteria-Based Tools | Baseline Occurrence, n (%) |
---|---|
• European List of Potentially Inappropriate Medications in Older People (EU(7)-PIM list) | 900 (59%) |
• Screening Tool to Alert to Right Treatment (START) version 2 | 783 (51%) |
• Screening Tool of Older Persons’ Prescriptions (STOPP) version 2 | 659 (43%) |
• Clinical practice indicators of Alert and Mastering of medication Iatrogenicity (AMI) proposed by the French National Authority for Health (HAS) related to medication prescriptions in older subjects | 212 (14%) |
• Market withdrawals by the French National Agency for Medicines and Health Products Safety (ANSM) or the European Medicines Agency (EMA) for safety reasons | 79 (5%) |
• Contraindications listed in the medications’ Summary of Product Characteristics (SmPC) | 13 (1%) |
Parameters | Adjusted * Odds Ratio [95CI] | p-Value |
---|---|---|
Gender | ||
Female | Ref. | 0.601 |
Male | 0.82 [0.38; 1.74] | |
Age (Years) | ||
Age ≤ 74 years | Ref. | 0.003 |
75 years ≤ Age ≤ 79 years | 2.75 [1.24; 6.09] | |
Age ≥ 80 years | 5.36 [1.86; 15.44] | |
Education | ||
No diploma or primary school certificate | Ref. | 0.590 |
Secondary education | 1.45 [0.61; 3.47] | |
High school diploma | 0.87 [0.30; 2.51] | |
University level | 1.57 [0.64; 3.86] | |
Intervention Group | ||
Placebo | Ref. | 0.308 |
Multidomain plus polyunsaturated fatty acids | 1.25 [0.47; 3.34] | |
Polyunsaturated fatty acids | 2.48 [0.92; 6.66] | |
Multidomain plus placebo | 1.20 [0.46; 3.12] | |
Number of Drugs Prescribed | ||
Number of drugs prescribed ≤ 4 | Ref. | <0.001 |
5 ≤ Number of drugs prescribed ≤ 9 (polypharmacy) | 26.64 [12.29; 57.73] | |
Number of drugs prescribed ≥ 10 (hyperpolypharmacy) | 662.16 [76.85; 5705.28] | |
Charlson Comorbidity Index (Baseline) | ||
0 point | Ref. | <0.001 |
1 point | 10.89 [3.17; 37.35] | |
≥2 points | 21.93 [1.48; 324.44] | |
Frailty | ||
Robust patients | Ref. | 0.151 |
Prefrail patients | 1.33 [0.96; 1.84] | |
Frail patients | 1.95 [0.69; 5.52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagès, A.; Rouch, L.; Costa, N.; Cestac, P.; De Souto Barreto, P.; Rolland, Y.; Vellas, B.; Molinier, L.; Juillard-Condat, B.; MAPT/DSA Group. Potentially Inappropriate Medication Prescribing Detected by Computer Algorithm among Older Patients: Results from the MAPT Study. Pharmacy 2021, 9, 189. https://doi.org/10.3390/pharmacy9040189
Pagès A, Rouch L, Costa N, Cestac P, De Souto Barreto P, Rolland Y, Vellas B, Molinier L, Juillard-Condat B, MAPT/DSA Group. Potentially Inappropriate Medication Prescribing Detected by Computer Algorithm among Older Patients: Results from the MAPT Study. Pharmacy. 2021; 9(4):189. https://doi.org/10.3390/pharmacy9040189
Chicago/Turabian StylePagès, Arnaud, Laure Rouch, Nadège Costa, Philippe Cestac, Philipe De Souto Barreto, Yves Rolland, Bruno Vellas, Laurent Molinier, Blandine Juillard-Condat, and MAPT/DSA Group. 2021. "Potentially Inappropriate Medication Prescribing Detected by Computer Algorithm among Older Patients: Results from the MAPT Study" Pharmacy 9, no. 4: 189. https://doi.org/10.3390/pharmacy9040189
APA StylePagès, A., Rouch, L., Costa, N., Cestac, P., De Souto Barreto, P., Rolland, Y., Vellas, B., Molinier, L., Juillard-Condat, B., & MAPT/DSA Group. (2021). Potentially Inappropriate Medication Prescribing Detected by Computer Algorithm among Older Patients: Results from the MAPT Study. Pharmacy, 9(4), 189. https://doi.org/10.3390/pharmacy9040189