Matching Assistive Technology, Telerehabilitation, and Virtual Reality to Promote Cognitive Rehabilitation and Communication Skills in Neurological Populations: A Perspective Proposal
Abstract
:1. Introduction
2. Cognitive Deficits and Technological Supports
3. Method and Selective Review
4. Communication, Internet, and Leisure Opportunities
5. The New Perspective Proposal
6. Discussion
7. Limitations and Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barro, C.; Zetterberg, H. The blood biomarkers puzzle—A review of protein biomarkers in neurodegenerative diseases. J. Neurosci. Methods 2021, 361, 109281. [Google Scholar] [CrossRef]
- Pape, T.L.; High, W.M.; St. Andre, J.; Evans, C.; Smith, B.; Shandera-Ochsner, A.L.; Wingo, J.; Moallem, I.; Baldassarre, M.; Babcock-Parziale, J. Diagnostic accuracy studies in mild traumatic brain injury: A systematic review and descriptive analysis of published evidence. PM R 2013, 5, 856–881. [Google Scholar] [CrossRef]
- Orrù, G.; Bertelloni, D.; Diolaiuti, F.; Mucci, F.; Di Giuseppe, M.; Biella, M.; Gemignani, A.; Ciacchini, R.; Conversano, C. Long-COVID syndrome? A study on the persistence of neurological, psychological and physiological symptoms. Healthcare 2021, 9, 575. [Google Scholar] [CrossRef] [PubMed]
- Abrams, J.Y.; Oster, M.E.; Godfred-Cato, S.E.; Bryant, B.; Datta, S.D.; Campbell, A.P.; Leung, J.W.; Tsang, C.A.; Pierce, T.J.; Kennedy, J.L.; et al. Factors linked to severe outcomes in multisystem inflammatory syndrome in children (MIS-C) in the USA: A retrospective surveillance study. Lancet Child Adolesc. Health 2021, 5, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Lenka, A.; Louis, E.D. Do we belittle essential tremor by calling it a syndrome rather than a disease? Yes. Front. Neurol. 2020, 11, 522687. [Google Scholar] [CrossRef] [PubMed]
- Bogetz, J.F.; Trowbridge, A.; Lewis, H.; Shipman, K.J.; Jonas, D.; Hauer, J.; Rosenberg, A.R. Parents are the experts: A qualitative study of the experiences of parents of children with severe neurological impairment during decision-making. J. Pain Symptom Manag. 2021, 62, 1117–1125. [Google Scholar] [CrossRef]
- Solomon, D.L.; Dirlikov, B.; Shem, K.L.; Elliott, C.S. The time burden of specialty clinic visits in persons with neurologic disease: A case for universal telemedicine coverage. Front. Neurol. 2021, 12, 559024. [Google Scholar] [CrossRef]
- Walzl, D.; Solomon, A.J.; Stone, J. Functional neurological disorder and multiple sclerosis: A systematic review of misdiagnosis and clinical overlap. J. Neurol. 2022, 269, 654–663. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVID—Mechanisms, risk factors, and management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef]
- Katz, D.I.; Bernick, C.; Dodick, D.W.; Mez, J.; Mariani, M.L.; Adler, C.H.; Alosco, M.L.; Balcer, L.J.; Banks, S.J.; Barr, W.B.; et al. National institute of neurological disorders and stroke consensus diagnostic criteria for traumatic encephalopathy syndrome. Neurology 2021, 96, 848–863. [Google Scholar] [CrossRef]
- Parrinello, N.; Napieralski, J.; Gerlach, A.L.; Pohl, A. Embodied feelings–A meta-analysis on the relation of emotion intensity perception and interoceptive accuracy. Physiol. Behav. 2022, 254, 113904. [Google Scholar] [CrossRef]
- Webster, P.J.; Wang, S.; Li, X. Review: Posed vs. genuine facial emotion recognition and expression in autism and implications for intervention. Front. Psychol. 2021, 12, 653112. [Google Scholar] [CrossRef] [PubMed]
- Buttermore, E.; Chamberlain, S.; Cody, J.; Costain, G.; Dang, L.; DeWoody, A.; DeWoody, Y.; Dies, K.; Eichler, E.; Girirajan, S.; et al. Neurodevelopmental copy-number variants: A roadmap to improving outcomes by uniting patient advocates, researchers, and clinicians for collective impact. Am. J. Hum. Genet. 2022, 109, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.-C.; Su, Y.; Chu, F.; Chen, A.T.; Zaslavsky, O. Behavioral change factors and retention in web-based interventions for informal caregivers of people living with dementia: Scoping review. J. Med. Internet Res. 2022, 24, e38595. [Google Scholar] [CrossRef]
- Iodice, F.; Cassano, V.; Rossini, P.M. Direct and indirect neurological, cognitive, and behavioral effects of COVID-19 on the healthy elderly, mild-cognitive-impairment, and Alzheimer’s disease populations. Neurol. Sci. 2021, 42, 455–465. [Google Scholar] [CrossRef]
- Vinciguerra, C.; Federico, A. Neurological music therapy during the COVID-19 outbreak: Updates and future challenges. Neurol. Sci. 2022, 43, 3473–3478. [Google Scholar] [CrossRef]
- Nami, M.; Thatcher, R.; Kashou, N.; Lopes, D.; Lobo, M.; Bolanos, J.F.; Morris, K.; Sadri, M.; Bustos, T.; Sanchez, G.E.; et al. A proposed brain-, spine-, and mental-health screening methodology (NEUROSCREEN) for healthcare systems: Position of the society for brain mapping and therapeutics. J. Alzheimer’s Dis. 2022, 86, 21–42. [Google Scholar] [CrossRef]
- Gonzalez, A.; Garcia, L.; Kilby, J.; McNair, P. Robotic devices for pediatric rehabilitation: A review of design features. Biomed. Eng. Online 2021, 20, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Truijen, S.; Abdullahi, A.; Bijsterbosch, D.; van Zoest, E.; Conijn, M.; Wang, Y.; Struyf, N.; Saeys, W. Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: A systematic review and meta-analysis. Neurol. Sci. 2022, 43, 2995–3006. [Google Scholar] [CrossRef] [PubMed]
- Özden, F.; Özkeskin, M.; Ak, S.M. Physical exercise intervention via telerehabilitation in patients with neurological disorders: A narrative literature review. Egypt J. Neurol. Psychiatr. Neurosurg. 2022, 58, 1–9. [Google Scholar] [CrossRef]
- Stasolla, F.; Caffò, A.O.; Ciarmoli, D.; Albano, V. Promoting object manipulation and reducing tongue protrusion in seven children with angelman syndrome and developmental disabilities through microswitch-cluster technology: A research extension. J. Dev. Phys. Disabil. 2021, 33, 799–817. [Google Scholar] [CrossRef]
- Ciarmoli, D.; Stasolla, F. The Use of Alternative Augmentative Communication in Children and Adolescents With Neurodevelopmental Disorders: A Critical Review. Curr. Develop. Disord. Rep. 2023, 10, 14–19. [Google Scholar] [CrossRef]
- Lancioni, G.E.; O’Reilly, M.F.; Sigafoos, J.; D’Amico, F.; Spica, A.; Buonocunto, F.; Del Gaudio, V.; Lanzilotti, C.; Navarro, J. Mainstream technology as basic support for individuals with extensive neuro-motor impairments and absence of verbal skills. Adv. Neurodev. Disord. 2021, 5, 85–92. [Google Scholar] [CrossRef]
- Gopal, A.; Hsu, W.-Y.; Allen, D.D.; Bove, R. Remote assessments of hand function in neurological disorders: Systematic review. JMIR Rehabil. Assist. Technol. 2022, 9, e33157. [Google Scholar] [CrossRef] [PubMed]
- Pituch, E.; Bindiu, A.M.; Grondin, M.; Bottari, C. Parenting with a physical disability and cognitive impairments: A scoping review of the needs expressed by parents. Disabil. Rehabil. 2022, 44, 3285–3300. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Lo, W.L.A.; Hu, H.; Yan, L.; Li, L. Transcranial ultrasound stimulation applied in ischemic stroke rehabilitation: A review. Front. Neurosci. 2022, 16, 1195. [Google Scholar] [CrossRef] [PubMed]
- Waerling, R.D.; Kjaer, T.W. A systematic review of impairment focussed technology in neurology. Disabil. Rehabil. Assist. Technol. 2022, 17, 234–247. [Google Scholar] [CrossRef]
- Park, J.-H.; Ah Lee, S. The fragility of temporal memory in Alzheimer’s disease. J. Alzheimer’s Dis. 2021, 79, 1631–1646. [Google Scholar] [CrossRef]
- Yamamoto, S.; Levin, H.S.; Prough, D.S. Mild, moderate and severe: Terminology implications for clinical and experimental traumatic brain injury. Curr. Opin. Neurol. 2018, 31, 672–680. [Google Scholar] [CrossRef]
- Rocca, M.A.; Schoonheim, M.M.; Valsasina, P.; Geurts, J.J.G.; Filippi, M. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. NeuroImage Clin. 2022, 35, 103076. [Google Scholar] [CrossRef]
- Tao, L.; Wang, Q.; Liu, D.; Wang, J.; Zhu, Z.; Feng, L. Eye tracking metrics to screen and assess cognitive impairment in patients with neurological disorders. Neurol. Sci. 2020, 41, 1697–1704. [Google Scholar] [CrossRef]
- Stasolla, F.; Perilli, V.; Boccasini, A.; Caffò, A.O.; Damiani, R. Intervention options for assessing and recovering post-coma persons in a vegetative state. In Advances in Psychology Research; Columbus, A.M., Ed.; Nova Publishers: New York, NY, USA, 2017; pp. 179–199. [Google Scholar]
- Bottiroli, S.; Bernini, S.; Cavallini, E.; Sinforiani, E.; Zucchella, C.; Pazzi, S.; Cristiani, P.; Vecchi, T.; Tost, D.; Sandrini, G.; et al. The smart aging platform for assessing early phases of cognitive impairment in patients with neurodegenerative diseases. Front. Psychol. 2021, 12, 1280. [Google Scholar] [CrossRef] [PubMed]
- Martins Gaspar, A.G.; Lapão, L.V. eHealth for addressing balance disorders in the elderly: Systematic review. J. Med. Internet Res. 2021, 23, e22215. [Google Scholar] [CrossRef]
- Matamala-Gomez, M.; Maisto, M.; Montana, J.I.; Mavrodiev, P.A.; Baglio, F.; Rossetto, F.; Mantovani, F.; Riva, G.; Realdon, O. The role of engagement in teleneurorehabilitation: A systematic review. Front. Neurol. 2020, 11, 354. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Ferrer, A.; de Noreña, D.; Serrano, J.I.; Ríos-Lago, M.; Romero, J.P. Cognitive rehabilitation in a case of traumatic brain injury using EEG-based neurofeedback in comparison to conventional methods. J. Integr. Neurosci. 2021, 20, 449–457. [Google Scholar] [CrossRef]
- Bekkers, E.M.J.; Mirelman, A.; Alcock, L.; Rochester, L.; Nieuwhof, F.; Bloem, B.R.; Pelosin, E.; Avanzino, L.; Cereatti, A.; Della Croce, U.; et al. Do patients with Parkinson’s disease with freezing of gait respond differently than those without to treadmill training augmented by virtual reality? Neurorehabil. Neural Repair 2020, 34, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Bertomeu-Motos, A.; Ezquerro, S.; Barios, J.A.; Lledó, L.D.; Domingo, S.; Nann, M.; Martin, S.; Soekadar, S.R.; Garcia-Aracil, N. User activity recognition system to improve the performance of environmental control interfaces: A pilot study with patients. J. Neuroeng. Rehabil. 2019, 16, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabrò, R.S.; Naro, A.; Cimino, V.; Buda, A.; Paladina, G.; Di Lorenzo, G.; Manuli, A.; Milardi, D.; Bramanti, P.; Bramanti, A. Improving motor performance in Parkinson’s disease: A preliminary study on the promising use of the computer assisted virtual reality environment (CAREN). Neurol. Sci. 2020, 41, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Capodieci, A.; Romano, M.; Castro, E.; Di Lieto, M.C.; Bonetti, S.; Spoglianti, S.; Pecini, C. Executive functions and rapid automatized naming: A new tele-rehabilitation approach in children with language and learning disorders. Child 2022, 9, 822. [Google Scholar] [CrossRef]
- Eilam-Stock, T.; George, A.; Charvet, L.E. Cognitive telerehabilitation with transcranial direct current stimulation improves cognitive and emotional functioning following a traumatic brain injury: A case study. Arch. Clin. Neuropsychol. 2021, 36, 442–453. [Google Scholar] [CrossRef]
- Gerber, S.M.; Schütz, N.; Uslu, A.S.; Schmidt, N.; Röthlisberger, C.; Wyss, P.; Perny, S.; Wyss, C.; Koenig-Bruhin, M.; Urwyler, P.; et al. Therapist-guided tablet-based telerehabilitation for patients with aphasia: Proof-of-concept and usability study. JMIR Rehabil. Assist. Technol. 2019, 6, e13163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamali, A.R.; Alizadeh Zarei, M.; Sanjari, M.A.; AkbarFahimi, M.; Saneii, S.H. Randomized controlled trial of occupation performance coaching for families of children with autism spectrum disorder by means of telerehabilitation. Br. J. Occup. Ther. 2022, 85, 308–315. [Google Scholar] [CrossRef]
- Jordan, M.; Nogueira, G.N.N.; Brito, A., Jr.; Nohama, P. Virtual keyboard with the prediction of words for children with cerebral palsy. Comput. Methods Programs Biomed. 2020, 192, 105402. [Google Scholar] [CrossRef]
- Lancioni, G.E.; Singh, N.N.; O’Reilly, M.F.; Sigafoos, J.; Alberti, G.; Chiariello, V.; Buono, S. Extended smartphone-aided program to sustain daily activities, communication and leisure in individuals with intellectual and sensory-motor disabilities. Res. Dev. Disabil. 2020, 105, 103722. [Google Scholar] [CrossRef]
- Leonardi, S.; Maggio, M.G.; Russo, M.; Bramanti, A.; Arcadi, F.A.; Naro, A.; Calabrò, R.S.; De Luca, R. Cognitive recovery in people with relapsing/remitting multiple sclerosis: A randomized clinical trial on virtual reality-based neurorehabilitation. Clin. Neurol. Neurosurg. 2021, 208, 106828. [Google Scholar] [CrossRef]
- Maier, M.; Ballester, B.R.; Leiva Banuelos, N.; Duarte Oller, E.; Verschure, P.F.M.J. Adaptive conjunctive cognitive training (ACCT) in virtualreality for chronic stroke patients: A randomized controlled pilot trial. J. Neuroeng. Rehabil. 2020, 17, 42. [Google Scholar] [CrossRef] [Green Version]
- Pinter, D.; Kober, S.E.; Fruhwirth, V.; Berger, L.; Damulina, A.; Khalil, M.; Neuper, C.; Wood, G.; Enzinger, C. MRI correlates of cognitive improvement after home-based EEG neurofeedback training in patients with multiple sclerosis: A pilot study. J. Neurol. 2021, 268, 3808–3816. [Google Scholar] [CrossRef]
- Stasolla, F.; Caffò, A.O.; Perilli, V.; Boccasini, A.; Damiani, R.; D’Amico, F. Assistive technology for promoting adaptive skills of children with cerebral palsy: Ten cases evaluation. Disabil. Rehabil. Assist. Technol. 2019, 14, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Stasolla, F.; Caffò, A.O.; Bottiroli, S.; Ciarmoli, D. An assistive technology program for enabling five adolescents emerging from a minimally conscious state to engage in communication, occupation, and leisure opportunities. Dev. Neurorehabilit. 2022, 25, 193–204. [Google Scholar] [CrossRef]
- Cole, S.; Deci, E.L.; Zhao, H.; Wang, W. How environmental and psychological factors interact with travel participation after spinal cord injury. Rehabil. Psychol. 2022, 67, 152–161. [Google Scholar] [CrossRef]
- Vaughan-Graham, J.; Brooks, D.; Rose, L.; Nejat, G.; Pons, J.; Patterson, K. Exoskeleton use in post-stroke gait rehabilitation: A qualitative study of the perspectives of persons post-stroke and physiotherapists. J. Neuroeng. Rehabil. 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Mickens, M.N.; Perrin, P.B.; Aguayo, A.; Rabago, B.; Macías-Islas, M.A.; Arango-Lasprilla, J.C. Mediational model of multiple sclerosis impairments, family needs, and caregiver mental health in Guadalajara, Mexico. Behav. Neurol. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Sarhan, A.A.; El-Sharkawy, K.A.; Mahmoudy, A.M.; Hashim, N.A. Burden of multiple sclerosis: Impact on the patient, family and society: Burden of multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 63, 103864. [Google Scholar] [CrossRef]
- Ngadimon, I.W.; Aledo-Serrano, A.; Arulsamy, A.; Mohan, D.; Khoo, C.S.; Cheong, W.L.; Shaikh, M.F. An interplay between post-traumatic epilepsy and associated cognitive decline: A systematic review. Front. Neurol. 2022, 13, 248. [Google Scholar] [CrossRef]
- Schwab, S.M.; Dugan, S.; Riley, M.A. Reciprocal influence of mobility and speech-language: Advancing physical therapy and speech therapy cotreatment and collaboration for adults with neurological conditions. Phys. Ther. 2021, 101, pzab196. [Google Scholar] [CrossRef]
- Willms, S.; Abel, M.; Karni, A.; Gal, C.; Doyon, J.; King, B.R.; Classen, J.; Rumpf, J.-J.; Buccino, G.; Pellicano, A.; et al. Motor sequence learning in patients with ideomotor apraxia: Effects of long-term training. Neuropsychologia 2021, 159, 107921. [Google Scholar] [CrossRef]
- D’Amico, F.; Lancioni, G.E.; Buonocunto, F.; Ricci, C.; Fiore, P. Technology-aided leisure and communication support in extensive neuro-motor and communication impairments. Eur. J. Phys. Rehabil. Med. 2019, 55, 682–686. [Google Scholar] [CrossRef]
- D’Amico, F.; Boscia, F.; Cannone, A.; Alberti, G.; Lancioni, G. Everyday technology to support basic communication and leisure of individuals with extensive neuro-motor and speech impairments. J. Enabling Technol. 2022, 16, 243–249. [Google Scholar] [CrossRef]
- Pittman, C.A.; Ward, B.K.; Nieman, C.L. A review of adult-onset hearing loss: A primer for neurologists. Curr. Treat. Options Neurol. 2021, 23, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zampogna, A.; Mileti, I.; Palermo, E.; Celletti, C.; Paoloni, M.; Manoni, A.; Mazzetta, I.; Costa, G.D.; Pérez-López, C.; Camerota, F.; et al. Fifteen years of wireless sensors for balance assessment in neurological disorders. Sensors 2020, 20, 3247. [Google Scholar] [CrossRef] [PubMed]
- Ouellette, J.; Lacoste, B. From neurodevelopmental to neurodegenerative disorders: The vascular continuum. Front. AgingNeurosci. 2021, 13, 647. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, X.; Liu, X.; Song, R.; Gao, Y.; Wang, S. Implications of FBXW7 in neurodevelopment and neurodegeneration: Molecular mechanisms and therapeutic potential. Front. Cell Neurosci. 2021, 15, 736008. [Google Scholar] [CrossRef] [PubMed]
- Stasolla, F.; Damiani, R.; Perilli, V.; D’Amico, F.; Caffò, A.O.; Stella, A.; Albano, V.; Damato, C.; Di Leone, A. Computer and microswitch-based programs to improve academic activities by six children with cerebral palsy. Res. Dev. Disabil. 2015, 45-46, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Stasolla, F.; Caffò, A.O.; Damiani, R.; Perilli, V.; Di Leone, A.; Albano, V. Assistive technology-based programs to promote communication and leisure activities by three children emerged from a minimal conscious state. Cogn. Process. 2015, 16, 69–78. [Google Scholar] [CrossRef]
- Stasolla, F.; De Pace, C. Assistive technology to promote leisure and constructive engagement by two boys emerged from a minimal conscious state. Neurorehabilitation 2014, 35, 253–259. [Google Scholar] [CrossRef]
- Lancioni, G.E.; Singh, N.N.; O’Reilly, M.F.; Sigafoos, J.; Alberti, G.; Perilli, V.; Grillo, G.; Turi, C. Case series of technology-aided interventions to support leisure and communication in extensive disabilities. Int. J.Dev. Disabil. 2020, 66, 180–189. [Google Scholar] [CrossRef]
- Calafiore, D.; Invernizzi, M.; Ammendolia, A.; Marotta, N.; Fortunato, F.; Paolucci, T.; Ferraro, F.; Curci, C.; Cwirlej-Sozanska, A.; de Sire, A. Efficacy of virtual reality and exergaming in improving balance in patients with multiple sclerosis: A systematic review and meta-analysis. Front. Neurol. 2021, 12, 773459. [Google Scholar] [CrossRef]
- de Miguel-Rubio, A.; Dolores Rubio, M.; Alba-Rueda, A.; Salazar, A.; Moral-Munoz, J.A.; Lucena-Anton, D. Virtual reality systems for upper limb motor function recovery in patients with spinal cord injury: Systematic review and meta-analysis. JMIR mHealth uHealth 2020, 8, e22537. [Google Scholar] [CrossRef]
- Matamala-Gomez, M.; Bottiroli, S.; Realdon, O.; Riva, G.; Galvagni, L.; Platz, T.; Sandrini, G.; De Icco, R.; Tassorelli, C. Telemedicine and virtual reality at time of COVID-19 pandemic: An overview for future perspectives in neurorehabilitation. Front. Neurol. 2021, 12, 646902. [Google Scholar] [CrossRef]
- Stasolla, F.; Matamala-Gomez, M.; Bernini, S.; Caffò, A.O.; Bottiroli, S. Virtual reality as a technological-aided solution to support communication in persons with neurodegenerative diseases and acquired brain injury during COVID-19 pandemic. Front. Public Health 2021, 8, 635426. [Google Scholar] [CrossRef]
- Stasolla, F.; Bottiroli, S. Fostering daily life skills in young and older adults with neurodegenerative diseases through technological supports. Int. J. Ambient. Comput. Intell. 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Lazarou, I.; Nikolopoulos, S.; Petrantonakis, P.C.; Kompatsiaris, I.; Tsolaki, M. EEG-based brain–computer interfaces for communication and rehabilitation of people with motor impairment: A novel approach of the 21st century. Front. Human Neurosci. 2018, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Marin-Pardo, O.; Laine, C.M.; Rennie, M.; Ito, K.L.; Finley, J.; Liew, S.-L. A virtual reality muscle–computer interface for neurorehabilitation in chronic stroke: A pilot study. Sensors 2020, 20, 3754. [Google Scholar] [CrossRef] [PubMed]
- Uslu, A.S.; Gerber, S.M.; Schmidt, N.; Röthlisberger, C.; Wyss, P.; Vanbellingen, T.; Schaller, S.; Wyss, C.; Koenig-Bruhin, M.; Berger, T.; et al. Investigating a new tablet-based telerehabilitation app in patients with aphasia: A randomised, controlled, evaluator-blinded, multicentre trial protocol. BMJ Open 2020, 10, e037702. [Google Scholar] [CrossRef] [PubMed]
- McKeon, G.L.; Robinson, G.A.; Ryan, A.E.; Blum, S.; Gillis, D.; Finke, C.; Scott, J.G. Cognitive outcomes following anti-N-methyl-D-aspartate receptor encephalitis: A systematic review. J. Clin. Exp. Neuropsychol. 2018, 40, 234–252. [Google Scholar] [CrossRef]
- Cacciatore, M.; Raggi, A.; Pilotto, A.; Cristillo, V.; Guastafierro, E.; Toppo, C.; Magnani, F.G.; Sattin, D.; Mariniello, A.; Silvaggi, F.; et al. Neurological and mental health symptoms associated with post-COVID-19 disability in a sample of patients discharged from a COVID-19 ward: A secondary analysis. Int. J. Environ. Res. Public Health 2022, 19, 4242. [Google Scholar] [CrossRef]
- Kratz, A.L.; Boileau, N.R.; Sander, A.M.; Nakase-Richardson, R.; Hanks, R.A.; Massengale, J.P.; Miner, J.A.; Carlozzi, N.E. Do emotional distress and functional problems in persons with traumatic brain injury contribute to perceived sleep-related impairment in caregivers? Rehabil. Psychol. 2020, 65, 432–442. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, N.; Xu, S. Research progress of imaging technologies for ischemic cerebrovascular diseases. J. Int. Med. Res. 2021, 49, 0300060520972601. [Google Scholar] [CrossRef]
- Bernini, S.; Panzarasa, S.; Sinforiani, E.; Quaglini, S.; Cappa, S.F.; Cerami, C.; Tassorelli, C.; Vecchi, T.; Bottiroli, S. HomeCoRe for Telerehabilitation in Mild or Major Neurocognitive Disorders: A Study Protocol for a Randomized Controlled Trial. Front. Neurol. 2021, 12, 752830. [Google Scholar] [CrossRef]
- Baur, K.; Schättin, A.; De Bruin, E.D.; Riener, R.; Duarte, J.E.; Wolf, P. Trends in robot-assisted and virtual reality-assisted neuromuscular therapy: A systematic review of health-related multiplayer games. J. Neuroeng. Rehabil. 2018, 15, 107. [Google Scholar] [CrossRef] [Green Version]
- Lancioni, G.E.; Singh, N.N.; O’Reilly, M.F.; Sigafoos, J.; D’Amico, F.; Buonocunto, F.; Lanzilotti, C.; Alberti, G.; Navarro, J. Mainstream technology to support basic communication and leisure in people with neurological disorders, motor impairment and lack of speech. Brain Inj. 2020, 34, 921–927. [Google Scholar] [CrossRef]
- Wendt, O.; Miller, B. Systematic review documents emerging empirical support for certain applications of iPods® and iPads® in intervention programs for individuals with developmental disabilities, but these are not a “one-size-fits-all” solution. Evid.-Based Commun. Assess. Interv. 2013, 7, 91–96. [Google Scholar] [CrossRef]
- Caprì, T.; Nucita, A.; Iannizzotto, G.; Stasolla, F.; Romano, A.; Semino, M.; Giannatiempo, S.; Canegallo, V.; Fabio, R.A. Telerehabilitation for improving adaptive skills of children and young adults with multiple disabilities: A systematic review. Rev. J. Autism Dev. Disord. 2021, 8, 244–252. [Google Scholar] [CrossRef]
- de Brito, S.A.F.; Scianni, A.A.; da Cruz Peniche, P.; de Morais Faria, C.D.C. Measurement properties of outcome measures used in neurological telerehabilitation: A systematic review protocol. PLoS ONE 2022, 17, e0265841. [Google Scholar] [CrossRef]
- Crawford, M.R.; Schuster, J.W. Using microswitches to teach toy use. J. Dev. Phys. Disabil. 1993, 5, 349–368. [Google Scholar] [CrossRef]
- Lancioni, G.E.; Singh, N.N.; O’Reilly, M.; Sigafoos, J.; Alberti, G.; Desideri, L. Programs using stimulation-regulating technologies to promote physical activity in people with intellectual and multiple disabilities: Scoping review. JMIR Rehabil. Assist. Technol. 2022, 9, e35217. [Google Scholar] [CrossRef]
- Bernini, S.; Stasolla, F.; Panzarasa, S.; Quaglini, S.; Sinforiani, E.; Sandrini, G.; Vecchi, T.; Tassorelli, C.; Bottiroli, S. Cognitive telerehabilitation for older adults with neurodegenerative diseases in the COVID-19 era: A perspective study. Front. Neurol. 2021, 11, 623933. [Google Scholar] [CrossRef]
- Stasolla, F.; Vinci, L.A.; Cusano, M. The integration of assistive technology and virtual reality for assessment and recovery of post-coma patients with disorders of consciousness: A new hypothesis. Front. Psychol. 2022, 13, 905811. [Google Scholar] [CrossRef]
- Javed, A. Neurological associations of SARS-CoV-2 infection: A systematic review. CNS Neurol. Disord. Drug Targets 2022, 21, 246–258. [Google Scholar] [CrossRef]
- Paredes, I.; Leon, A.M.C.; Lagares, A.; Roldan, L.J.; Perez-Nuñez, A.; González-Leon, P.; Delgado-Fernandez, J.; Eiriz, C.; García-Pérez, D.; Moreno-Gomez, L.M.; et al. Impact of the first wave of the SARS-CoV-2 pandemic on the outcome of neurosurgical patients: A nationwide study in Spain. BMJ Open 2021, 11, e053983. [Google Scholar] [CrossRef]
- Jiang, H.; Natarajan, R.; Shuy, Y.K.; Rong, L.; Zhang, M.W.; Vallabhajosyula, R. The use of mobile games in the management of patients with attention deficit hyperactive disorder: A scoping review. Front. Psychiatry 2022, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Kokol, P.; Vošner, H.B.; Završnik, J.; Vermeulen, J.; Shohieb, S.; Peinemann, F. Serious game-based intervention for children with developmental disabilities. Curr. Pediatr. Rev. 2020, 16, 26–32. [Google Scholar] [CrossRef]
- Lancioni, G.E.; Bosco, A.; Belardinelli, M.O.; Singh, N.N.; O’Reilly, M.F.; Sigafoos, J. An overview of intervention options for promoting adaptive behavior of persons with acquired brain injury and minimally conscious state. Res. Dev. Disabil. 2010, 31, 1121–1134. [Google Scholar] [CrossRef] [PubMed]
- Lancioni, G.E.; Singh, N.N.; O’Reilly, M.F.; Sigafoos, J.; Alberti, G.; Perilli, V.; Chiariello, V.; Grillo, G.; Turi, C. A tablet-based program to enable people with intellectual and other disabilities to access leisure activities and video calls. Disabil. Rehabil. Assist. Technol. 2020, 15, 14–20. [Google Scholar] [CrossRef]
- Gordon, M.N.; Heneka, M.T.; Le Page, L.M.; Limberger, C.; Morgan, D.; Tenner, A.J.; Terrando, N.; Willette, A.A.; Willette, S.A. Impact of COVID-19 on the onset and progression of Alzheimer’s Disease and related dementias: A roadmap for future research. Alzheimer’s Dement. 2022, 18, 1038–1046. [Google Scholar] [CrossRef]
- Fang, B.; Liu, H.; Yan, E. Association between caregiver depression and elder mistreatment-examining the moderating effect of care recipient neuropsychiatric symptoms and caregiver-perceived burden. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2021, 76, 2098–2111. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, M.-C.; Baumstarck, K.; Valkov, M.; Felce, A.; Brisse, C.; Khaldi-Cherif, S.; Loundou, A.; Auquier, P.; de Villemeur, T.B. Impact of severe polyhandicap cared for at home on French informal caregivers’ burden: A cross-sectional study. BMJ Open 2020, 10, e032257. [Google Scholar] [CrossRef] [Green Version]
- Bishnoi, A.; Lee, R.; Hu, Y.; Mahoney, J.R.; Hernandez, M.E. Effect of treadmill training interventions on spatiotemporal gait parameters in older adults with neurological disorders: Systematic review and meta-analysis of randomized controlled trials. Int. J. Environ. Res. Public Health 2022, 19, 2824. [Google Scholar] [CrossRef]
- Cacciante, L.; Pietà, C.; Rutkowski, S.; Cieślik, B.; Szczepańska-Gieracha, J.; Agostini, M.; Kiper, P. Cognitive telerehabilitation in neurological patients: Systematic review and meta-analysis. Neurol. Sci. 2022, 43, 847–862. [Google Scholar] [CrossRef]
- Chock, V.Y.; Bhombal, S.; Variane, G.F.T.; Van Meurs, K.P.; Benitz, W.E. Ductus arteriosus and the preterm brain. Arch. Dis. Child. Fetal. Neonatal. Ed. 2022, 108, 96–101. [Google Scholar] [CrossRef]
- Voinescu, A.; Sui, J.; Stanton Fraser, D. Virtual reality in neurorehabilitation: An umbrella review of meta-analyses. J. Clin. Med. 2021, 10, 1478. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.F.; Demers, M. Motor learning in neurological rehabilitation. Disabil. Rehabil. 2021, 43, 3445–3453. [Google Scholar] [CrossRef]
- Bonilauri, A.; Intra, F.S.; Pugnetti, L.; Baselli, G.; Baglio, F. A systematic review of cerebral functional near-infrared spectroscopy in chronic neurological diseases—Actual applications and future perspectives. Diagnostics 2020, 10, 581. [Google Scholar] [CrossRef] [PubMed]
- Lancioni, G.E.; Singh, N.N.; O’Reilly, M.F.; Sigafoos, J.; Green, V.; Chiapparino, C.; Stasolla, F.; Oliva, D. A voice-detecting sensor and a scanning keyboard emulator to support word writing by two boys with extensive motor disabilities. Res. Dev. Disabil. 2009, 30, 203–209. [Google Scholar] [CrossRef]
- Lancioni, G.E.; Singh, N.N.; O’Reilly, M.F.; Sigafoos, J.; Chiapparino, C.; Stasolla, F.; Oliva, D. Using an optic sensor and a scanning keyboard emulator to facilitate writing by persons with pervasive motor disabilities. J. Dev. Phys. Disabil. 2007, 19, 593–603. [Google Scholar] [CrossRef]
- Stasolla, F.; Perilli, V.; Damiani, R.; Caffò, A.O.; Di Leone, A.; Albano, V.; Stella, A.; Damato, C. A microswitch-cluster program to enhance object manipulation and to reduce hand mouthing by three boys with autism spectrum disorders and intellectual disabilities. Res. Autism Spectr. Disord. 2014, 8, 1071–1078. [Google Scholar] [CrossRef]
- Mantovani, E.; Zucchella, C.; Bottiroli, S.; Federico, A.; Giugno, R.; Sandrini, G.; Chiamulera, C.; Tamburin, S. Telemedicine and virtual reality for cognitive rehabilitation: A roadmap for the COVID-19 pandemic. Front. Neurol. 2020, 11, 926. [Google Scholar] [CrossRef]
- Bernini, S.; Gerbasi, A.; Panzarasa, S.; Quaglini, S.; Ramusino, M.C.; Costa, A.; Avenali, M.; Tassorelli, C.; Vecchi, T.; Bottiroli, S. Outcomes of a computer-based cognitive training (CoRe) in early phases of cognitive decline: A data-driven cluster analysis. Sci. Rep. 2023, 13, 2175. [Google Scholar] [CrossRef] [PubMed]
- Hom, C.L.; Walsh, D.; Fernandez, G.; Tournay, A.; Touchette, P.; Lott, I.T. Cognitive assessment using the rapid assessment for developmental disabilities, second edition (RADD-2). J. Intellect. Disabil. Res. 2021, 65, 831–848. [Google Scholar] [CrossRef]
- Schmidt, M.; Babcock, L.; Kurowski, B.G.; Cassedy, A.; Sidol, C.; Wade, S.L. Usage patterns of an mHealth symptom monitoring app among adolescents with acute mild traumatic brain injuries. J. Head Trauma Rehabil. 2022, 37, 134–143. [Google Scholar] [CrossRef]
- Fridriksson, J.; Hillis, A.E. Current approaches to the treatment of post-stroke aphasia. J. Stroke 2021, 23, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Fasczewski, K.S.; Garner, L.M.; Clark, L.A.; Michels, H.S.; Migliarese, S.J. Medical therapeutic yoga for multiple sclerosis: Examining self-efficacy for physical activity, motivation for physical activity, and quality of life outcomes. Disabil. Rehabil. 2022, 44, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Dicé, F.; Auricchio, M.; Boursier, V.; De Luca Picione, R.; Santamaria, F.; Salerno, M.; Valerio, P.; Freda, M.F. Psychological scaffolding for taking charge of intersex/dsd conditions. the joint listening settings. Psicol. Salute 2018, 2018, 129–145. [Google Scholar] [CrossRef]
- Caffò, A.O.; Lopez, A.; Spano, G.; Saracino, G.; Stasolla, F.; Ciriello, G.; Grattagliano, I.; Lancioni, G.E.; Bosco, A. The role of pre-morbid intelligence and cognitive reserve in predicting cognitive efficiency in a sample of Italian elderly. Aging Clin. Exp. Res. 2016, 28, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Martino, M.L.; Picione, R.L.; Lemmo, D.; Boursier, V.; Freda, M.F. Meaning-making trajectories of resilience in narratives of adolescents with multiple sclerosis. Mediterr. J. Clin. Psychol. 2019, 7, 1–25. [Google Scholar] [CrossRef]
- Fischbein, R.; Saling, J.R.; Marty, P.; Kropp, D.; Meeker, J.; Amerine, J.; Chyatte, M.R. Patient-reported Chiari malformation type I symptoms and diagnostic experiences: A report from the national conquer chiari patient registry database. Neurol. Sci. 2015, 36, 1617–1624. [Google Scholar] [CrossRef]
- Fabricatore, C.; Radovic, D.; Lopez, X.; Grasso-Cladera, A.; Salas, C.E. When technology cares for people with dementia: A critical review using neuropsychological rehabilitation as a conceptual framework. Neuropsychol. Rehabil. 2020, 30, 1558–1597. [Google Scholar] [CrossRef]
- Soler, B.; Ramari, C.; Valet, M.; Dalgas, U.; Feys, P. Clinical assessment, management, and rehabilitation of walking impairment in MS: An expert review. Expert. Rev. Neurother. 2020, 20, 875–886. [Google Scholar] [CrossRef]
- Arlati, S.; Di Santo, S.G.; Franchini, F.; Mondellini, M.; Filiputti, B.; Luchi, M.; Ratto, F.; Ferrigno, G.; Sacco, M.; Greci, L. Acceptance and usability of immersive virtual reality in older adults with objective and subjective cognitive decline. J. Alzheimer’s Dis. 2021, 80, 1025–1038. [Google Scholar] [CrossRef]
- Pourebadi, M.; Riek, L.D. Facial expression modeling and synthesis for patient simulator systems: Past, present, and future. ACM Trans. Comput. Healthc. 2022, 3, 1–32. [Google Scholar] [CrossRef]
- Jahn, F.S.; Skovbye, M.; Obenhausen, K.; Jespersen, A.E.; Miskowiak, K.W. Cognitive training with fully immersive virtual reality in patients with neurological and psychiatric disorders: A systematic review of randomized controlled trials. Psychiatry Res. 2021, 300, 113928. [Google Scholar] [CrossRef] [PubMed]
- Park, G.; Balcer, M.J.; Colcombe, J.R.; Hasanaj, L.; Joseph, B.; Kenney, R.; Hudson, T.; Rizzo, J.-R.; Rucker, J.C.; Galettta, S.L.; et al. The MICK (Mobile integrated cognitive kit) app: Digital rapid automatized naming for visual assessment across the spectrum of neurological disorders. J. Neurol. Sci. 2022, 434, 120150. [Google Scholar] [CrossRef] [PubMed]
- Plow, M.; Mangal, S.; Geither, K.; Golding, M. A scoping review of tailored self-management interventions among adults with mobility impairing neurological and musculoskeletal conditions. Front. Public Health 2016, 4, 165. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.; Caffò, A.O.; Tinella, L.; Bosco, A. The four factors of mind wandering questionnaire: Content, construct, and clinical validity. Assessment 2021, 30, 433–447. [Google Scholar] [CrossRef] [PubMed]
Authors | Participants | Ages | Group | Technology | Main Outcomes |
---|---|---|---|---|---|
Arroyo-Ferrer et al. [36] | 1 | 20 | VR | EEG neurofeedback | Benefits in divided and sustained attention |
Bekkers et al. [37] | 121 | 60–90 | VR | Virtual treadmill | Postural stability |
Bertomeu-Motos et al. [38] | 8 | 22–58 | AT | Multimodal interface | Positive achievement of cognitive tasks in the experimental group |
Calabrò et al. [39] | 22 | 60–73 | VR | Computer-assisted | Gait stability |
Capodieci et al. [40] | 42 | 5–11 | TR | Computerized training | Accuracy in dictation, reading, inhibition, and working memory test |
Eilam-Stock et al. [41] | 1 | 29 | TR | Deep stimulation | Improvement in attention and working memory |
Gerber et al. [42] | 15 | 43–63 | TR | Interface with Hierarchical Structure | Participants’ Enjoyment and Approval |
Jamali et al. [43] | 43 | 4–12 | TR | Coaching technology | Improvement in occupational performance |
Jordan et al. [44] | 41 | 9–13 | AT | Keyboard emulator | Literacy access and words prediction |
Lancioni et al. [45] | 6 | 38–59 | AT | Smartphone and adapted software | Communication and leisure opportunities |
Leonardi et al. [46] | 30 | 50–65 | VR | Rehabilitation system | Mood Improvement Visuo-spatial skills enhancement |
Maier et al. [47] | 30 | 45–75 | VR | Adaptive conjunctive cognitive training | Improvement in attention, spatial awareness, and cognitive functions |
Pinter et al. [48] | 14 | 32–40 | TR | EEG neurofeedback | Cognitive improvement correlated with increased functional connectivity |
Stasolla et al. [49] | 10 | 7–10 | AT | Microswitches | Improvement of adaptive skills and positive participation |
Stasolla et al. [50] | 5 | 14–18 | AT | Microswitches | Enhancement of academic performance and personal needs communication |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasolla, F.; Lopez, A.; Akbar, K.; Vinci, L.A.; Cusano, M. Matching Assistive Technology, Telerehabilitation, and Virtual Reality to Promote Cognitive Rehabilitation and Communication Skills in Neurological Populations: A Perspective Proposal. Technologies 2023, 11, 43. https://doi.org/10.3390/technologies11020043
Stasolla F, Lopez A, Akbar K, Vinci LA, Cusano M. Matching Assistive Technology, Telerehabilitation, and Virtual Reality to Promote Cognitive Rehabilitation and Communication Skills in Neurological Populations: A Perspective Proposal. Technologies. 2023; 11(2):43. https://doi.org/10.3390/technologies11020043
Chicago/Turabian StyleStasolla, Fabrizio, Antonella Lopez, Khalida Akbar, Leonarda Anna Vinci, and Maria Cusano. 2023. "Matching Assistive Technology, Telerehabilitation, and Virtual Reality to Promote Cognitive Rehabilitation and Communication Skills in Neurological Populations: A Perspective Proposal" Technologies 11, no. 2: 43. https://doi.org/10.3390/technologies11020043
APA StyleStasolla, F., Lopez, A., Akbar, K., Vinci, L. A., & Cusano, M. (2023). Matching Assistive Technology, Telerehabilitation, and Virtual Reality to Promote Cognitive Rehabilitation and Communication Skills in Neurological Populations: A Perspective Proposal. Technologies, 11(2), 43. https://doi.org/10.3390/technologies11020043